H

P

P

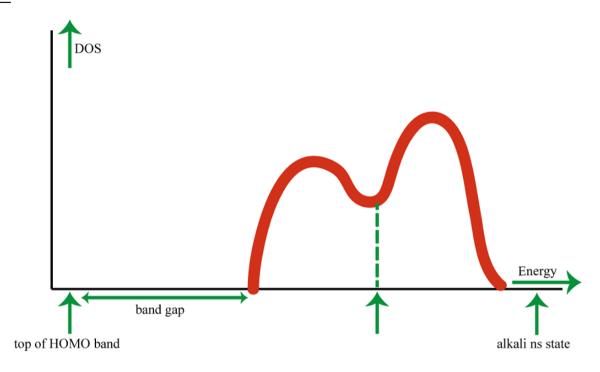
H

LECTURE 5. NON-CUPRATE SUPERCONDUCTIVITY

1. Alkali Fullerides

Formula:A₃C₆₀

 $\underline{C_{60} \text{ molecule}}$: "soccer-ball" pattern, with 20 hexagon and 12 pentagons: icosahedral symmetry.


C atom is $1s^22s^22p^4$, but in molecule or solid, 2s and 2p hybridize to form $4sp^2$ states. Of these, 3 are used up in the inplane bonding, leaving 1 electron per C atom (= 60 per fullerene molecule) in p_z -like state (i.e. "sticking out of surface")(cf. graphene)

The HOMO state is 5-fold orbitally degenerate, the LUMO "lowest unoccupied molecular orbital"

state 3-fold degenerate.

In the single molecule, HOMO-LUMO splitting $\sim 0.6 \text{eV}$.

Fullerene crystals¹: fcc, cubic lattice parameter $\sim 14.2 \text{Å}$ (corresponds to close-packed molecules)

Bond which evolves from LUMO state has density of states (DOS) roughly like above; Density of states in middle of band very sensitive to lattice parameter.

¹ignore "merohedral" disorder.

<u>Alkali fullerides</u>: Any intercalated alkali atoms will donate their s-electrons to the LUMO bond, thereafter "spectators" (cf. "charge reservoir" atoms in cuprates).

Normal-state properties roughly consistent with "textbook" picture of half-filled band. $(C_{\rm v} \sim T, \chi \sim {\rm const.}, T_1 \sim T^{-1}{\rm etc})$. Note experiment confirms $N(0) (\equiv \frac{1}{2} (\frac{dn}{d\epsilon}))$ strongly dependent² on lattice constant a. (photoemission, plasmons)

²important for transport, in N and Superconducting states

Alkali fullerides: superconducting state

Superconductivity occurs, in A_xC_{60} , only very close to x=3, but then has T_c up to $\sim 40 \text{K} (\text{Cs}_3C_{60})$ (contrast intercalated graphite, eg $\text{KC}_8, T_c \lesssim 1 \text{K}$)

 $T_{\rm c}$ increases with increasing lattice spacing a (due to pressure or substitution): typically,

$$\partial T_{\rm c}/\partial a \sim 33{\rm K/\AA}$$

Consistent with BCS result

$$T_{\rm c} \sim \omega_D \exp(-1/N(0)V_0)$$

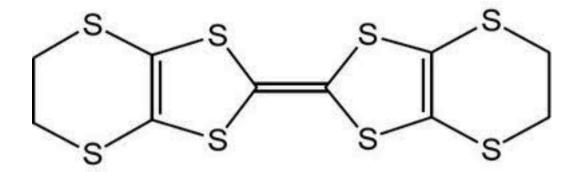
with V_0 mainly of intramolecular origin, hence independent of a, and density of states N(0) increasing with a.

$$A_3C_{60}$$
's strongly type-II, $\xi(0) \sim 26\text{Å}$ (< 2 lattice spacings), $\lambda(0) \sim 2400\text{-}4800\text{Å}$.

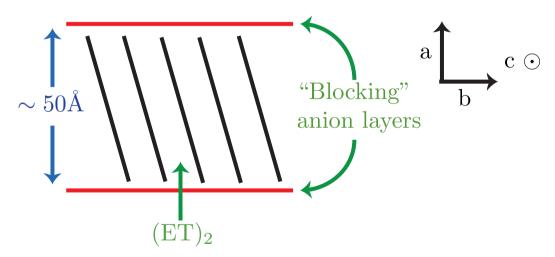
Pairing state:

 $\begin{cases} T_1 + \text{infrared reflectivity} \Longrightarrow s\text{-state (density of states very small for } E < \Delta \approx 1.76 k_B T_c) \\ \text{HS peak seen in } \mu \text{SR and}^{13} \text{C NMR} \Longrightarrow s\text{-state (as in "BCS" superconductors)} \end{cases}$

$$(\star : \Delta \lambda(T) \sim T^{\alpha}, \alpha \sim 3)$$

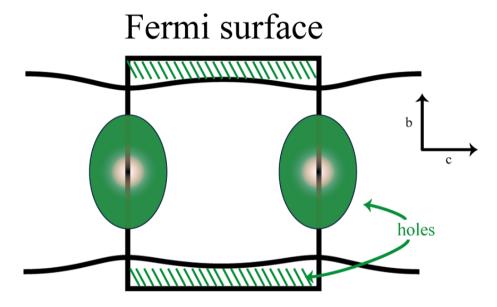

Mechanism:

Isotope exponent ($^{12}\text{C} \rightarrow ^{13}\text{C}$) $\approx 0.4 \Longrightarrow$ phonon mechanism Note: $\omega_D/\epsilon_F \sim 0.3$ - 0.6 (BCS superconductors: $\sim 10^{-2}$) so even if mechanism is phonon, details may be rather different from BCS.


Default explanation:

Alkali fullerides pretty well described by BCS theory, but strongly molecular structure enables them to avoid usual limit on $T_{\rm c}$ (cf. MgB₂)

2.Organics



Mostly quasi-2D crystal based on ET(BEDT-TTF)(bis(ethylene-dithio)-tetrathiafulvalene). Structure:(ET)₂X, X=monovalent anion $(I_3^-, Cu(NCS)_2^-...)$. Conducting layers are $(ET)_2$, "blocking" layers anions.

Normal State

Conduction electron density low ($\sim 10^{21} {\rm cm}^{-3}$) Very strong *a*-axis anisotropy³: $\rho_a/\rho_{bc} \sim 10^2$ - 10^3 (comparable to cuprates) Samples can be made very clean \Longrightarrow dHvA-type oscillations observable

Typical Fermi Surface Structure $(K-(ET)_2Cu(NCs)_2)$: very strongly 2-dimensional

 $^{^{3}}$ Confusingly, the conventional notation calls the "hard" direction a (not c as in the Cuprates).

Superconducting State

T_c typically ~ 10-12K (high in terms of calculated in-plane hopping matrix element) extreme type-II (H_{c1} ~ a few mT, H_{c2} ~ 8-15T) estimated $\xi_{||} \sim 50\text{Å}, \xi_{\perp} \sim 5\text{Å}$ (\ll interlayer distance) Symmetry: $c_{\text{v}}(T) \sim e^{-\Delta/T}$ for $T \to 0 \Longrightarrow s$ -wave \star : $T_1^{-1} \sim T^3$, no HS peak Isotope effect: $^{12}\text{C} \to ^{13}\text{C}$ has $\alpha \sim 0.1$, but $^{1}\text{H} \to ^{2}\text{D}$ produces inverse isotope effect ($\alpha < 0$) (effect of lattice deformation?)

Default option: organics somewhat BCS-like, but electronic effects may be competitive.

3. Heavy Fermions⁴

Oldest class of exotic superconductors (1975).

Heavy-fermion systems:compounds containing rare-earth element (usually Ce) or actinide (usually U), with electronic specific heat exceeding "textbook" value by $\sim 10^2$ - 10^3 ($\Longrightarrow m^*/m \sim 10^2$ - $10^3 \Longrightarrow$ "heavy")

(Note: large effective mass seen also in eg. dHvA.) All 3D (not layered).

Normal-state behavior:

at $T \sim 300$ K, behavior of HF systems quite different from textbook metal + not always universal in class (eg.R(T) metallic for UPt₃, semiconducting for most others). However, generally

```
\begin{cases} \chi \propto 1/T \\ T_1^{-1} \propto {\rm const.} \\ C_{\rm V} \propto {\rm const.} \end{cases} neutron scattering simple Lorentzian peak centered at T=0
```

 \implies consistent with model in which f-electrons (Ce³⁺ : $4f_1$, U⁴⁺ : $5f_2$) form local moments

⁴Ref.: Y.Kuramoto, Y.Kitaoka, Dynamics of Heavy Electrons, Oxford University Press, 2000.

As T lowered, crossover to a Fermi-liquid-like regime:

$$C_{
m V} \propto T$$

$$T_1^{-1} \propto T$$

 $\rho \propto A + BT^2 \leftarrow$ impurity + e - e Umklapp

But coefficient γ in $C_{\rm V} = \gamma T$ is enormous, up to $\sim 1600 {\rm mJ/mole~K^2~(CeCu_6)}$ (contrast "textbook" metal, $C_{\rm V} \sim {\rm a~few~mJ/mole}$).

*: are we sure this specific heat is due to mobile electrons?

Yes, since $\Delta c_{\rm n-s}/c_{\rm n}(T_{\rm c}) \sim {\rm BCS}$ value (+ superconducting electrons presumably must be mobile!)

In Fermi liquid theory, $\gamma \sim m^*$, so $m^*/m \sim 10^2$ - 10^3 : confirmed by χ (also $\sim 10^2$ - $10^3 \times$ textbook value), dHvA.

Naive picture of N state:

f-electrons form very narrow band, width $\sim \Delta \sim$ a few K. Then for $k_B T \ll \Delta$, can equally well represent in terms of states localized on lattice sites.

 $\implies \chi \propto 1/T, C_{\rm V}$ "small", $T_1^{-1} \propto {\rm const.}$, etc. For $k_B T \lesssim \Delta$ need proper "band" picture with large $m^*(\propto \Delta^{-1})$.

 \star : ignores conduction (s or d) electrons! better picture involves competition between Kondo effect (favors s-f singlet) and RKKY(Ruderman-Kittel-Kasuya-Yosida interaction) (favors magnetic ordering of f-electrons). In fact, many HF systems (ever some superconducting ones) show antiferromagnetism at $T \lesssim 20$ K.

Heavy Fermion superconductors

- 4 classes of HF systems:
- 1) no phase transition (ex.: CeAl₃)
- 2) magnetic transition only (ex.: CeCu₆)
- 3) superconducting transition only (ex.: UPt₃, CeCu₂Si₂, UBe₁₃...)
- 4) magnetic and superconducting transitions (ex.: UPdAl₃, URu₂Si₂, UGe₂...). In this class, magnetic order and superconductivity coexist (contrary to established "textbook" wisdom!)

In all cases of superconductivity in a HF system, $T_{\rm c} \lesssim 2{\rm K}$. (In class 4, $T_{\rm N} \sim 10\text{-}50{\rm K}$). Diagnostics: most crucial observation is that

no HFS shows any appreciable isotope effect

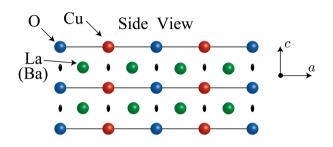
⇒ strongly suggests non-phonon ("all-electronic") mechanism.

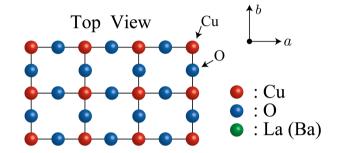
Pairing state:

Need to discuss each HFS separately: diagnostics include low-T behavior of $C_{\rm V}, T_1^{-1}, \kappa_{\rm el}$, Knight shift, $H_{\rm c2}$, sensitivity to nonmagnetic scattering, multiple phases... Some representative HFS and their (suggested) symmetries⁵

System	Magnetic?	$T_{\rm c}({ m K})$	Parity	Gap nodes?	Comments
$\overline{\mathrm{UPt}_3}$	Р	0.56	_	\checkmark	
$CeCu_2Si_2$	P	0.65	+(?)	\checkmark	
UBe_{13}	Р	0.9	-(?)	\checkmark	
$UPdAl_3$	AF	2.0	+	\checkmark	$T_{\rm N} = 14.5 {\rm K}$
$CeCoIn_5$	Р	2.3	+	\checkmark	probably $d_{x^2-y^2}$
$UNiAl_3$	AF	1.0	_	?	$T_{\rm N}=4.6{\rm K}$
URu_2Si_2	AF	0.8	_	?	$T_{\rm N} = 17.5 \rm K$
UGe_2	F	0.6	_	?	$T_{\text{Curie}} = 30 \text{K}^*$

^{*} at point of maximum T_c .

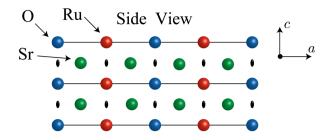

⁵Note:no evidence for T-violation in any HFS.

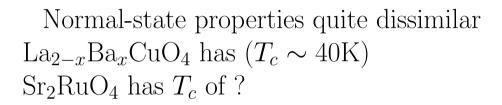

4. Strontium Ruthenate : Sr_2RuO_4

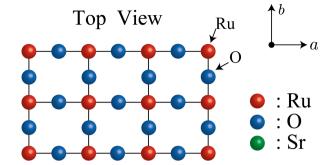
History

Superconductivity in cuprates up to $\sim 150~\mathrm{K}$

Typical (original) cuprate : $La_{2-x}Ba_xCuO_4$ ($T_c \sim 40K$)

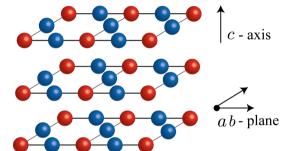





Quasi -2D CuO₂ planes appear to be essential to high- T_c superconductivity. How essential is the Cu? Try replacing it : Ag, Au, doesn't work, but :

Cu (Z=29) : [Ar] + $3d^{10}4s^1 \rightarrow 3d^9$

Ru (Z=44): [Kr] + $4d^75s^1 \rightarrow 4d^4$

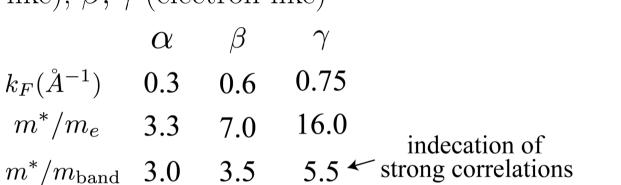

Experimental properties* of Sr₂RuO₄

Normal Phase

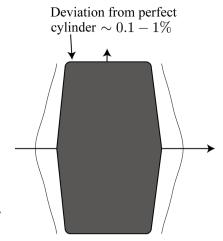
Below ~ 25 K, appears to behave as strongly anisotropic Fermi liquid (nb: cuprates quite different)

$$C_{\rm V} \sim \gamma T + \beta T^3 \qquad \chi \sim {\rm const.}$$

 $\rho \sim A + BT^2$ both in ab-plane and along c-axis (characteristic of coherent (Bloch) wave transport limited by e^- - e^- Umklapp scattering). ρ_{ab} small $(\sim 1\mu\Omega \text{ cm})$


 \implies samples very pure.

^{*} Mackenzie, and Maeno, RMP 75, 1 (2003)


However, $\rho_{\rm c}/\rho_{\rm ab} \sim 10^3$ (comparable to cuprates) Band structure:

Etranxperiment (dHvA, Shubnikov-De Haas) and theory (LDA) agree:

Fermi surface consists of 3 strongly 2D sheets: α (hole-like), β, γ (electron-like)

 $\chi \sim \text{const.}$ in superconducting state \Rightarrow triplet equal-spin-pairing

Suppose order parameter of Sr_2RuO_4 is indeed of equal-spin-pairing form: then

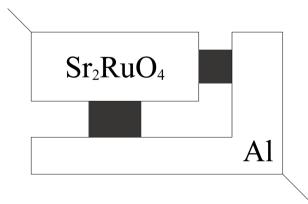
$$F(\mathbf{k}; \sigma_1, \sigma_2) = F(\mathbf{k}; \sigma_1, \sigma_2) = f(\mathbf{k})(\uparrow \uparrow + \downarrow \downarrow)$$

Then the crucial question is:

What is $f(\mathbf{k})$? \leftarrow orbital wave function of pairs

 $f(\mathbf{k})$ odd parity (consistent with Josephson experiments)

In particular, is it real (e.g. $f(\mathbf{k}) \sim k_x$) or complex (e.g. $f(\mathbf{k}) = k_x + ik_y$)?


breaks T-invariance

In BCS theory, want $|OP|^2$ to be as uniform as possible over Fermi surface $\to k_x + ik_y$ always favored. But in more general theory, need not be so. Experiments favoring violation of T-symmetry:

- a) Muon spin rotation extra "internal" magnetic field in superconductor state (\uparrow : apparently H has ab-plane component!)
- b) Magnetic field dependence and telegraph noise in I_c of Josephson junctions interpreted in terms of switching of domains $(p_x + ip_y \leftrightarrows p_x ip_y)$
- c) Kerr effect in zero magnetic field.
- \star : "ideal" $p_x + ip_y$ state ($\Delta \sim F \sim \text{const.}(k_x + ik_y)$ has no nodes)
- \implies exponentially small no. of quasiparticles for $T \ll T_c$
- ⇒ no appreciable specific heat, thermal conductivity.....

In fact, experimental evidence for power law contribution of many of these quantities \rightarrow gap has nodes?

In principle, critical test I_c max. at $\Phi = \frac{1}{4}$ or $\frac{3}{4}\phi_0$

5. Ferropnictides

*: only 3 years old, so much experimental data may not be definitive. Composition: two major atoms, each containing a transition metal (usually Fe) and a pnictide (element in N column of periodic table), usually As.

2 main classes of parent compounds:

1111: (RE) (TM) (PN) O:example, LaFeAsO(
$$_{1-x}F_x$$
)
rare transition pnictide

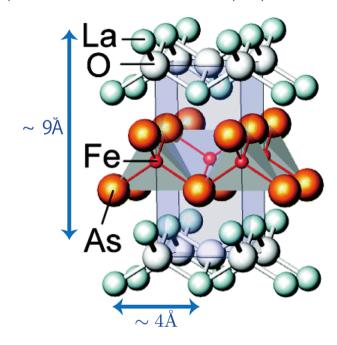
122: (AE) (TM)₂(PN)₂: example, BaFe₂As₂

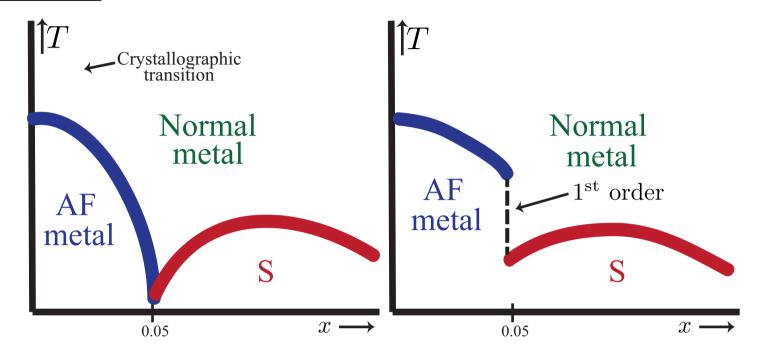
alkaline
earth

third class: LiFeAs, FeSe... ← "11"

most work on (1111), will mostly refer to this.

Structure (1111 compounds) (schematic)



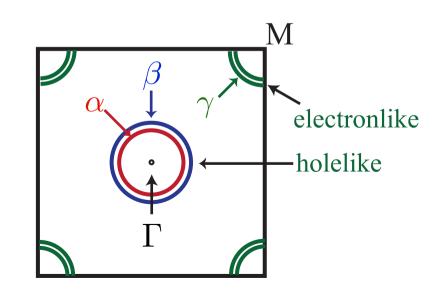

Figure 1: Kamihara et al., J.Am.Chem.Soc., 2008, 130 (11)

in parent compound, valence state probably $(La^{3+}O^{2-})^+(Fe^{2+}As^{3-})^-$ (+ some Fe 3*d*-As 4*p* hybridization) (doubly) closed shell \uparrow \uparrow 3d⁶ \uparrow closed shell

If F substituted for O, extra electron \rightarrow FeAs layer: for $O_{1-x}F_x$, $x \sim 0.1$, carrier density $\sim 10^{21}$ cm⁻³ (comparable to cuprates)

Note that as in cuprates, "charge reservoir" (F's in LaO layer) well separated from metallic (FeAs) layer. Note: 1111's are electron-doped (but 122's hole-doped)

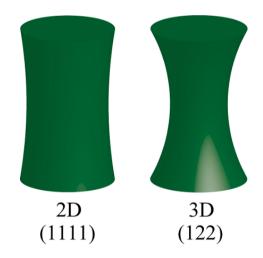
Phase diagram


Note max. in $T_{\rm c}(x)$ at $x \sim 0.12$ -0.15 is very "shallow" compared to cuprates

Experimental properties (N state)

$$\begin{cases} C_{\rm V} & \sim \alpha T + \beta T^3 \\ \chi & \sim A + BT \\ \rho \text{ (dc conductivity)} & \sim A + BT^2, \sim 3\text{m}\Omega \text{ at RT (\sim cuprates)} \\ \text{Hall coefficient} & \sim A + BT \end{cases}$$

★: so far, anisotropy not measured (?) overall fairly "textbook"


Band structure:

Note:

in 1111 Fermi surface very 2D. ("barrel-like")

in 122 much more 3D. also, magnetism much stronger in 122.

Superconductivity

 $T_{\rm c}$ up to $\sim 56{\rm K}$ in (doped) 1111, 38K in 122, 20K in 11. : weakly x-dependent (e.g. LaFeAsO_{1-x}F_x): a surprise, because Fe ions have magnetic moments $\sim \mu_{\rm B}$ (neutron scattering).

Experimental properties (Superconducing state)

All ferropnictides strongly type-II, with (extrapolated) $H_{\rm c2}(0) \sim 55{\rm T}$:

(exceeds Chandrasekhar Clogston limit) $\!\!\!\uparrow$

anisotropy relatively small (\sim 2-3). $\lambda_{ab}(0) \sim 1600\text{-}2400\text{Å}$, $\xi_{ab}(0) \sim 20\text{Å}$ ARPES: on all sheets, gap only weakly \boldsymbol{k} -dependent.

NMR, penetration depth: at low T data mutually inconsistent, but favor power law.

very importantly: Knight shift $\to 0$ for $T \to 0$ for all directions of magnetic field.

Isotope effect: experiments mutually inconsistent, but most recent give small value of α

 \implies suggests mechanism mostly non-phonon.(consistent with firm theoretical prediction that phonon mechanism cannot give 55K)

The pairing state

Knight shift \Longrightarrow spin state singlet (fairly firm conclusion)

For (approximate) tetragonal symmetry, main candidates are s (presumably nodeless) and $d_{x^2-y^2}$ (nodes at (π,π)).

ARPES data suggest nodeless \Longrightarrow s. but $T \to 0$ T_1, λ rather favor nodes

★: However, extra complication:

gap need not have same sign on all sheets of Fermi surface!

Theory based on spin-fluctuation mechanism (most "obvious" non-phononic mechanism) predicts gap changes sign between electronlike and holelike sheets (" s^{\pm} ")

Experimental evidence claimed in favor of this assignment:

"Josephson-like" experiment on polycrystalline sample⁶ (shows half flux quanta)

 STM^7

No "true" Josephson experiments yet...

⁶Chen et al., Nature Physics **6**, 260 (2010)

⁷Hanaguri et al., Science **327**, 474 (2010)