
Lecture 8

supersymmetry and index theorems

bosonic sigma model

Let us consider a dynamical system describing a motion of a particle in a Riemannian
manifold M . The motion is a map φ : R →M . By choosing coordinates (φµ)µ=1,...,n on M , we
can write the Lagrangian,

L =
1

2
gµν(φ)φ̇

µφ̇ν ,

where gµν is the metric on M and φ̇ = dφ/dt. Note that this is independent of the choice of
coordinates. The momentum conjugate to φµ is given by

pµ =
∂L

∂φ̇µ
= gµν φ̇

ν .

The Hamiltonian is then,

H = pµφ̇
µ − L =

1

2
gµνpµpν .

To quantize this system, we consider the Hilbert space consisting of square integrable
functions Ψ(φ) over M . We can then define the inner product,

(Ψ1,Ψ2) =

∫

dnφ
√
gΨ̄1Ψ2.

The multiplication of the coordinates φµ defines hermitian operators. We can also define the
momentum components pµ as hermitian operators as

pµ = −
√
−1g−

1

4

∂

∂φµ
g

1

4 ,

so that
[φµ, pν ] =

√
−1δµν .

Similarly, there is some operator ordering ambiguity in defining the quantum version of the H.
Requiring invariance under coordiante change, we use

H = −1

2

1√
g

∂

∂φµ

(

gµν
√
g
∂

∂φν

)

.

This is nothing but the (minus of) Laplace operator on M .

The Hamiltonian H can be used to write the Schrödinger equation,

i
∂

∂t
Ψ = HΨ,

which can be formally integrated as

Ψ(t) = e−itHΨ(t = 0).
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For our purpose, it is often convenient to analytically continue the time variable t to pure
imaginary value t = −iτ with τ ∈ R. Thus,

Ψ(φ, τ) = e−τHΨ(φ, τ = 0).

We can introduce the heat kernel G(φ1, φ2; τ) to express this as

Ψ(φ1, τ) =

∫

dnφ2G(φ1, φ2; τ)Ψ(φ2).

The heat kernel obeys the Schrödinger equation (or more precisely the diffusion equation),

∂

∂τ
G = −HG

with the initial condition,
G(φ1, φ2; τ = 0) = δ(φ1 − φ2).

To understand the energy spectrum {ǫ0, ǫ1, ...} of the Hamiltonian, it is useful if we can
evaluate tre−τH as it gives,

tre−τH =

∞
∑

i=0

e−τǫi ,

where tr is over the Hilbert space (i.e. the space of square integrable functions over M). Using
the heat kernel, we can write it as

tre−τH =

∫

dnφG(φ, φ; τ).

In the Feynman path integral formulation of quantum mechanics, the heat kernel G(φ, φ′; τ)
is expressed as

G(φ1, φ2; τ) =

∫

φ(τ)=φ1;φ(0)=φ2

Dφ exp
(

−
∫ τ

0
dτ ′L(φ̇(τ ′), φ(τ ′))

)

.

Combining this with the above expression for tre−τH , we find that

tre−τH =

∫

φ(τ)=φ(0)
Dφe−

∫ τ

0
dτ ′L.

supersymmetric sigma-model

We introduce fermionic coordinates ψµ for the tangent space TφM at φ. The Lagrangian

L =
1

2
gµν φ̇

µφ̇ν +

√
−1

2
gµν ψ̄

µ

(

d

dt
ψν + Γνρσφ̇

ρψσ
)

+
1

4
Rµνρσψ

µψνψ̄ρψ̄σ. (1)

As I advertised earlier, the Hilbert space is the space of differential forms Ω(M) (we require
them to be integrable with respect to the inner product on Ω(M)). The fermions obey the
anti-commutation relations,

{ψµ, ψν} = 0, {ψ̄µ, ψ̄ν} = 0, {ψµ, ψ̄ν} = gµν .
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The vacuum |0〉 in the ferimion Fock space is annihilated by all the ψ’s. We identify it as the
0-form. Other forms are generated by multiplying ψ̄’s, as ψ̄µ|0〉, ψ̄µψ̄ν |0〉, ....

The supercharges Q, Q̄ are identified with the exterior derivative operator d and its conjugate
δ ∼ ∗d∗, so that H = {Q, Q̄} gives the Laplace-Beltrami operator.

Witten index

Let F be the operator that counts the degree of forms. We can also call it as the fermion
number. We can use it to define the fermion number parity (−1)F , which gives +1 for bosonic
states (even forms) and −1 for fermoinic states (odd forms). Note that (−1)FQ = −Q(−1)F

and similarly for Q̄. Since Q and Q̄ commute with H, it maps a bosonic energy eigenstate to a
fermionic energy eigenstate and vice versa. Moreover, since H = {Q, Q̄}, the map is bijection
(one-to-one and onto) for states with non-zero energies. The situation is different for states
with H = 0; the numbers of bosonic and fermionic states may be different. The difference is
called the Witten index. The Witten index is a convenient quantity since it is invariant under
continous deformations of the system, provided that the spectrum does not contain continuous
bands.

For the supersymmetric sigma model we are discussing, the Witten index is given by

tr(−1)F e−βH =

n
∑

p=0

(−1)pbp = χ(M).

Grassmannian integral

Let us evaluate χ(M) using the Feynman path integral. To do so, we need to formulate
the path integral for the fermionic variables ψ, ψ̄. This is done by introducing Grassmannian
numbers.

A Grassmannian number θ is nilpotent θ2 = 0, and its integral is defined like a differentiation,
∫

dθ1 = 0,

∫

dθθ = 1.

More generally, if we have a function f(θ) = a+ bθ, wehre a and b are ordinary numbers (since
θ2 = 0, the most general function is a linear function), we have

∫

dθf(θ) = b.

A nice thing about this definition is that we can perform the integration by parts,
∫

dθ
∂

∂θ
f(θ) =

∫

dθb = 0.

Similarly, we an show that

∫

dθf(θ)
∂

∂θ
g(θ) = ±

∫

dθ

[

∂

∂θ
f(θ)

]

g(θ),

where the sign on the right-hand side depends on whether bθ = θb (choose +) or bθ = −θb
(choose −).
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Question 1: For a bosonic variable x, achange of variables x → y with x = f(y) transforms an
integral as

∫

dxG(x) =

∫

dy|f ′(y)|G(f(y)).

Show that, for a Grassmannian variable θ, a change of variables θ → ρ with θ = f(ρ) gives

∫

dθG(θ) =

∫

dρ
1

f ′(ρ)
G(f(ρ)).

This definition fits well with the interpretation of the supersymmetric sigma-model in terms
of differential forms. Consider the top form ω ∈ Ωn(M). We can write the integral of ω over M
as,

∫

M
ω =

∫

dnφdnψ̄ωµ1µ2...µn(φ)ψ̄
µ1 ψ̄µ2 · · · ψ̄µn .

Question 2: Use the result of Question 1 to show that the right-hand side of the above is
independent of the choice of coordinates φµ.

Gauss-Bonnet theorem

Now we are ready to evaluate the Witten index tr(−1)F e−βH using the Feynman path
integral. As in the computation tre−βH in the case of the bosonic sigma-model, we consider a
sum over periodic paths, but now in TM not in M .

It is important to note that we require periodic boundary condtion for ψ and ψ̄ as τ →
τ + β because of the insertion of (−1)F . To see this, let us look at the following quantity,
tr(−1)F e−βHOψ(0) for some operator O. By using the cyclicity of the trace, we see that this is
equal to −tr(−1)F e−βHψ(β)O, where the minus sign comes from the exchange of ψ with (−1)F .
However, we should also note that O must be a fermionic operator – otherwise the trace would
vanish. Thus, we get an extra minus sign when we exchange ψ and O. The end result is that
ψ(0) = ψ(β) in the trace.

Now we are ready to evaluate the path integral, with periodic boundary conditions for both
φ and ψ, ψ̄. The main idea is use of the fact that the answer is independent of β and look at
the limit of β → 0+. Define t = βτ keeping the periodicity of τ to be 1. Rescale ψ → β−1/4ψ,
and we obtain,

L =
1

2β2
gµν φ̇

µφ̇ν +

√
−1

2β
3

2

gµν ψ̄
µ

(

d

dt
ψν + Γνρσφ̇

ρψσ
)

+
1

4β
Rµνρσψ

µψν ψ̄ρψ̄σ.

The action is then

S = β

∫ 1

0
dτL

=

∫∫ 1

0
dτ

[ 1

2β
gµν φ̇

µφ̇ν +

√
−1

2β
1

2

gµν ψ̄
µ

(

d

dt
ψν + Γνρσφ̇

ρψσ
)

+
1

4
Rµνρσψ

µψν ψ̄ρψ̄σ
]

. (2)

In the limit of β → 0, the only configurations that can contribute to the path integral are are
those with φ and ψ being constant since any non-constant configuration would make the action
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infinite in the limit. Thus, the path integral reduces to an integral over constant φ and ψ as,

tr(−1)f e−βH =

∫

dnφdnψdnψ̄

(2π)n/2
e−

1

4
Rµνρσψµψν ψ̄ρψ̄σ

.

This would be 0 if n = dimM is odd. If n = 2m, we can evaluate the Grassmannian integral to
find

=
(−1)m

22mm!πm

∫

dnφ
√
gǫµ1ν1···µmνnǫρ1σ1···ρmσmRµ1ν1ρ1σ1 · · ·Rµmνmρmσm .

This gives a path integral proof of the Gauss-Bonnet theorem.

Morse theory

We can also turn on a potential h(φ) in a supersymmetric way,

∆L = −1

2
gµν

∂h

∂φµ
∂h

∂φν
− 1

2

∂2h

∂φµ∂φν
ψµψν .

In this case, the path integral localizes at teh minima of |∂h/∂φ|2, namely at ∂h/∂φµ = 0. By
using a scaling argument similar to the one in the above, we find

tr(−1)F e−βH =
∑

φ0:∂h(φ0)=0

(−1)#(negative eigenvalues of ∂2h).

In fact, to the leading order in the ~ expansion, we find

bp = dimHp(M) = #

{

φ0 :
∂h

∂φµ
= 0, #(negative eigenvalues) = p

}

.

This can be refined by incorporating instanton corrections.

Dirac operator

In the supersymmetric sigma-model discussed in the above, there are two supercharges Q
and Q̄. We can reduce the amount of supersymmetry by half, by setting ψ̄ = ψ. In this case,
we have only Q = Q̄. The Lagrangian is simplified as

L =
1

2
gµν φ̇

µφ̇ν +

√
−1

2
gµνψ

µDtψ
ν .

The quantization gives the anti-commutatition relation,

{ψµ, ψν} = gµν .

This is the Clifford algebra. It is known that the Clifford algebra has a unique non-trivial
irreducible representation and that is the representation in terms of the Dirac matrices γµ.
Thus, the Hilbert space of this model is the space of spinor fields on M .

In this case, Q = γµDµ.

The Witten index in this case is called the Dirac genus. The sigma-model path integral
shows that it is given by the Â polynomial,

ind(γµDµ) =

∫

M
Â,
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where

Â =
m
∏

i=1

xi/2

sinh(xi/2)
,

and xi are eigenvalues of the Riemann curvature (i = 1, ...,m; dimM = 2m).

Dolbeault index

If M is a Kähler manifold, we can double the number of supercharges, ∂, ∂̄, ∂†, ∂̄†. The
arithmetic genus of the manifold is defined by

index(∂̄) =
∑

q

(−1)qdimH
(0,q)

∂̄
(M).

The path integral computation is exactly the same as that for the Dirac genus, and it relates
the index to the Todd class,

td(M) =
∏

i

xi
1− e−xi

.

These index theorems are interesting in that they relate global quantitizes such as the Euler
characteristic to integrals of curvatures (local quantities).
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