
Lecture A3

Chern-Simons gauge theory

The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

SCS =
k

4π

∫

tr

(

AdA+
2

3
A3

)

,

=
k

8π

∫

ǫµνρtr

(

Aµ(∂νAρ − ∂ρAν) +
2

3
Aµ[Aν , Aρ]

)

. (1)

where tr is the trace over the fundamental representation of the gauge group G and k is a
parameter of the theory (inverse of the coupling constant). If G is compact and simple, k has
to be an integer in order for the action to be gauge invariant. (This has to do with the fact
that π3(G) = Z for any such group, where π3 is the 3rd homotopy group – to be introduced in
Lecture 10.)

The CS theory is an example of a topological field theory since writing down its action
does not require a metric. If the quantization can be carried out without introducing a metric,
observables of the theory would give topological invariants.

abelian CS theory

As a warm-up exercise, let us study the case when G = U(1), i.e. the abelian CS theory. It
has the action,

SU(1) =
k

4π

∫

A ∧ dA,

with A being the U(1) connection. Note that U(1) is not a simple group and k is not quantized
in this case.

Such an action appears, for example, as the low energy effective theory to describe the
topological order in fractional quantum Hall effect states. The equation of motion for the action
simply says that F = dA = 0, which means that there is no local gauge-invariant observables.
However, there are non-local observables. An important class of observables are the Wilson
loops. Suppose that we are in R3. For each closed loop γ ∈ R3, we can consider the operator,

W (q; γ) = exp

(

iq

∮

γ

A

)

.

Suppose we deform the loop infinitesimally. This can be done by attaching a small loop ǫ as
γ → γ + ǫ. The Wilson loop changes as

W (q; γ + ǫ) =

(

1 + iq

∮

ǫ

A

)

W (q; γ) =

(

1 + iq

∫

D

F

)

W (q; γ),

where D is a small disk in R3 such that ∂D = ǫ and we used the Stokes theorem. Since F = 0
by the equations of motion, the expectation value of W (q; γ) is invariant under infinitesimal
deformation of γ. Namely, it is a topological invariant of γ. Since the functional integral is
Gaussian, one can evaluate the expectation value of products of these operators exactly. For
example,

〈W (q1; γ1)W (q2; γ2)〉

〈W (q1; γ1)〉〈W (q2; γ2)〉
= exp

(

−q1q2

∮

γ1

dxµ
∮

γ2

dyν〈Aµ(x)Aµ(y)〉

)

= exp

(

2πi

k
q1q2Φ(γ1, γ2)

)

,
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where

Φ(γ1, γ2) =
1

4π

∮

γ1

dxµ
∮

γ2

dyνǫµνρ
(x− y)ρ

|x− y|3
.

This is called the Gauss linkng number. It counts the number of links of the two loops (γ1 and
γ2) by either +1 or −1 depending on the orientation of each link. This is one of the classical
invariants of knots and links.

non-abelian CS theory

New features appear when the gauge group G is non-abelian. First of all, the action acquires
the cubic term A3, generating interactions. The defintion of the Wilson loop operator requires a
care since A’s do not commute with each other. Suppose the loop γ starts and end at a point x.
Consider the vector bundle in a representation R of the structure group G and the connection
A. Pick a vector v at the fiber over x. Now parallel transport v along the loop γ using the
connection and come back to x. This gives another vector at the fiber over x. Thus, the parallen
transport around γ defines a linear map on the fiber over x. The Wilson loop is defined as a
trace of this linear map. More explicitly, we can also define the Wilson loop as

W (R; γ) = trRP exp

(

i

∮

γ

A

)

,

where trR indicates the trace over the representation space R, and the symbol P means the
path-ordering.

In the simplest non-abelian case when G = SU(2) and R is its fundamental representation,
the expectation value of the Wilson loops gives the Jones polynomial invariants of knots and
links. Below, we will see how one can compute such invariants.

In addition to invariants of knots and links, one can use the partition function (vacuum
amplitude) of the CS theory to define a topological invariant of a 3-dimensional manifold M -
the Reshetikhin-Turaev invariant.

canonical quantization

To compute amplitudes of the CS theory, it is often convenient to cut the manifold M into
two parts across a two-dimensional surface. One reason for its usefulness is the existence of the
Heegaard splitting. First define a handlebody as a 3-dimensional manifold with a boundary Σ
such that cutting each of its handles across a disk produces the 3-sphere. Another way to think
about a handle body is to embed a Riemann surface Σ in R3 and consider its interior plus the
boundary Σ. Consider two such handlebodies with the same boundary Σ. Gluing them across
the boundary produces a closed 3-dimensional manifold. It can be shown that any 3-dimensional
differentiable manifold can be constructed in this way.

For example, consider a solid torus T 2
α,β with two homology cycles α, β and α is contractible.

If we glue two copies of them together, we find S1×S2. On the other hand, if we glue Tα,β with
Tβ,α together, we get S3.

As a special case, consider a three manifold of the form R × Σ and perform the canonical
quantization with R as time. This produces a Hilbert space HΣ associated to Σ. In particular,
if Ma (a = 1, 2) are handlebodies with ∂Ma = (−1)aΣ (the sign refers to the orientation), the
CS functional integarls over Ma give particular state functions Ψa=1,2 in HΣ. The partition
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function for the closed manifold with the Heegaard splitting intwo M1∪M2 is then given by the
inner product of the two wave functions (Ψ1,Ψ2).

Let us denote the connection in the R direction and in the Σ direction by A0 and Ai=1.2,
respectively. The CS action on R× Σ can then be written as

SCS =
k

4π

∫

dt

∫

Σ
tr

(

ǫijAi
∂

∂t
Aj +A0Fij

)

,

where Fij = ∂iAj − ∂jAi + [Ai, Aj ], the curvature of the vector bundle over Σ. In this action,
A0 serves as the Lagrange multiplier to enforce the constraint Fij = 0 and the gauge connection
Ai is canonically conjugate to k

2π ǫ
ijAj. Namely, we are dealing with a system with constraints.

When we have a system with constraints, there are two ways to quantize it:

(1) Start with the canonical commutations relations, in this case,

[Aa
i (x), A

b
j ] =

2πi

k
ǫijδ

abδ2(x− y),

where a, b are gauge group indices, and impose Fij = 0 as conditions on physical wave functions.

(2) Impose the constraint first. In our case, the resulting space is the space of flat vector bundles
over Σ. On this space, one can define a non-degenerate symplectic form, which one can derive
by applying the symplectic reduction of the canonical symplectic form on Aa

i , and then quantize
the constrainted phase space.

These two procedures should give the same answer.

When G = SU(2), the dimensions of the Hilbert space is given by the Verlinde formula,

dimHΣ =

(

k + 2

2

)g−1 k
∑

j=0

(

sin
(j + 1)π

k + 2

)2−2g

,

where g is the genus (the number of handles) of Σ. There is a generalization of this formula for
compact G.

holomorphic quantization

In the undergraduate quantum mechanics, one considers the space of square integrable
functions of q ∈ R. The position operator is the multiplication by q, and its conjugate
momentum is the derivative operator p = −i∂q. We can exchange the role of q and p, consider
the space of square integrable functions of p and regard q as the differential operator, i∂p. We
can also consider their hybrid. Choose complex coordinate,

u = q + ip, ū = q − ip.

Use holomorphic functions of u for wave functions, and regard ū as the derivative operator ∂u.
This is called the holomorphic quantization.

This approach is useful here since we can make use of the complex structure (z, z̄) on the
Riemann surface Σ. The commutation relations between Aa

i ’s can be writte in the complex
coordinates as,

[Aa
z(z, z̄), A

b
z̄(w, w̄)] =

2π

k
δabδ(z − w)δ(z̄ − w̄).
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We can then consider the Hilbert space as the space of holomorphic functionals Ψ(A) of Az̄ and
regard Az as the functional derivative,

Aa
z =

2π

k

δ

δAa
z̄

.

The constraint Fij = 0 can then be expressed as conditions on wave functions as,
(

∂z̄
δ

δAz̄
+

[

Az̄,
δ

δAz̄

])

Ψ(A) =
k

2π
∂zAz̄Ψ(A).

The Hilbert space consists of normalizable solutions to these equations.

WZW model

It turns out that the Hilbert space HΣ for the canonical quantization of the CS theory on
R×Σ is naturally related to the two-dimensional conformal field theory called the WZW model
on Σ. For simplicity, here we will discuss the case with G = SU(2).

In Lecture A2, we discussed the Virasoro generators Ln derived from the energy-momentum
tensor Tzz. The energy-momentum tensor Tzz is meromorphic and obeys the product operator
expansion,

TzzTww ∼
c/2

(z − w)4
+

(

2

(z − w)2
+

1

z − w
∂w

)

Tww + 0(1).

The WZW model is a conformal field theory with holomorphic currents Ja
z (a = 1, 2, 3) in the

adjoint representation of SU(2). They obey the product operator expansion,

Ja
z Jb

w ∼
k/2δab

(z − w)2
+

ǫabc

z − w
Jc
w + 0(1).

By using

∂z̄
1

z − w
= −πδ2(z − w),

which we derived earlier, we can also write this as,

∂z̄J
a
z Jb

w =
kπ

2
δab∂zδ

2(z − w)− πǫabcδ2(z − w)Jc
w.

Consider couling these currents to an SU(2) gauge field on Σ. For now, let us just turn on
the anti-holomorphic component Az̄. Conside the partition function with Az̄,

Z(A) = 〈exp(π

∫

Σ
Aa

z̄Jz)〉.

We see that functional derivatives with respect to A generate correlation functions of the
currents. The operator product expansion we wrote in the above can then be expressed in
terms of Z(A) as

(

∂z̄
δ

δAz̄

+

[

Az̄,
δ

δAz̄

])

Z(A) =
k

2π
∂zAz̄Z(A).

This is exactly the same equation as that for wave functions for the Chern-Simons theory. In the
context of the WZW model, this equation is called the Ward-Takahashi identity since it follows
from symmetry of the model.
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We can also turn on the Az component of the gauge field. It is then known that the partition
function of the WZW model on a Riemann surface Σ can be decomposed into a finite sum of
products of holomorphic and anti-holomorphic parts as,

Z(Az, Az̄) =
∑

α

Ψα(Az̄)Ψ̄α(Az).

Clearly, each Ψα should obey the Ward-Takahashi identify, and Ψ̄α its conjugate. Each of them
can be regarded as a wave function for the canonical quantization of the SU(2) WZW model
on Σ. In the context of the WZW model, Ψα’s are called conformal blocks. Thus, we have the
correspondence, relating objects in 2-dimensional conformal field theory to the 3-dimensional
CS theory,

”conformal blocks in the WZW model on Σ” ↔ ”wave functions of the CS theory on R× Σ”.

The relation between the 2d conformal field theory and the 3d theory with coordinate invariance
is similar to the AdS/CFT correspondence.

computation

The relation between the CS theory and the WZWmodel can be used to compute observables
in the CS theory. For example, for a closed 3-dimensional manifold M , one can compute its
CS partition function by performing the Heegaard splitting and by taking the inner product
(Ψ1,Ψ2), where Ψa=1,2 are associated to particular handlebodies. Two different handlebodies
are related to each other by modular transformations on the boundary Σ, and therefore we can
compute this inner product if we know how the modular transformation acts on the Hilbert
space HΣ. The description in terms of the WZW model provides this information.

For example, we know that there is only one conformal block on S2. Therefore,

ZCS(S
1 × S2) = trH

S2
1 = 1.

We can use this to compute ZCS(S
3) since S3 is related to S1×S2 by the modular transformation

Tα,β → Tβ,α of the Heegaard decomposition.

Similarly, suppose we want to compute the vacuum expectation values of n Wilson loops on
S3. The S3 can be separated into two 3d balls, with a common boundary of S2. Suppose the
S2 cuts each Wilson loops into half. We have S2 with 2n punctures. In fact, they are conformal
blocks of a correlation function of 2n local operators in the WZW model on S2. If we move
one local operator around another and bring it back to the same location, we should get the
same result since that is what it means that the two operators being mutually local. However,
conformal blocks can mix with each other under this monodromy transformation. It turns out
that, if we cut the Wilson loops in half and perform some monodromy transformation on one
side, then one can disentangle knots and links. Thus, if we know how conformal blocks transform
into each other under monodromy transformations, one can relate the vacuum expectation values
of n Wilson loops to the one of n unknots, the trivial knots. This enables us to compute such
expectation values.
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