
Lecture 9

Riemann surfaces, elliptic functions

Laplace equation

Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible
to choose coordinates (x, y) to diagonalize it as ds2 = Ω(x, y)(dx2 + dy2). We can then combine
them into a complex combination z = x+iy to write this as ds2 = Ωdzdz̄. It is actually a Kähler
metric since the condition ∂[i,gj]k̄ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian
manifold in two dimensions is always Kähler.

In the diagonalized form of the metric, the Laplace operator is of the form,

∆ = 4Ω−1∂z∂̄z̄.

Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic
and an anti-holomorphid function.

∆φ = 0 → φ = f(z) + f̄(z̄).

In the following, we assume Ω = 1 so that the metric is ds2 = dzdz̄. It is not difficult to
generalize our results for non-constant Ω.

Now, we would like to prove the following formula,

∂̄
1

z
= −πδ(z),

where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should
vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand
side on a disk of radius r gives,

∫

x2+y2≤r2
dxdy ∂̄

1

z
=

i

2

∮

|z|=r

dz

z
= −π.

This proves the formula. Thus, the Green function G(z, w) obeying

∆zG(z, w) = 4πδ(z − w),

should behave as

G(z, w) = − log |z − w|2 = − log(z − w)− log(z̄ − w̄),

near z = w. (In this lecture, log = ln.) Note that the right-hand side is a sum of a holonorphic
function and an anti-holomrophic function.

Rational, trigonometric, elliptic

Let us start with the simplest topology in two dimensions – the plane. On the Euclidean
plane, G(z, w) = log |z − w|2 is a solution with the delta-function source at z = w. We can add
a purely holomorphic or anti-holomorphic function to this, and it still solves the same equation.
Compared to three or higher dimensions, none of solutions decay at inifinity. For example, the
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corresponding solution in three dimensions decays at 1/r. In n-dimensions, it would be like
1/rn−2. The limit n → 2 of this gives the logarithmis singularity log r. This is a deep fact and
implies, for example, Coleman’s theorem that there is no spontaneous breaking of continuous
symmetry in quantum field theory in two dimensions.

The next simplest case is the cylinder. Let us periodically identify the x direction with the
period 1. We then look for the Green function with the periodicity, G(z+1, w) = G(z, w+1) =
G(z, w). This can be satisfied by

G(z, w) = − log |sin 2π(z −w)|2 .

If we periodically identify the cylinde in the y direction, we obtain the torus – the surface of
a doughnut. More generally we may twist the cylinder before identification. So, we can impose
(x, y) ∼ (x+ θ, y + β) in addition to (x, y) ∼ (x + 1, y). In terms of the complex coordinate z,
we have

z ∼ z + 1 ∼ z + τ, τ = θ + iβ.

Without loss of generality, we assume that β is positive. We can think of the torus as the
parallelogram with four vertices 0, 1, τ, τ + 1 on the complex planes with its parallel edges
identified pair-wisely. The area of the torus is β = Im τ .

To find the Green function on the torus, we may consider using the method of images and
sum the Green function G(z, w) = − log | sin[2π(z − w)]|2 over w → w + nτ (n ∈ Z). However,
the sum is not convergent. In fact, we can anticipate the problem by noting that the equation,

∆G(z, w) = δ(z − w),

cannot be compatible with the fact that the torus is compact and without boundary. Integrating
both hand side over the torus, the right-hand side gives 1 but the left-hand side would vanish by
integration by parts. In order for the Laplace equation to have a solution on a compact space
without boundary, the total charge must be zero since the electric flux generated at the source
has to go somewhere. To remedy this, we can add a constant negative charge density to cancel
the positive charge at z = w,

∆G(z, w) = δ(z − w)− 1

Imτ
.

A solution to this equation is unique up to an additional constant, and it is given by,

G(z, w) = − 1

4π
log

∣

∣

∣

∣

ϑ1(z − w|τ)
η(τ)

∣

∣

∣

∣

+
1

2

(Im(z −w))2

Imτ
.

Here ϑ1 is one of the four elliptic theta functions and is given by

ϑ1(z|w) = i

∞
∑

n=−∞

(−1)nq
1

2
(n− 1

2
)
2

e2πi(n−
1

2
)z

= 2

∞
∑

n=1

(−1)n−1q
1

2
(n− 1

2
)
2

sin(2n− 1)πz, (1)

where
q = e2πiτ .
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By construction, it satisfies the quasi-periodicity,

ϑ(z + 1|τ) = −ϑ1(z|τ), ϑ1(z + τ |τ) = −q−
1

8 e−2πizϑ1(z|τ).

To see that it has a series of zeros at z = n + mτ (n,m ∈ Z), it is useful to use the product
formula,

ϑ1(z|τ) = −iq
1

12 eπizη(τ)
∞
∏

n=1

(1− qne2πiz)(1 − qn−1e−2πiz),

where η(τ) is the Dedekint eta-function,

η(τ) = q
1

24

∞
∏

n=1

(1− qn).

There are three other theta functions,

ϑ0(z|τ) = q−
1

24 η(τ)

∞
∏

n=1

(1− qn−
1

2 e2πiz)(1 − qn−
1

2 e−2πiz),

ϑ2(z|τ) = q
1

12 eπizη(τ)

∞
∏

n=1

(1 + qne2πiz)(1 + qn−1e−2πiz),

ϑ3(z|τ) = q−
1

24 η(τ)
∞
∏

n=1

(1 + qn−
1

2 e2πiz)(1 + qn−
1

2 e−2πiz). (2)

In particular, ϑ3 is called the Jacobi theta function. The other three theta functions are obtained
from the Jacobi theta function by shifting z by 1/2 and τ/2.

Modular invariance

We have regarded the torus as the quotient of C with the metric ds2 = dzdz̄ by the lattice
{n +mτ : n,m ∈ Z}. Equivalently, we can consider a fixed lattice and modify the metric as a
function of τ . Consider coordinates (u, v) on R2 with the periodicity (u, v) ∼ (u + n, v + m)
(n,m ∈ Z). Namely, we are considering the square lattice. To reproduce the periodicity z ∼
z + 1 ∼ z + τ , we can write z = u + τv. The metric in terms of the coordinates (u, v) then
becomes

ds2 = |du+ τdv|2.

Physics should be independent of the choice of coordinates we make. We can change
coordinates as

(

u
v

)

→
(

a b
c d

)(

u
v

)

.

This does not change the lattice structure if the matrix is in SL(2,Z). Consider two examples
of SL(2,Z) transformations:

(1) (u, v) → (u+ v, v): This changes the metric as

ds2 = |du+ (τ + 1)dv|2.

This means that the metrics with τ and (τ + 1) are related to each other by the coordinate
transformation.
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(2) (u, v) → (v,−u): This changes the metric

ds2 = |τ |2
∣

∣

∣

∣

du− 1

τ
dv

∣

∣

∣

∣

2

.

This means that the metrics with τ and −1/τ are related to each other by the coordinate
transformation adn the overall rescaling. The Laplace equation is invariant under the rescaling
of the metric, so its solution must have this symmetry too.

Question 1: Show that, in two dimensions, the Laplace equation with the unit source, ∆G(z, w) =
δ(z−w) is invariant under an arbitrary rescaling of the metric gµν → Ω(z, z̄)gµν . Here the delta-
function is normalized with respect to the volume form,

∫ √
g δ(z − w) = 1.

It is known that the two transformation (u, v) → (u + v, v) and (v,−u) generate the whole
SL(2,Z) group. Its action on τ can be seen as

τ → aτ + b

cτ + d
.

This is called the modular transformation. As expected, the ingredients of the Green function
on the torus transforms nicely under the modular transformation as,

η(τ + 1) = e
2πi
24 η(τ), η (−1/τ) =

√
−iτη(τ),

and

ϑ1(z|τ + 1) = e
2πi
8 ϑ1(z|τ), ϑ1 (z/τ | − 1/τ) = e−

2πi
8

+ 2πiz2

2τ τ−
1

2ϑ1(z|τ).

The parameter τ specifies the complex structure of torus as it determines its complex
coordinate z = u + τv with respect to the fixed real coordinates (u, v). Two different τ ’s
related to each other under the modular transformation describe the same complex structure.
The space of complex structures on the torus is called the moduli space of the torus, and it can
be identifies as the upper half-plane of the τ -space, modulo SL(2,Z).

Elliptic integral

With the elliptic theta function, we can define Weirstrass’ elliptic function as

P(z) = − ∂2

∂z2
log ϑ1(z|τ)− 2η1(τ),

where

η1(τ) = 2πi
∂

∂τ
log η(τ).

This function has a double pole at z = 0 and is doubly-periodic,

P(z) = P(z + 1) = P(z + τ).

Its derivative P ′(z) has a triple pole at z = 0 and is also doubly-periodic. A doubly-periodic
function on the torus is called an elliptic function. It can be shown that any elliptic function is
a rational function of P(z) and P ′s(z).
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They satisfies the relation,

(P ′(z))2 = 4(P(z) − e1)(P(z) − e2)(P(z) − e3),

where e1, e2, e3 are some functions of τ , given by

e1 = P
(

1

2

)

, e2 = P
(τ

2

)

, e3 = P
(

1

2
+

τ

2

)

.

The above relation between P ′ and P means that P ′ is a function of P with branch points at
P = e1, e2, e3. We can have two branch cuts, one connecting e1 and e2, for example, and another
going from e3 to the infinity. One can see that the covering space is topologically equivalent to
the torus.

The equation can also be expressed as,

z =

∫ P dP
2
√

(P(z) − e1)(P(z) − e2)(P(z) − e3)
+ const.

The integral on the right-hand side is of the form known as elliptic integral. Thus, the Weierstrass
P-function can be regarded as the inverse of the elliptic integral. It is because of this historical
origin that doubly-periodic functions are called elliptic functions. Historically, elliptic integrals
were studied to compute the arc length of an ellipse. It occured later to Abel and Jacobi that
its inverse has the double-periodicity z ∼ z + 1 ∼ z + τ .

Riemann surfaces of higher genera

The torus can be regarded as a set of solution to the equation,

y2 = 4(x− e1)(x− e2)(x− e3).

This can be solved by setting y = P ′(z) and x = P(z), with z being the doubly-periodic
coordinate. This can be generalized. For example, one can consider the equation,

y2 =

2g+1
∏

i=1

(x− ei).

We can think of y as a function of x with (g+1) branch cuts, one of which extends to the infinity
in the x-plane. The covering space is then a surface with g handles. It is a special example of
Riemann surfaces of genus g, called the hyper-elliptic surface. The torus has genus g = 1.

The torus as a complex manifold is parametrized by the modulus τ . For a general Riemann
surface Σg of genus g > 1, the moduli space Mg is a complex manifold of dimensions (3g − 3).
To understand Mg, it is useful to consider period integrals. It is easy to see that b1(Σg) = 2g.
We can choose a basis H1(Σg) so that for each handle, we have two generators αi, β

i (i = 1, ..., g)
and that they intersect with each other as,

αi ∩ αj = βi ∩ βj = 0, αi ∩ βj = δji .

With respect to this basis, we can choose a basis of H1,0(Σg) as {ωi} so that
∫

αi

ωj = δij.
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The period matrix is defined as

Ωij =

∫

βi

ωj.

There is a one-to-one map from the moduli spaceMg to Ωij, namely we can use Ωij to distinguish
complex structures of Σg. Unfortunately, the space of Ωij is too big; it is a symmetric matrix,
so it has 1

2g(g + 1) components while dimMg = 3g − 3. This raises the question on how to
characterize the image of Mg in the space of g×g symmetric matrices. This so-called Schottkey
problem was found by using the theory of integrable systems.

There is an analogue of the theta functions at higher genera, called the Riemann theta
function,

Θ(~z|Ω) =
∑

~n∈Zg

exp

(

2πi

(

1

2
~ntΩ~n+ ~n · ~z

))

.

We can build the theory of holomorphic functions and sections of various line bundles over Σg

using the Riemann theta function.
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