
Lecture A1

matrix model

matrix integral

Consider an N × N hermitian matrix M and its potential of the form trW (M), where
W (M) is a polynomial of M . It is invariant under conjugation, trW (ΩMΩ−1) = trW (M),
where Ω ∈ U(N). The partition function Z of the matrix model is defined by the integral,

Z =

∫

dMe−tr W (M),

where the measure is dM = 2
1

2
N(N−1)∏

i dMii

∏

i<j dReMijdImMij and is invariant under the
U(N) action. The matrix model has widespread applications in theoretical physics. It is a toy
model of the functional integral of the gauge theory (it can be thought of as a zero-dimensional
quantum field theory). It was introduced to understand spectra of atomic nuclei, it was used to
understand non-Abelian gauge theory in the limit of a large gauge group, it described dynamics
of D branes in string theory in certain situations, it has close connections to quantum geometry
of Calabi-Yau manifolds, etc.

Feynman diagrams

Let us start with the simplest case of N = 1 and when the integral is Gaussian, W (M) =
a
2M

2,

Z0 =

∫

∞

−∞

dMe−
a
2
M2

=

√

2π

a
.

We can also compute correlation functions,

〈Mk〉0 =
1

Z0

∫

∞

−∞

dM Mk e−
a
2
M2

=
1

Z0

(

−2
d

da

)k

Z0 = (2k − 1)!!a−k,

where (2k− 1)!! = 1 · 3 · 5 · · · (2k− 1). This can be used to evaluate a matrix integral for a more
complicated potential as,

Z(a, g) =

∫

∞

−∞

dMe−
a
2
M2

−
g

4!
M4

=

∞
∑

n=0

1

n!

(

− g

4!

)n

〈M4n〉0Z0(a)

=
∞
∑

n=0

(4n− 1)!!

n!(4!)n

(

− g

a2

)n

Z0(a). (1)

Note that the sum is an asymptotic expansion in g, and it is not convergent. The combinatorial
factor (4n − 1)!!/n!(4!)n is equal to the number of Feynman diagrams with n vertices with 4
legs each. Namely, it is equal to the number of ways to connect the n M4 vertices using 2n
lines (propagators). When a diagram has a symmetry, we divide its contribution by the order
of the symmetry group. For example, the figure-8 shape diagram for n = 1 has Z2 × Z2 × Z2

symmetry, and its contribution to the above sum is 1/8 times −g/a2.
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’t Hooft counting

Now we move on to N > 1. Consider the potential,

W (M) =
1

2
M2 +

∞
∑

p=3

gp
p
Mp.

Since both the potential and the measure dM is U(N) invariant, it is reasonable to define the
partition function by divising the matrix integral by the volume of the U(N) group given by

vol U(N) =
(2π)

1

2
N(N+1)

G2(N + 1)
,

where G2(z) is the Barnes double-Γ function satisfying,

G2(z + 1) = Γ(z)G2(z), G2(1) = 1.

The matrix model partition function is then given by,

Z =
1

vol U(N)

∫

dMe−
1

λ
trW (M).

Here we introduced the parameter λ to keep track of the perturbative exapansion. Later we will
indentify it with the string coupling constant.

Let us evaluate the integral Z in powers of λ. As in the case of N = 1, we should first
understand the Gaussian integral with gp = 0 (p = 3, 4, ...). We can show, for example,

〈MijMkl〉Gaussian = λδilδjk.

Expectation values of higher powers ofM are given as sums of products of this two-point function
〈MijMkl〉Gaussian. This property of the Gaussian integral is known as the Wick theorem. Since
the actio of the U(N) group is given by M → ΩMΩ−1, we can think of Mij as in the tensor
product of the fundamental representation i and the anti-fundamental representation j of U(N).
We can visualize the two-point function 〈MijMkl〉Gaussian by connecting an arrow from i to l
and another arrow from k to j, namely from one of the fundamental representation to one of
the anti-fundamental representation.

We can compute 〈trM2〉Gaussian by visualizing a pair of loops, one going clockwisely and
another going counter-clockwisely. We should also remember that each double-line (a pair of
arrows) is weighted by λ. Thus, we see that it should be equal to λN2.

Question 1: Compute 〈trM2 trM2〉Gaussian.

To compute 〈trM3 trM3〉Gaussian, we can visualize 2 cubic-vertices. From each of the cubic
vertices, 3 double-ines are emenating, and we need to tie them together, paying attention to the
orientations of the arrows. It turns out that there are 2 topologically distinct ways of doing it.
One involves 3 loops of arrows, giving 12N3λ3 (we have N3 since there are 3 loops, and we have
λ3 since there are 3 double-lines). Another one involves just 1 loop, giving 3Nλ3 (we have N
since there is only 1 loop). These two Feynman diagrams are topologically distinct. For example,
the former can be drawn on a plane sheet of paper without any lines crossing each other. It
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is not possible to do so for the latter. Another way to see the difference is to pay attention
to each loop in the diagrams and to identify a disk bounded by the loop so that the loop goes
clockwisely as seen from the top of the disk. By attaching such disks, each Feynman diagram
can be turned into a closed surface. In our example, this generates two distinct surfaces. For
the first type of Feynman diagrams, the resulting surface is the 2-sphere. For the second type,
it is a torus.

In general, the perturbative expansion of the partition function Z generates a sum of possibly
disjoint diagrams. We can generate a sum of connected diagrams if we take the logarithm logZ.
We can then express is as a sum over connected surfaces. It is interesting to note that surfaces
generated in this way are always orientable. This is because we started with arrows with definite
orientations and is ultimately because we started with the integral over hermitial matrices. If
we had started with an integral over anti-symmetric matrices, we would have generated surfaces
without orientations (e.g. including the Klein bottle).

Each Feynman diagram is weighted as follows. Let us call the number of p-valent vertices
as Vp with the total number of vertices V =

∑

p Vp, the number of double-lines (propagators) as
E, the number of disks (faces) as F . The weight can be counted as,

∏

p

(

−gp
λ

)Vp

λENF = λE−V NF
∏

p

(−gp)
Vp = λ−V+E−F (λN)F

∏

p

(−gp)
Vp .

It is interesting to note that the combination (V − E + F ) is the Euler characteristic of the
surface one gets by attaching disks to the Feynman diagram. For a closed surface,

V − E + F = 2− 2g,

where g is the number of handles attached to the surface (g = 0 for the 2-sphere, g = 1 for the
torus, etc).

The combination t = λN is called the ’t Hooft coupling. When we use the perturbative
expansion in λ, we assume that λ ≪ 1. The above observation shows that, if we take this limit
while keeping the ’t Hoof coupling finite, we can express logZ as a sum of connected surfaces
weighted by λ2g−2,

F = logZ =
∞
∑

g=0

Fg(gp, t)λ
2g−2.

This is called the ’t Hooft expansion or the large N expansion (since λ ≪ 1 with t = λN
finite means N ≫ 1). Gerard ’t Hooft speculated that the resulting Fg(gp, t) should have a nice
interpretation in terms of a closed string theory. This turned out to be the case for the matrix
model.

eigenvalue integral

Since the matrix integral is invariant under M → ΩMΩ−1, we can express it as an integral
over eigenvalues of M .

Z =
1

volU(N)

∫

dM e−
1

λ
trW (M) =

1

N !

∫ N
∏

i=1

dλi

2π
e−

1

λ
W (λi)

∏

i<j

(λi − λj)
2.
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This follows from the following identity,

∆(M)2 ·
∫

U(N)
dΩ

∏

i<j

δ
(

(ΩMΩ−1)ij

)

= 1,

where ∆(M) defined so that,

(1) It is an invariant function, ∆(ΩMΩ−1) = ∆(M).

(2) It is equal to
∏

i<j(λi − λj) when M is diagonal.

One can think of ∆(M)2 as the Faddeev-Popov determinant for the gauge condition, Mij = 0
(i < j), namely M being diagonal. Using this,
∫

dM e−
1

λ
trW (M) =

∫

dM e−
1

λ
trW (M)∆(M)2

∫

U(N)
dΩ

∏

i<j

δ
(

(ΩMΩ−1)ij

)

=

∫

dM ′ e−
1

λ
trW (M ′)∆(M ′)2

∏

i<j

δ(M ′

ij)

∫

U(N)
dΩ, (we set M ′ = ΩMΩ−1)

=
vol(U(N))

(2π)NN !

∫ N
∏

i=1

dλie
1

λ
W (λi)

∏

i<j

(λi − λj)
2. (2)

This proves the eigenvalue integral expression for Z. One can think of the factor 1/N ! as taking
care of the residual gauge symmetry of exchanging the eigenvalues, which remains after imposing
the gauge condition Mij = 0 (i < j).

eigenvalue distribution

We can write the eigenvalue integral as,

Z =
1

N !

∫

∏

i

dλi

2π
e−N2V (λ),

where

V (λ) =
1

N

∑

i

t−1W (λi)−
1

N2

∑

i<j

log(λi − λj)
2.

One can think of this as the potential energy of N particles in one dimensions with coordinate
λ in the potential t−1W (λ) and with the repulsive potential − log(λi − λj)

2.

In the large N limit, the sum over i gives a factor of N , and V (λ) is then of the order 1. In
fact, by introducing the eigenvalue distribution function,

ρ(λ) =
1

N

∑

i

δ(λ − λi),

which is normalized as
∫

dλρ(λ) = 1,

we can write the potential as a functional of ρ,

V (ρ) =
1

t

∫

dλρ(λ)W (λ)−
∫

dλdλ′ρ(λ)ρ(λ′)log|λ − λ′|.
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Since the integrand for the eigenvalue integral is exp(−N2V ), the eigenvalues will try to settle
in the configuration to minimize the potential V . A variation of V with respect to ρ gives,

1

2t
W ′(λ) = P

∫

ρ(λ′)

λ− λ′
dλ′.

Here P in the right-hand side means that we take the principal value of the integral. To be
precise, the above is obtained by taking a derivative of the equation δV/δρ = 0 with respect to
λ. This turns out to be more convenient than the orignal equation.

resolvent

To solve the eigenvalue equation, it is convenient to introduce the resolvent,

ω(p) =
1

N
〈tr 1

p−M
〉.

In the large N limit, it becomes

ω0(p) =

∫

dλ
ρ(λ)

p− λ
.

Suppose that the eigenvalue distribution ρ(λ) has a finite support C on the real line R.
The resolvent ω0(p) has a branch cut on C. The resolvent has several properties, which can be
derived from its definition:

(1) It is analytic, except on C.

(2) ω0(p) ∼ 1/p for p → ∞.

(3) ω0(λ+ iǫ)− ω0(λ− iǫ) = −2πiρ(λ) for λ ∈ C and 0 < ǫ ≪ 1.

The eigenvalue equation then gives,

(4) ω0(λ+ iǫ) + ω0(λ− iǫ) = −1
t
W ′(λ).

Assuming the eigenvalue distribution generates a single cut, C = [b, a], there is an explicit
solution to these conditions of the form,

ω0(p) =
1

2t

∮

dz

2πi

W ′(z)

p− z

√

(p − a)(p − b)

(z − a)(z − b)
.

The end points of the cut are determined by the conditions (1) and (2).

As an example, consider the Gaussian model with W (λ) = 1
2λ

2. In this case, we expect
a = −b by symmetry, and we have

ω0(p) =

√

p2 − a2

2t

∮

dz

2πi

z

(p− z)
√
z2 − a2

.

Requiring (2), one finds a = 2
√
t and

ω0(p) =
1

2t

(

p−
√

p2 − 4t
)

.
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By using (3), the eigenvalue distribution is given by

ρ(λ) =
1

2πt

√

4t− λ2.

This is the famous semi-circle law of Eugene Wigner.

Generally speaking, if we write

ω0(p) =
1

2t

(

y(p) +W ′(p)
)

,

y(p) obeys
y(p)2 = W ′(p)2 −R(p),

where

R(p) = 4t

∫

dλρ(λ)
W ′(p)−W ′(λ)

p− λ
.

If W (p) is a polynomial of p of degree k, R(p) is a polynomial of degree (k − 2). Thus,
(y, p) obeying the above equation defines an algebraic curve (Riemann surface) in C2. Here
we considered a one-cut solution, but in general the curve can have (k − 1) branch cuts. This
is as expected since it is the same as the number of extrema of W (p), where eigenvalues can
congregate.

Given the algebraic curve, we can consider a complex 3-dimensional manifold defined by

uv = y2 −W ′(p)2 +R(p), (u, v, y, p) ∈ C4.

It turns out that this manifold is Calabi-Yau and we can introduce a Ricci-flat Kähler metric on
it. We can consider the closed topological string theory of B-type with this Calabi-Yau manifold
as its target space, and its partition function is equal to the matrix model partition function Z.
In this case, the topological string theory gives the large N dual of the matrix model anticipated
by ’t Hooft.
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