
Lecture 5

vector bundles, gauge theory

tangent bundle

In Lecture 2, we defined the tangent space TpM at each point p on M . Let us consider a
collection of tangent bundles over every point on M ,

TM = ∪p∈MTpM.

It is naturally a manifold. For a given coordinate chart (Ui, φi), we can define coordinates on
∪p∈Ui

TpM as (xµ, vµ), where (xµ) are coordinates on Ui and we parametrize a tangent vector as

v = vµ
∂

∂xµ
.

This defines differential structure on TM (namely, TM is a differential manifold). TM is called
a tangend bundle.

A smooth vector field is v : p ∈ M → v(p) ∈ TpM such that its components vµ expressed
in coordinates xµ are smooth functions of the coordinates on each Ui. We also call it a smooth
section of TM . The reason for this name is as follows. The tangent bundle TM is locally a
product space, Ui × Rn. Imagine that Ui is stretched in a horizontal direction and Rn in a
vertical direction. The vector field v is then a graph over Ui, which lifts Ui in Ui ×Rn. It cuts
TM along the direction of M , which is why it is called a section.

When we change coordinates, xµ → x̃µ(x), the tangent space coordinates change as

vµ → ṽµ =
∂x̃µ

∂xν
vν ,

so that v = vµ∂/∂xµ = ṽµ∂/∂x̃µ is independent of coordinates.

vector bundle

Vector bundles generalize the notion of the tangent bundle TM . On each coordinate chart
(Uiφi), it should be of the form Ui × V for some vector space V . (dim V does not have to be
the same as dim M .) To define a vector bundle more abstractly, mathematicians say that a
differential manifold E is a vector bundle if

(1) there is a projection map π,
π : E → M,

so that, for each point p ∈ M , its inverse image π−1(p) is isomorphic to V . For the tangent
bundle TM , π−1(p) = TpM .

(2) we can choose atlases of E and M so that, for each local coordinate chart U of M , there is a
smooth map ϕ : π−1(U) → U × V . The map ϕ is called local trivialization of the vector bundle
E over U .

The vector space V , which sits on the top of each p ∈ M , is called a fiber. When V is a vector
space over R, which we will consider in this lecture, we say that E is a real vector bundle. We
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can also consider a complex vector bundle. In particular, when V is 1-dimensional over C, we
say that E is a line bundle.

Suppose two coordinate charts Ui and Uj of M overlap with each other. Over Ui ∩Uj, there
are two local trivializations ϕi and ϕj . Their composition, ϕi ◦ ϕ

−1
j , maps Ui ∩ Uj × V to itself

as
ϕj ◦ ϕ

−1
i (p, v) → (p, gj←i(p)v),

where p ∈ M , v ∈ V and g(p) is an invertible linear map on V . This gj←i(p) ∈ GL(V,R) is
called a transition function.

If there is a triple intersection of three charts Ui, Uj and Uk, the transition function must
satisfy the consistency condition,

gk←j(p)gj←i(p) = gk←i(p),

on p ∈ Ui ∩ Uj ∩ Uk. This is called a cocycle condition.

Conversely, if we have a differential manifold M , and if we have a transition function
gj←i(p) ∈ GL(V,R) for p ∈ Ui ∩ Uj satisfyin the cocycle condition, then there is a unique
vector bundle E over M .

For the tangent bundle TM , we considered a tangent vector field v, which we may consider
as a map p ∈ M → v(p) ∈ Tp. Similarly, for a general vector bundle E, we may consider a map
s : p ∈ M → s(p) ∈ π−1(p). An example of s is the zero section where s(p) = 0 ∈ V for all p.

fiber bundle

We can consider a more general class of manifolds E called fiber bundles, where there is a
projection π : E → M , but the fiber F ∼ π−1(p) for p ∈ M is not necessarily a vector space.
For example, one can consider the case where the fiber is a group G. Over a coordinate chart U
of the base manifold M , E looks like U ×G. When two charts Ui and Uj overlap the transition
function is given by (p, g ∈ G) → (p, g(p)ρ ∈ G), where g(p) ∈ G.

When E is a vector bundle, we can consider its associated principal bundle whose transition
functions are given by those of E.

example: magnetic mnopole bundle and Hopf fibration

Consider the 2-sphere S2 and a U(1) principal bundle E over S2. As a manifold, the group
U(1) can be regarded as a circle S1; the angle coordinate θ ∈ [0, 2π) of S1 gives an element
eiθ ∈ U(1). Thus, we are considering an S1 bundle over S2.

As we discussed in Lecture 1, S2 can be covered by 2 coordinate charts, U+ and U−. They
can be chosen so that U+ (U−) contains the northen (southern) pole and that they overlap in a
region near the equator of S2. We can choose their coordinates as (r±, φ), where t± is a distance
from the northen (southen) pole and φ is the longitude of S2.

We can then choose two coordinate charts of E. Over U±, we can use (r±, φ; θ±), where
(r±, φ) are coordinates of U± and θ± parametrizes the S1 fiber.

Let us consider the transition function,

eiθ− = einφeiθ+ ,
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for some integer n. This represents the configuration of the electro-magnetic field in the presence
of a magnetic monopole of charge n.

When n = 0, the principal bundle is a trivial product, En=0 = S2 × S1.

When n = 1, the total space of the principal bundle makes the 3-sphere,

En=1 = S3.

This is known as the Hopf fibration. To exhibit the fibration structure, let us present S3 as a
subspace of R4 subject to the condition,

a2 + b2 + c2 + d2 = 1.

This is to be identified with the total space of the bundle E. This bundle is suppose to have S2

has a base manifold, so we need to exhibit the projection map π : S3 → S2. This, according to
Heiz Hopf, is given by

x = a2 + b2 − c2 − d2, y = 2(ad+ bc), z = 2(bd− ac).

It is elementary to verify that z2 + y2 + z2 = 1.

Question 1: Show that π−1(p) ∼ S1 for each p ∈ S2.

(Hint: Introducing u = a+ ib and v = c− id, we can express the equation for S3 as

uū+ vv̄ = 1.

The projection map π : S3 → S2 is

x = uū− vv̄, z + iy = 2uv̄.

If we fix (x, y, z), what are the remaining degrees of freedom on S3?)

connection and curvature

As we discuss in Lecture 3, the problem with defining partial derivatives of a tangent vector
field on M is that, a priori, there is no indentification of TpM and Tp′M even when p and p′ ∈ M
are closed to each other. To define a derivative, we need a way to perform paralell transport of a
vector v along a smooth path c(t) on M . Consider a smooth path c(t) and an arbitrary vector
u ∈ TpM at p = c(t = 0). A parallel transport means that we can define Ω(t) · u ∈ Tc(t)M .
Since the tangent space is a linear space, we are writing the parallel transport as a linear map
u → Ω(t) · u. Then, we can define a covariant derivative ∇t of a vector field v(x) at p ∈ M as

∇tv =
d

dt

[

v(x(t)) − Ω(t) · v(x(t = 0))
]

.

Since we can choose c(t) to be tangent to any direction at p, this defines a covariant derivative.
(For example, if we want to compute ∇iv in the xi direction, we can just choose c(t) to be
(x1, ..., xi + t, ..., xn).

For a Riemannian manifold, Ω(t) is uniquely determined by requiring that the covariant
derivative of the metric, which is a section of T ∗M ⊗ T ∗M , is zero, and that the torsion tensor
of the connection is zero.
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This can be done for any vector bundle. For each point p ∈ M , there is a vector space
π−1(p). To define a covariant derivative, we introduce a parallel transport, which is a linear
map Ω(t) : π−1(c(t = 0)) → π−1(c(t)) along any smooth curve c(t). In fact, all we need is
an infinitesimal limit of this since we just need to take one derivative with respect to t. The
infinitesimal version of the parallen transport should give a one-form, valued in matrix on V ,
where V is the fiber over p, since it should give a linear map on V = π−1(p) to any direction
along the tangent space TpM . This one-form is called a connection form.

Pick a coordinate chart (Ui,R
n) of a vector bundle E. The covariant derivative of a section

of E, expressed in the coordinates as (v(x)α)α=1,...,n, can be written as

∇µv
α(x) = ∂µv

α(x) +A α
µ βv

β(x),

where Aα
β = A α

µ βdx
µ is a matrix valued connection of E.

When two coordinate charts Ui and Uj overlap, coordinates on the fiber over Ui and over Uj

are related by a linear map as v → g(p)v for some g ∈ GL(V,R). To be compatible with the
derivative operation, the connection form should transform as

A → g−1Ag + g−1dg.

Question 2: Show that the spin connection ωa
µ b defined in Lecture 3 transforms as a connection.

The curvature F for the connection is a matrix-valued 2-form defined by

F = dA+A ∧A.

In components, one can show that

Fµνv(p) = (∇µ∇ν −∇ν∇µ) v(p),

for any smooth section v(p) of E. Under the change of coordinates of the fiber, v → g(p)v, the
connection 2-form gtransforms as

F → g−1Fg.

holonomy

Pick any point p ∈ M and move around M along a closed path γ and come back to the
same point p. We can parallel transport a vector v in the fiber π−1(p) along the path. When we
come back to p, the vector v is rotated to g(γ)v by some element g(γ) ∈ GL(V,R). It is called
a holonomy along γ. If we have two such paths γ1 and γ2, we can combine them (start at p,
go around γ1 to come back to p, then start at p again and go around γ2) to make another path
γ3. It is easy to show that g(γ3) = g(γ2)g(γ1). Thus holonomies along closed paths starting and
ending at p makes a subgroup of GL(V,R). It is called a holonomy group.

Question 3: Suppose any two points on M can be connected by a path on M . Show that
holonomy groups at two different points p and q are isomorphic. (Two groups G1 and G2 are
called isomophic if there is a map f : G1 → G2 that is one-to-one and onto and if the map
respect the group operations, f(gg′) = f(g)f(g′) for g, g′ ∈ G1.

The curvature Fµν is a holonomy for an infinitesimal loop.
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When the curvature vanishes, the holonomy for a look γ is invariant under continuous
deformation of γ. In that case the holonomy depends only on topological (global) data of
γ. It is called monodoromy in that case.

The holonomy group of an n-dimensional Riemannian manifold M is a subgroup of SO(n).
If M is a Kähler manifold and n = 2m, its holonomy group is a subgroup of U(m). If M is a
Calabi-Yau manifold, its holonomy group is a subgroup of SU(m).

gauge theory

Consider a vector bundle with a complex 1-dimensional fiber. A section s is a complex-
valued function in each coordinate patch and transforms as s(p) → g(p)s(p) under a change of
coordinates, where g(p) is a non-vanishing complex-valued function. The covariant derivative
takes the form, ∇µs(p) = (∂µ + iAµ)s(p) for a complex-valued connection form Aµ. (I included
the imaginary unit in front of Aµ for a later convenience.) Under the change of coordinate, the
connection transforms as

A → A− id log g(p).

Since everything commutes over complex number, g−1Aµg = Aµ.

If we restrict the transition function g(p) to be in U(1) and write g(p) = eiλ(p) for some real
valued function λ,

Aµ → Aµ + ∂µλ,

and the curvature 2-form F = dA is given in components by

Fµν = ∂µAν − ∂νAµ.

If we identify Aµ as the vector potential of the Maxwell theory of electro-magnetism, these are
the gauge transformation rule and the definition of the field strength.

For a vector bundle with a higher dimensional fiber, the connection form Aµ is matrix-valued,
and the curvature is given in components by

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ],

where I made the substitution A → iA, in comparison with the convention in the previous
section. This gives a non-Abelian generalization of the Maxwell theory, known as the Yang-
Mills theory.
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