分子コンピューティング概論

萩谷 昌己

東京大学 大学院情報理工学系研究科 コンピュータ科学専攻

生体分子コンピューティングとは

- 生体分子=情報処理装置
 - 化学反応の自律的制御 ⇒ 自身にコード化
 - 微小・省エネルギー
 - 超並列
 - 分子の物理化学的性質
- 分子コンピューティングの目標
 - 分子反応の持つ潜在的計算能力の理学的解明
 分子反応に基づく新しい計算機能の工学的実現
- 参考文献
 - 萩谷,横森編: DNAコンピュータ, 培風館, 2001.
 - 萩谷編著: 分子コンピュータの現状と展望 分子プログラミングへの展開, サイエンス社, 2004

分子コンピューティングの目標

- 分子反応の持つ計算能力の解析と
- その応用
 - 分子による計算を活用した分子計測技術 ⇒ バイオテクノロジーへの応用
 - プログラムされた自己組織化や分子マシン ⇒ ナノテクノロジーへの応用
 - 分子による進化的計算
 ⇒ 分子進化工学への応用
- 分子反応に基づく新しい計算パラダイム

進化⊂計算

関連分野(分子)

- 分子エレクトロニクス
 - 分子素子を用いた電子回路 (既存の計算パラダイム)
 - 分子回路の構成技術(ナノテクノロジー)としての 分子コンピューティング
- ・ナノテクノロジー
- 超分子化学
- 量子コンピューティング
- ・ 光コンピューティング
- 分子生物学・バイオテクノロジー
- 分子進化工学

萩谷研ウェット実験室

- 工学部9号館501号室
- エ学部9号館の耐震工事が
 3月末にようやく終わる。
- 4月より、実験再開。

- 4月19日大掃除

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

分子反応の持つ計算能力の解析

- 様々な計算モデル
 - 分子間の反応 vs. 分子内の反応
 - 液相 vs. 固相
 - 試験管、膜、細胞 - 他律的 vs. 自律的
- ・ (計算モデルの)計算能力の解析
 - 計算可能性
 - 計算量 --- 時間、領域
 - エラーや収量 --- 確率的な解析
 - 現実の分子反応により忠実な解析へ

様々な計算モデルとその解析

- Adleman-Lipton
 - DNAの選択的ハイブリダイゼーションを利用した 解の候補のランダムな生成
 - データ並列計算による解の抽出
 - Suyama --- dynamic programming
 - Sakamoto-Hagiya --- SAT Engine
 - Head-Yamamura --- aqueous computing
- Seeman-Winfree
 - 各種形態のDNA分子の自己組織化(self-assembly)
 - 自己組織化による計算

様々な計算モデルとその解析

- Head
 - 遺伝子の組み換えによる言語の生成
- Ogihara-Ray
 - ブール回路の並列計算
- Hagiya-Sakamoto
 状態機械(Whiplash)
- Shapiro
 - 有限オートマトン

分子マシンのところで

Adleman-Liptonパラダイム

- Adleman (*Science* 1994)
 ハミルトン経路問題をDNAを用いて解く。
- Lipton, *et al*.

- SAT問題をDNAを用いて解く。

- 分子による超並列計算
 - 主として組み合わせ的最適化
 - DNAの自己会合によるランダムな生成
 - 解の候補 = DNA分子

- 生物学実験技術を駆使した解の抽出

・現状ではバイオテクノロジーのベンチマーク

- 遺伝子解析への応用を視野に入れた研究

Adlemanの最初のDNAコンピュータ

PCR

Adleman-Liptonパラダイム

全ての 代入の生成 (Lipton 1995, 充足可能性問題)

解の検査と抽出

 $T_i: 文字列の多重集合 (試験管)$ [Separate命令] $T_2 = +(T_1, s) : s を含む配列の抽出$ $T_2 = -(T_1, s) : s を含む配列の抽出$ [Merge命令] $T_3 = T_1 \cup T_2 : T_1 \ge T_2$ の混合 [Amplify命令] $(T_2, T_3) = T_1 : T_1$ の増幅 (コピー)

SuyamaのDNAコンピュータ

- "counting" (Ogihara and Ray)
 O(2^{0.4n}) molecules for *n*-variable 3-SAT
- "dynamic programming" (Suyama)
- 生成と選択の繰り返し
 - 解の候補の部分的な生成
 - 解の候補の選択
- 指数オーダーには変わりはないが、 *O*(2^{0.4n}) は *O*(2ⁿ) よりずっと少ない。
- 固相法
 - 磁気ビーズによるアフィニティ・セパレーション
 - 自動化に適している ⇒ Robot!

基本演算とその実装

3CNF-SAT を解く DP的なDNA アルゴリズム

function dna 3 sat $(u_1, v_1, w_1, \dots, u_m, v_m, w_m)$ begin $T_2 = \{X_1^T X_2^T, X_1^F X_2^T, X_1^T X_2^F, X_1^F X_2^F\};$ for k = 3 to n do amplify $(T_{k-1}, T_{m}^{T}, T_{m}^{F})$; for j = 1 to m do if $w_i = x_k$ then $T_w^F = \text{getuvsat}(T_w^F, u_i, v_i);$ end if $w_i = \neg x_i$ then $T_w^T = \text{getuvsat}(T_w^T, u_i, v_i);$ end end $T^{T} = \operatorname{append}(T_{w}^{T}, X_{k}^{T}, \overline{X_{k-1}^{T/F} X_{k}^{T}}); \quad T^{F} = \operatorname{append}(T_{w}^{F}, X_{k}^{F}, \overline{X_{k-1}^{T/F} X_{k}^{F}});$ $T_{\iota} = \operatorname{merge}(T^{T}, T^{F});$ end **return** detect (T_n) ; end

function getuvsat
$$(T, u, v)$$

begin
 $T_u^T = get(T, + X_u^T); \quad T_u^F = get(T, - X_u^T);$
 $T_u^F = get(T_u^F, + X_u^F); /* can be omitted */$
 $T_v^T = get(T_u^F, + X_v^T);$
 $T^T = merge(T_u^T, T_v^T);$
return $T^T;$
end

Number of operations

$$(n-2) \times (\text{amplify} + 2 \times \text{append} + \text{merge})$$

 $+$
 $m \times (3 \times \text{get} + \text{merge})$

3CNF-SAT問題とその解

Problem : 4 variables, 10 clauses

$$(x_{1} \lor x_{2} \lor x_{3}) \land (x_{1} \lor \neg x_{2} \lor x_{3}) \land (\neg x_{1} \lor x_{2} \lor \neg x_{3}) \land (\neg x_{1} \lor \neg x_{2} \lor \neg x_{3}) \land (x_{1} \lor \neg x_{2} \lor \neg x_{3}) \land (x_{1} \lor \neg x_{3} \lor \neg x_{4}) \land (\neg x_{1} \lor x_{2} \lor \neg x_{4}) \land (\neg x_{1} \lor x_{3} \lor \neg x_{4}) \land (x_{2} \lor x_{3} \lor x_{4}) \land (x_{2} \lor \neg x_{3} \lor x_{4}) \land (\neg x_{2} \lor \neg x_{3} \lor x_{4}) \land (x_{2} \lor \neg x_{3}$$

Solution : YES $\{X_1^T X_2^T X_3^F X_4^F\}$

3CNF-SATを解くDP的アルゴリズム $k の \mu - \mathcal{I}: k は 変数 の 番号 を 動く$ *i*のループ:*i*は節の番号を動く if x_k が j 番目の節の3番目のリテラル then 1番目のリテラルも二番目のリテラルも 充足しない割り当ては削除する X_{ν}^{F} を残りの割り当てに追加する $(\neg x_k$ が3番目のリテラルの場合も同様) k = 3 $X_1^T X_2^T$ $X_{1}^{T}X_{2}^{T}X_{3}^{F}$ X_{3} $\mathbf{X} \stackrel{F}{\mathbf{X}} \stackrel{T}{\mathbf{X}} \stackrel{T}{\mathbf{X}}$ $(x_1 \lor \neg x_2 \lor x_3)$ $X_{1}^{T}X_{2}^{F}X_{3}^{F}$ $X_1^T X_2^F$ $X_1 F Y F$ $(x_1 \lor x_2 \lor x_3)$

3CNF-SATを解くDP的アルゴリズム $k の \mu - \mathcal{I}: k は 変数 の 番号 を 動く$ *i*のループ:*i*は節の番号を動く if x_k が j 番目の節の3番目のリテラル then 1番目のリテラルも二番目のリテラルも 充足しない割り当ては削除する X_{ν}^{F} を残りの割り当てに追加する (¬x_kが3番目のリテラルの場合も同様) k = 3 $X_1^T X_2^T$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $\neg \chi_3$ $X_{1}^{F}X_{2}^{T}X_{3}^{T}$ $X_1^F X_2^T$ $X_1^T X_2^F$ $(\neg x_1 \lor x_2 \lor \neg x_3)$ $X_{1}^{F}X_{2}^{F}X_{3}^{T}$ $X_1^F X_2^F$

3CNF-SATを解くDP的アルゴリズム $k の \mu - \mathcal{I}: k は 変数 の 番号 を 動く$ jのループ: j は節の番号を動く if x_k が j 番目の節の3番目のリテラル then 1番目のリテラルも二番目のリテラルも 充足しない割り当ては削除する X_{ν}^{F} を残りの割り当てに追加する $(\neg x_k$ が3番目のリテラルの場合も同様) k = 4 $X_1^F X_2^T X_3^T$ $(\neg x_2 \lor \neg x_3 \lor x_4)$ X_{Δ} $X_1^F X_2^F X_3^T$ $(x_2 \vee \neg x_3 \vee x_4)$ $X_1^T X_2^T X_3^F X_4^F$ $X_{1}^{T}X_{2}^{T}X_{3}^{F}$ $X_1^T X_2^F X_3^F$ $(x_2 \lor x_3 \lor x_4)$

10-variable and 43-clause instance of 3SAT

 $(\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_2 \lor \neg x_2 \lor \neg x_4)$ $\wedge (x_1 \lor x_4 \lor x_5) \land (x_2 \lor x_3 \lor \neg x_5) \land (\neg x_2 \lor \neg x_3 \lor \neg x_5)$ $\wedge (\neg x_1 \lor \neg x_3 \lor \neg x_5) \land (\neg x_2 \lor \neg x_4 \lor x_6) \land (\neg x_2 \lor x_3 \lor x_6)$ $\wedge (x_2 \lor \neg x_3 \lor x_6) \land (\neg x_1 \lor \neg x_5 \lor \neg x_6) \land (x_2 \lor \neg x_6 \lor x_7)$ $\wedge (x_1 \lor x_5 \lor x_7) \land (\neg x_1 \lor \neg x_5 \lor \neg x_7) \land (x_5 \lor \neg x_6 \lor \neg x_7)$ $\wedge (x_1 \lor \neg x_2 \lor \neg x_7) \land (x_1 \lor x_6 \lor \neg x_7) \land (\neg x_4 \lor x_6 \lor \neg x_7)$ $\wedge (x_1 \lor x_4 \lor x_8) \land (\neg x_1 \lor x_5 \lor x_8) \land (x_2 \lor \neg x_3 \lor x_8)$ $\wedge (x_1 \lor x_6 \lor x_8) \land (x_2 \lor x_5 \lor \neg x_8) \land (x_1 \lor x_4 \lor \neg x_8)$ $\wedge (\neg x_3 \lor \neg x_5 \lor \neg x_8) \land (\neg x_2 \lor x_4 \lor x_9) \land (x_4 \lor x_7 \lor x_9)$ $\wedge (x_1 \lor x_7 \lor x_9) \land (\neg x_4 \lor x_6 \lor \neg x_9) \land (\neg x_1 \lor x_3 \lor \neg x_9)$ $\wedge (\neg x_2 \lor x_3 \lor \neg x_9) \land (x_1 \lor \neg x_7 \lor \neg x_9) \land (\neg x_2 \lor x_4 \lor \neg x_9)$ $\wedge (\neg x_1 \lor x_5 \lor \neg x_9) \land (\neg x_4 \lor x_8 \lor x_{10}) \land (x_3 \lor \neg x_6 \lor x_{10})$ $\wedge (\neg x_2 \lor \neg x_7 \lor x_{10}) \land (x_2 \lor \neg x_4 \lor \neg x_{10}) \land (\neg x_5 \lor \neg x_6 \lor \neg x_{10})$ $\wedge (x_4 \lor x_5 \lor \neg x_{10}) \land (\neg x_1 \lor \neg x_3 \lor \neg x_{10}) \land (x_2 \lor x_8 \lor \neg x_{10})$ $\wedge (\neg x_1 \lor x_8 \lor \neg x_{10})$

DNA Computer Robot based on MAGTRATIONTM (Prototype No.1)

DNAコンピュータのプログラミング

ヘアピン・エンジン(SATエンジン)

- Sakamoto et al., Science, May 19, 2000.
- 特平11-165114
- DNAのヘアピン構造を利用した選択
 - ヘアピンの制限酵素切断
 - exclusive PCR
- 3-SAT
 - 各節から選んだリテラルから成る一本鎖 DNA
 - 相補的なリテラル = 相補的配列
 - 矛盾したリテラルの選択 ⇒ ヘアピン
 - 6-variable 10-clause 3-SAT Problem
- SAT計算の本質的部分 = ヘアピン形成
 - 節や変数の数によらないステップ数
 - Autonomous molecular computation

ヘアピン構造による選択

- 制限酵素による切断
 - -リテラルを表す配列中に 制限酵素サイトを挿入
- Exclusive PCR
 - 一般にPCRはヘアピンに対して

増幅率が低い。

- exclusive PCRでは、各サイクルで溶液を 薄めることにより、ヘアピンと非ヘアピンの 増幅率の差を大きくしている。
- 実験操作の数は変数や節の数に依存しない。

Adleman-Liptonパラダイムに関する 現在のコンセンサス

- 電子コンピュータを凌駕するには程遠い。 – スケールアップ問題
- 「分子が計算する」ことの
 proof of conceptとしては重要。
- ・ 少なくとも、バイオテクノロジーの
 ベンチマークとして使うことができる。
- さらに、遺伝子計測への応用(Suyama)。

The DNA representation of Wang tiles.

Winfreeのタイリング

Sierpinskiの三角形

Headの遺伝子組み換えによる計算

・制限酵素とライゲースによる遺伝子組み換えの

数学的モデル(スプライシング・モデル)

組み換えによる言語の生成

- スプライシング規則: $r = u_1 \$ u_2 \# u_3 \$ u_4$
- $(x_1u_1u_2x_2, y_1u_3u_4y_2) \mid -_r (x_1u_1u_4y_2, y_1u_3u_2x_2)$
- R: スプライシング規則の集合
- A: 文字列の集合(公理)
- L: RとAによって生成される言語

 $-x \in A$ $x \in L$

- $x, y \in L$ かつ $r \in R$ かつ $(x, y)|_{-r}(z, w)$ ならば、 $z, w \in L$
- *RとA*が有限ならば、*L*は正則になる。

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 - 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

分子計算の計算可能性

- DNAの自己組織化の計算可能性
 Winfreeの結果
- 遺伝子組み換えの計算可能性
 スプライシング・モデルの様々な拡張

Winfreeの結果

- (線形)構造分子によって生成される言語族
 =正則言語族
- (線形+ヘアピン+3分岐)構造分子によって
 生成される言語族
 =文脈自由言語族
- (線形+DX)構造分子によって
 生成される言語族
 - = 帰納的可算言語族
 - =チューリング計算可能

Winfreeのモデルによる計算過程の例

Initial Configuration

1次元セルオートマトンの模倣

スプライシング・モデルの拡張

スプライシング・モデル 正則言語族 < の生成能力

(スプライシング) + **𝒜**? = 万能計算能力

環状組換えシステム

プラスα として 環状文字列(環状DNA)を用いることを許す。 終端記号と非終端記号の区別を許す。

(e.g. 大腸菌染色体とFプラスミドの組換え)

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 - 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

分子計算の計算量

- 時間
 - 実験操作の回数
 - 各操作に必要な時間
 - 分子の計算能力の解析にはより本質的
- 領域(=並列度)
 - 分子の数
 - 最大
 - ・トータル
 - 分子の大きさ(長さ)
- トレードオフの解析が重要

計算量の解析(Adleman-Lipton)

- Reif (SPAA'95)
 - 非決定性チューリング機械において、入力長 n、空間 s、時間 2^{O(s)}の計算は、我々のPAMモデルのもとで、O(s)ステップのPA-Match操作と、O(s log s) ステップのそれ以外の操作により、長さ O(s)の集合体を用いて実行することができる。
- Beaver (DNA1, 1995)
 多項式ステップの分子コンピュータは、PSPACEを 計算する。
- Rooß and Wagner (I&C, 1996)
 - Liptonのモデルを用いて、ちょうど $P^{NP} = \Delta^{P_2}$ に属す る問題を多項式時間で解くことができる。

Rooß and Wagner (I&C, 1996)

- Liptonのモデルを用いて、ちょうど $P^{NP} = \Delta^{P_2} c$ に属する問題を多項式時間で解くことができる。
 - BIO({UN,BX,IN},{EM})-P = $P^{NP} = \Delta^{P}_{2}$
 - UN: 合併(マージ) $T_3 = T_1 \cup T_2$
 - BX:ビット抽出(分離)

 $T_2 = +(T_1, s) \quad T_2 = -(T_1, s)$

- IN: 初期化(ランダム生成)
- EM: 空テスト(検出)
- -P: 多項式時間(ステップ)
- P^{NP}: NPオラクルを用いた多項式時間

計算量の解析(自己組織化)

- Rothemund and Winfree (STOC 2000)
 - 任意の非増加非有界の計算可能関数 f(N) が 与えられたとき、無限個の N に対して、f(N) よ り小さい個数のタイルを用いて、N×Nの正方 形を自己組織化により生成することができる。
- Winfree, Eng and Rozenberg (DNA6, 2000)
 - ストリング・タイルの線形自己組織化により、有限訪問チューリング機械(テープの各位置を訪れる回数の上限が存在するチューリング機械)の出力言語を生成することができる。

反応のエラーと収量

- 収量
 - 平衡 --- 平衡定数 (K)
 - 平衡に到達する時間 --- 反応速度 (k)
 例: A ↔ B
 - $[B] = (K/(1+K))(1-e^{-(k+k_{-1})t})$ $K = k/k_{-1}$
- エラー
 - 例: ミス・ハイブリダイゼーション
 エラーの確率は0にはならない。
- 確率的な解析

確率的な解析

- Karp, Keynon and Waarts (SODA'96)
 - 耐エラーのビット評価を達成するために必要な抽出操作の回数は $\Theta(\log_{\varepsilon} \delta] \times \log_{\gamma} \delta)$ である。
- Kurtz (DNA2, 1996)
 - Adlemanの実験における経路生成の熱力学的解析
 - ハミルトン経路の生成に必要な時間 --- $\Omega(n^2)$
- Winfree (1998, Ph.D. Thesis)
 DNAタイリングの熱力学的解析
- Rose, *et al.* (GECCO'99, *etc.*)
 - 計算論的非一貫性
 - (ミス・ハイブリダイゼーションの熱力学的解析)

分子コンピューティング:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 - 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

分子システム設計の計算論的側面

- 「分子プログラミング」
- 分子の設計
 - DNAの場合 = 配列設計
 - 構造 ⇒ 配列(inverse folding)
 - 自己組織化パターンの設計・分子マシンの設計
- ・分子反応の設計
 - 反応条件や操作順序の設計

- シミュレーション・ツール

・分子マシン

- 分子プログラミングの現在の目標の一つ

分子コンピューティング:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

配列設計

- 配列セットの評価
 - ミスハイブリダイゼーションの回避
 - ・ハミング距離
 - エネルギー計算 ⇒ mfold(Zuker)、Viennaパッケージ
 - $- 様 cT_m$ (融解温度、melting temperature)
- 配列セットの探索
 - 遺伝的アルゴリズム
 - 符号理論 --- 有田のテンプレート法
- 逆問題
 - 構造 ⇒ 配列(inverse folding)
 - Viennaグループ

テンプレート法

• Arita and Kobayashi, 2002

[AT]か [GC] の位置を全配列共通にする (これをテンプレートと呼ぶ) 例. 011010 より ACCTGA, TGCTCA, TCGACA, etc.

→ こうすると、全配列の融解温度は揃う。

スタッキング・エネルギー

$-\Delta G$ kcal/mol (DNA/DNA) by Sugimoto et al.

ミスマッチを含むテンプレート

上手にテンプレートを選べば、
 シフト、リバースの際でも必ずミスマッチをもつ。

例: 110100のとき 110100 110100 110100 110100 110100 110100 110100

> どうずらしても、連結した部分を考えても、 ミスマッチは最低2個存在

テンプレートの選び方

テンプレート Tを、以下のパターンに対して、
 最低 d 個のミスマッチを持つように選ぶ。

- $-T^{R}$
- $-TT^{R}$, $T^{R}T$

-TT, $T^{R}T^{R}$

*注: T^RはTの*逆配列。 *T*=110100ならば、*T^R*=001011

テンプレートの例

- 長さ6(ミスマッチ2)
 110100 (2⁶個中)
- 長さ11(ミスマッチ4)
 01110100100,01011100010,11000100101
 (2¹¹個中)
- 長さ23(ミスマッチ9)
 011110101100110010000,
 1011001100101000011110,
 111000001010011001101101 (2²³個中)

DNA配列の設計法

"テンプレート+誤り訂正符号"

110100(テンプレート) +010011(任意の符号語)

ATCAGG (DNA配列)

- 誤り訂正符号は何でも利用可。
- 1. BCH 符号
- 2. Golay 符号
- 3. Hamming 符号 など。

Inverse Folding

- Viennaグループ
- McCaskillのアルゴリズムの利用
- コスト関数の最小化による配列の探索

$$\Xi(x) = E(x, \Omega) - G(x) = -RT \ln p$$

- *Ω*:目的の構造
- x: 配列
- $-E(x, \Omega): x における \Omega の自由エネルギー$
- G(x): 配列 x の集団自由エネルギー(McCaskill)
- p: x における Q の確率

分子コンピューティング:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

分子反応の設計

- 反応条件
 - 温度
 - 塩濃度
 - 時間
- 操作の順序
- ・シミュレーション
 - e-PCR
 - http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi
 - VNA

VNA: 仮想 DNAのシミュレータ

- 抽象的だが、十分に物理的 抽象モデルと実際の反応との間の橋渡し 分子 — 仮想ストランドのハイブリッド abcd □
- 反応
 - hybridization
 - denaturation
 - restriction
 - ligation
 - self-hybridization
 - extension

VNA (続き)

- 目的
 - DNA計算の方式の実現可能性の検証
 - 生物学実験の妥当性の検証 (e.g., PCR実験)
 - 生物学実験の適切なパラメータの探索
- 実行例
 - OgiharaとRayによるブール式の計算
 - Winfreeによるdouble-crossover unitの生成
 - PCR実験
- 実装
 - Java ⇒ アプレットとして実行可能

- 方法
 - 組み合せ的数え上げ - 連続的シミュレーション (微分方程式) 融合
- 組み合せ的爆発の回避
 - シミュレーション技術における貢献
 - 閾値

- 確率的

GAによるパラメータ探索
 PCR実験の増幅率の最適化

■ Netscape: VNA ファイル 清集 表示 S	227 Smiller		_	王 日 ベルプ
	start stop reset	shop time (mse.)		
				1 2 3 4 5 7 0 0
SAUGEDOHENS 1.	C : > Joc.Mintfl.Boc.WindLiberfl.bo	abodef.>	threa hold	J. UUS
	i:		hyprid, const). 0
· · ·			te l-hybrid const.	. 1. 0 _.
· ·			denatur vonst.	5. IÎ
			denatur factor), 5 ₁
· ·			restriction site	<u>!</u>
· ·			math ation const.	1. 11
			lgatler censt.), 0 _,
· ·			extension const	1.0
			1. 1 1	ı. II ⁻
			may step	10000
	<		max concentr.). <u>)</u>
<u></u>				
100				: 🛞 🚧 🕫 🗭 🦑

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

ブール式の学習の遺伝子発現解析への応用

- 知的DNAチップの提案
 - 3つ手法の組み合わせ
 - DNA符号化数(陶山)
 - DNA計算を用いたブール式の学習アルゴリズム (例からのブール式の帰納的学習)
 - DNAチップ技術
 - 知的DNAチップ実現方法
- 知的DNAチップの遺伝子発現解析への応用の 提案
DNA計算を用いた遺伝子発現解析の 情報処理

知的DNAチップ

"(Dcn1 $\land \neg$ Dcn2) \lor Dcn3"

"¬Dcn1∨ (Dcn2 ∧ ¬Dcn3)"

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

DNAナノテクノロジー DNAによる自己組織化

- DNAの網
- 分子糊としてのDNA
 - DNAによるナノ粒子の自己組織化 - DNAによるナノワイアの自己組織化
- DNAタイル

– DNA自身による構造形成

• プログラムされた自己組織化

DNAによるナノ粒子の自己組織化 初期の研究

- C. A. Mirkin *et al.* DNA-based method for rationally assembling nanoparticles into macroscopic materials. *Nature* 382, 607–609 (1996)
- A. P. Alivisatos *et al.* Organization of 'nanocrystal molecules' using DNA. *Nature* 382, 609–611 (1996)

Winfree-SeemanのDNAタイル (double crossover分子)

The DNA representation of Wang tiles.

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 - 知的分子計測
 - 自己組織化

- 分子マシン

- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

分子マシン

- アクチュエータとしてのマシン

 モーター
 トランスポータ
- 抽象的なマシン --- 有限状態機械(オートマトン)
 有限の状態を持つ。
 - その状態を自律的もしくは入力に従って遷移させる。
 - 出力を行うかもしれない。
 - 汎用コンピュータへの第一歩
 - 多くの応用
 - ・スイッチ・センサー
 - メモリ(記憶保持・アドレシング)
- 両者はまだ渾然一体としている。

分子(DNA)状態機械

- 末端配列機械
 - 末端配列が状態を表現
 - Whiplash PCR(鞭打ちPCR)
 - 状態が遷移するにつれ長くなる。
 - Shapiroのオートマトン
 - 状態が遷移するにつれ短くなる。
- 形態機械(Conformational Machine)
 - 分子の形態が状態を表現
 - YurkのMolecular Tweezers(分子ピンセット)
 - Seeman \mathcal{O} PX-JX₂ Switch
 - 我々のHairpin-Based Machine

Polymerization Stop

Competing Alternative Hairpin Forms

Temperature optimization for WPCR

•8 M urea 8% PAGE

Komiya, et al.

in 1X *Pfx* buffer
(the composition unknown)
1 mM MgSO₄
0.2 mM dATP, dCTP, dGTP
1.5 units Platinum *Pfx* DNA polymerase

Thermal schedule 94°C for 1 min. ↓ x °C for 5 min. x =59.8 ~ 92.2

Successful implementation of transitions

入力文字a'の配列は、各S'に対して<S',a'>を含んでいる。 遷移分子は、スペーサを調整して、適切な個所で切断する。

ShapiroのDNAオートマトン

- *Nature* 2001
- 2入力文字、2状態
- FokI

a=ctggct b=cgcagc

5'-p...22...GGATGTAC3'-GGT...22...CCTACATGCCGAp $S0,a \rightarrow S0$

5'-p...22...GGATGACGAC $S0,a \rightarrow S1$ 3'-GGT...22...CCTACTGCTGCCGAp

YurkeのDNAピンセット

分子コンピューティング概論:目次

- 分子反応の持つ計算能力の解析
 計算モデル・計算可能性・計算量
- 分子システム設計の計算論的側面
 分子の設計・分子反応の設計
- 分子反応の持つ計算能力の応用
 知的分子計測
 - 自己組織化
 - 分子マシン
- 分子反応に基づく新しい計算パラダイム
 - 膜コンピューティング、アモルファス・コンピューティング
 - 光や量子との融合
 - 分子エレクトロニクスとの融合

新しい計算パラダイム

・ 膜コンピューティング

– Paun

- アモルファス・コンピューティング
 MIT のグループ
 - Abelson & Sussman
 - Knight
- その他にも…
 - Smart Dust
 - Programmable Matter
 - Quantum-Dot Cell Automaton

細胞膜モデル

- G. Paun (1998)
- 細胞膜(membrane)による計算過程の制御
- スーパーセルシステム=万能計算モデル

(例)
$$G = (V, \mu, M_1, \dots, M_4, (R_1, \rho_1), \dots, (R_4, \rho_4), 4)$$

 $V = \{a, b, b', c, f\}$ アルファベット
 $\mu = [1 [2 [3] [4]]2 [1]$ 膜構造
 M_i 膜 i 内要素の多重集合
 (R_i, ρ_i) 膜 i 内の規則の順序集合

細胞膜モデルによる n²の計算

アモルファス計算

- 自己組織化のための新しい計算パラダイム
 - 微細加工技術と細胞工学
 - 低コストで様々なプロセッサ
- Computational particle
 - 小さい計算力と少量メモリー
 - 不規則配置、可動性
 - 非同期、局地的相互作用
 - 誤った挙動、環境の影響
 - 同一プログラム
 - 自分たちの位置や方向に 関する情報をもたない
 - 近接のparticleと短距離
 (半径r)の通信をする。
- 全体としては超並列計算システムになっている。
- 回路の自己組織化のシミュレーション

Amorphous Computingとは

- 背景
 - 微細加工技術と細胞工学
 - 低コストで様々なプロセッサを作る (厳密に正確な動作は不要)
 - 新しい計算パラダイムとしての研究
- 不規則に配置されて、
 非同期に局地的に相互作用するような、
 計算機能の要素"computational particle"の
 集合としてモデル化。
- 効果的にプログラムするにはどうすればよいか。
 生物学的な組織の形成に関連?
 - 生物学は単なるメタファーでなく、実装に使えないか?

Computational particleの性質

- 誤った挙動を示す可能性もある。
- 環境に影響される。
- 何らかの動作をするかもしれない。
- 動き回るかもしれない。
- 小さい計算能力と少量のメモリーを持つ。
- ・ 全particleは同様にプログラムされている。
 (局所状態の保持や乱数発生は可能)
- 自分たちの位置や方向に関する情報をもたない。
- ・ 近接のparticleと短距離(半径r)の通信をする。
- 全体としては超並列計算システムになっている。

Wave propagationによる パターン形成

- 最初の"anchor" particleから始めてメッセージ (ホップの情報を持つ)を伝達していく。
- 生物学的なパターン形成と関連。
- 2つのanchor particleにより「成長の阻害」や 「屈動性(tropism)」などもプログラムできる。
- Cooreによるgrowing-point language(GPL)で プログラミングし、コンパイルしてparticleに セット。

量子ドット・コンピュータ

- キワモノか?
- 量子コンピュータとは違う。
- 量子ドット・セル・オートマトン(QCA)
 - ドミノのように四個の量子ドットを並べる。
 - ドミノ内ではトンネル効果によって電子が移動。
 - ドミノの相互作用により状態が伝搬する。
- ・ 配線が必要無い?
- しかし、量子ドットを正確に配置しなければならない。

計算モデル論(萩谷分)

 DNA/RNAの二次構造を予測する方法、 動的プログラミングにより最小エネル ギーおよび分配関数を求める方法、二次 構造から配列を設計する方法について 説明せよ。(文献を調べるとよい。) ② DNAを用いた自己組織化や分子マシン の実現可能性や応用について述べよ。

BASICS

DNA

• 糖

- デオキシリボース

- リン酸
- 塩基

- プリン塩基 --- 6角形と5角形の二つのリング

- アデニン(A: Adenine)
- グアニン(G:Guanine)
- ピリミジン塩基 --- 6角形一つ
 - チミン(T: Thymine)
 - シトシン(C:Cytosine)

実験操作

- PCR(ポリメラーゼ連鎖反応)
- ゲル電気泳動
- アフィニティ・セパレーション
- 制限酵素による切断
- ライゲースによる連結
- クローニングとシーケンシング

ポリアクリルアミドゲル電気泳動

DNA(RNA)の二次構造と その予測

DNA(RNA)の二次構造

- ベースペア *i.j* の集合
- k-ループ --- k 個のベースペアで囲まれたループ
 - 1-ループ
 - ・ ヘアピン(hairpin)
 - 2-ループ
 - スタック(stack)
 - ・バルジ(bulge)
 - 内部(interior)
 - マルチ・ループ(multi-loop)
- ループに対してエネルギーが割り当てられる。

これらの構造にエネルギーを割り当てる。 (nearest neighborモデル)

動的プログラミング

- W(i, j): i 番目のベースとj 番目の間の最小エネル
 ギー
- V(i, j): i と j がペアである場合の最小エネルギー
- $W(i, j) = \min(W(i+1, j), W(i, j-1), V(i, j), \min_{i \le k < j} (W(i, k) + W(k+1, j)))$
- $V(i, j) = \min(eh(i, j), es(i, j)+V(i+1, j-1), VBI(i, j), VM(i, j))$
 - eh(*i*, *j*): ヘアピンのエネルギー
 es(*i*, *j*): スタックのエネルギー

動的プログラミング

- $VBI(i, j) = \min_{\substack{i < i' < j' < j \\ i' i + j j' > 2}} (ebi(i, j, i', j') + V(i', j'))$
 - ebi(*i*, *j*, *i*', *j*'):内部ループのエネルギー
 O(n⁴) になってしまう。
- $VM(i, j) = \min_{i < k < j-1} (W(i+1, k) + W(k+1, j-1))$ - マルチ・ループのエネルギーが0の場合。

内部ループ

- 内部ループのエネルギー ebi(*i*, *j*, *i*', *j*') が、 ループの長さ(*i*'-*i*+*j*-*j*')×*c*ならば、
- $VBI(i, j) = \min_{l}(VBI(i, j, l))$
- VBI(i, j, l) = min(VBI(i+1, j, l-1) + c, VBI(i, j-1, l-1) + c, $c \times l + V(i+1, j-l+1),$ $c \times l + V(i+l-1, j-1))$

 $- O(n^3)$ になる。

マルチ・ループ

• マルチ・ループのエネルギーの近似:

a + b × k´ + c × k k´: ペアを組まない塩基の数 k: ペアの数

McCaskillのアルゴリズム

- 個々の構造のエネルギーを求めるのではなく、
 可能なすべての構造のエネルギーの分布を
 求める。
 - 分配関数(partition function)
 - 特定のベースペアが形成される確率
- 動的プログラミングによる。

基本配列

- w[i,j]
 iとjの間の最小エネルギー
- ww[k,j] kがペアを作っている条件のもとでのw[k,j] 実際にはjとj-1の場合だけ記憶すればよいので、 再利用することができる。
- 配列はすべてINF(無限大)で初期化する。

```
for (j=2; j<=n; j++)
  for (i=i-1; i>=1; i--) {
     ww[i,j] = ww[i,j-1];
     if (i.iがペア)
        ww[i,j] = min(ww[i,j], v[i,j]);
     for (temp=INF, k=i+1; k<=j; k++)
        temp = min(temp, w[i,k-1]+ww[k,j]);
     w[i,j] = min(temp, ww[i,j]);
```

マルチループのための配列

- vm[i,j]

 iとjの間のペアをマルチループに属すると 仮定したときの最小エネルギー 最低一個はペアを含む。
- vvm[k,j]

kがペアを作っている条件のもとでのvm[k,j] 実際にはjとj-1の場合だけ記憶すればよいので、 再利用することができる。

MLclosing
マルチ・ループ
・マルチ・ループのエネルギーの近似:

$$a+b\times k'+c\times k$$

 $k': ペアを組まない塩基の数$
 $k: ペアの数$ MLintern
MLbase
 $k'=5$
 $k=3$

vmとvvmの設定:

```
vvm[i,j] = vvm[i,j-1]+MLbase;
if (i.jがペア)
    vvm[i,j] = min(vvm[i,j], v[i,j]+MLintern);
for (temp=INF, k=i+1; k<=j; k++) {
    temp = min(temp, vm[i,k-1]+vvm[k,j]);
    temp = min(temp, MLbase*(k-i)+vvm[k,j]);
}
vm[i,j] = min(temp, vvm[i,j]);
```

分配関数

- 構造が現れる確率は、
 構造のエネルギーをGとしたとき、
 ボルツマン因子 exp(-G/kT) に比例する。
- 分配関数 Z とは、
 すべての構造のボルツマン因子を
 足し合わせたもの。
- エネルギーGの構造の出現確率は、 exp(-G/kT)/Zで与えられる。

分配関数の計算 二次構造を網羅しながら 最小エネルギーを求めていたところを、 二次構造を網羅しながら、 ボルツマン因子を足し合わせればよい。

最小エネルギー	分配関数
G	exp(-G/kT)
初期值INF	初期值0
min	+
+	*

基本配列

- w[i,j]
 iとjの間の分配関数
- ww[k,j] kがペアを作っている条件のもとでのw[k,j] 実際にはjとj-1の場合だけ記憶すればよいので、 再利用することができる。
- 配列はすべて0で初期化する。

```
for (j=2; j<=n; j++)
  for (i=j-1; i>=1; i--) {
     ww[i,j] = ww[i,j-1];
     if (i.jがペア)
        ww[i,j] = ww[i,j] + v[i,j];
     for (temp=0, k=i+1; k<=j; k++)
        temp = temp+w[i,k-1]*ww[k,j];
     w[i,j] = temp+ww[i,j];
```

マルチループのための配列

- vm[i,j]

 iとjの間のペアをマルチループに属すると 仮定したときの分配関数 最低一個はペアを含む。
- vvm[k,j]

kがペアを作っている条件のもとでのvm[k,j] 実際にはjとj-1の場合だけ記憶すればよいので、 再利用することができる。

vmとvvmの設定:

vvm[i,j] = vvm[i,j-1]*expMLbase; if (i.jがペア) vvm[i,j] = vvm[i,j]+v[i,j]*expMLintern; for (temp=0, k=i+1; k<=j; k++) { temp = temp+vm[i,k-1]*vvm[k,j]; temp = temp+expMLbase^(k-i)*vvm[k,j]; } vm[i,j] = temp+vvm[i,j];