Introduction to Molecular Computing

Masami Hagiya

Professor, University of Tokyo Graduate School of Information Science and Technology Department of Computer Science

What is Molecular Computing?

- Biomolecule = information processing machine
 - Autonomous control of chemical reactions
 - ⇒ Encoded in molecules themselves
 - Nanoscale, low energy
 - Massive parallelism
 - Physical and chemical functions of molecules
- Objectives of molecular computing
 - Scientific investigation of computational power of molecules and their reactions
 - Engineering realization of new computational paradigms based on molecular reactions
- References
 - M. Hagiya, T. Yokomori: DNA Computer, Baifukan, 2001.
 - M. Hagiya: Present and Future of Molecular Computer -- Progress towards Molecular Programming, Saiensu-sha, 2004.

Objectives of Molecular Computing

- Analysis of computational power of molecular reactions and Applications:
 - Molecular sensors using molecular computation
 - ⇒ Application to biotechnology
 - Programmed self-assembly and molecular machines
 - ⇒ Application to nanotechnology
 - Evolutionary computation by molecules
 - ⇒ Application to molecular evolution
- New computational paradigms based on molecular reactions

Related Fields (Biology & Information Technology)

	Raw object	Software	
	Molecular Biology	Bioinformatics	
Analysis			
		Mathematical Biology	7
Synthesis	Molecular Computing	Wiamematical Diology	
		Evolutionary Computation	
	Molecular Evolutionary		
	Engineering	Artificial Life	

Evolution ⊂ Calculation

Related Fields (Molecular Sciences)

- Molecular Electronics
 - Electronic circuit using molecular devices (existing computation paradigm)
 - Molecular computing as technology for constructing molecular circuits (nanotechnology)
- Nanotechnology
- Supramolecular chemistry
- Quantum computing
- Optical computing
- Molecular biology, biotechnology
- Molecular evolutionary engineering

Hagiya's wet laboratory

- School of Engineering, Bldg.9, Rm.501
- Earthquake-proof reconstruction of Bldg. 9 completed at the end of March
- Experiments resumed in April
- General cleaning of the bldg on April 19

Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membrane computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Analysis of Computational Power of Molecular Reactions

- Various computational models
 - Inter-molecular reactions vs. intra-molecular reactions
 - Liquid-phase vs. solid-phase
 - Test tube, membrane, cell
 - Heteronomous vs. autonomous
- Analysis of computational power (of various computational models)
 - Computability
 - Complexity --- time and space
 - Errors and yields --- probabilistic analysis
 - Analysis more faithful to actual molecular reactions

Analysis of Various Computational Models

Adleman-Lipton

- Random generation of solution candidates by hybridization of DNA
- Extraction of solutions by data-parallel computation
- Suyama --- Dynamic Programming
- Sakamoto-Hagiya --- SAT Engine
- Head-Yamamura --- Aqueous Computing

• Seeman-Winfree

- Self-assembly of various forms of DNA molecules
- Computation with self-assembly

Analysis of Various Computational Models

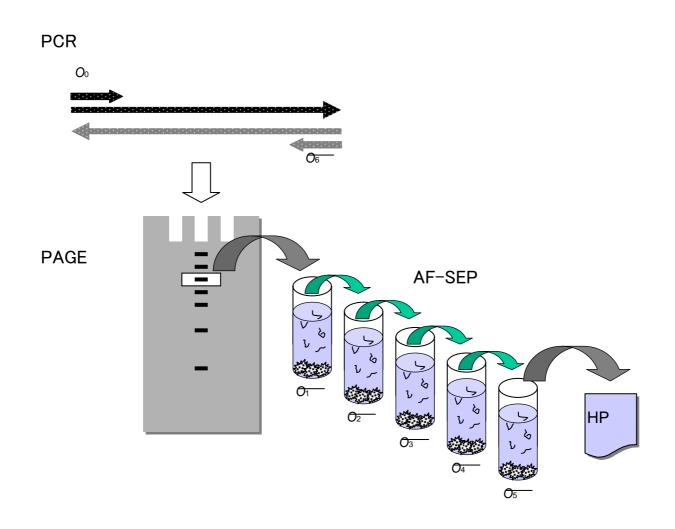
- Head
 - Language generation by gene splicing
- Ogihara-Ray
 - Parallel computation of Boolean circuits
- Hagiya-Sakamoto
 - State machine (Whiplash)
- Shapiro
 - Finite Automaton

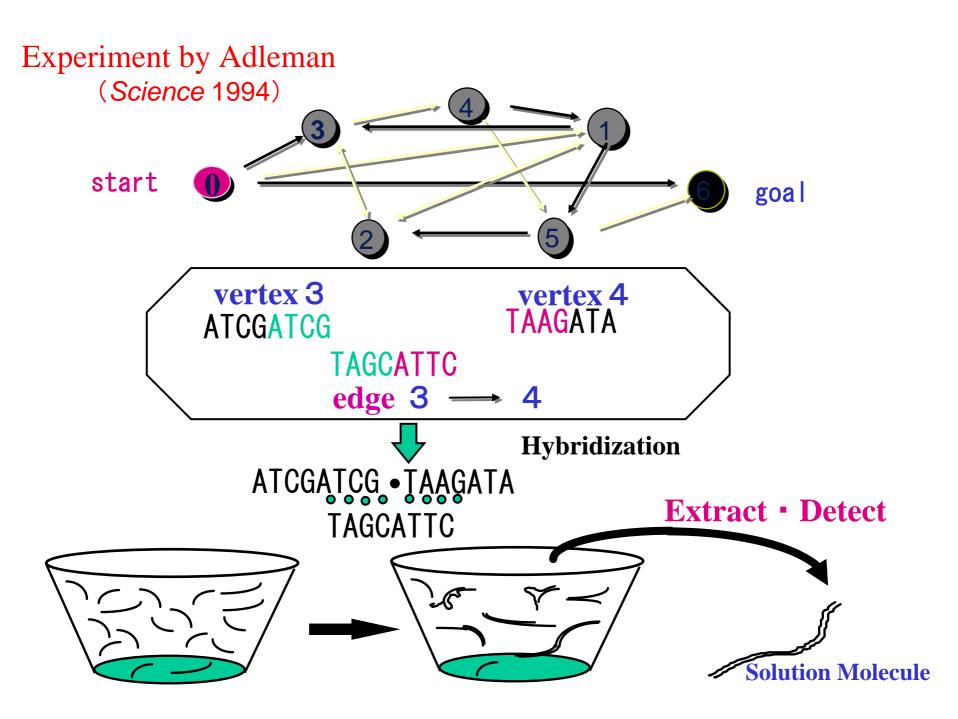
→ molecular machines

Adleman-Lipton Paradigm

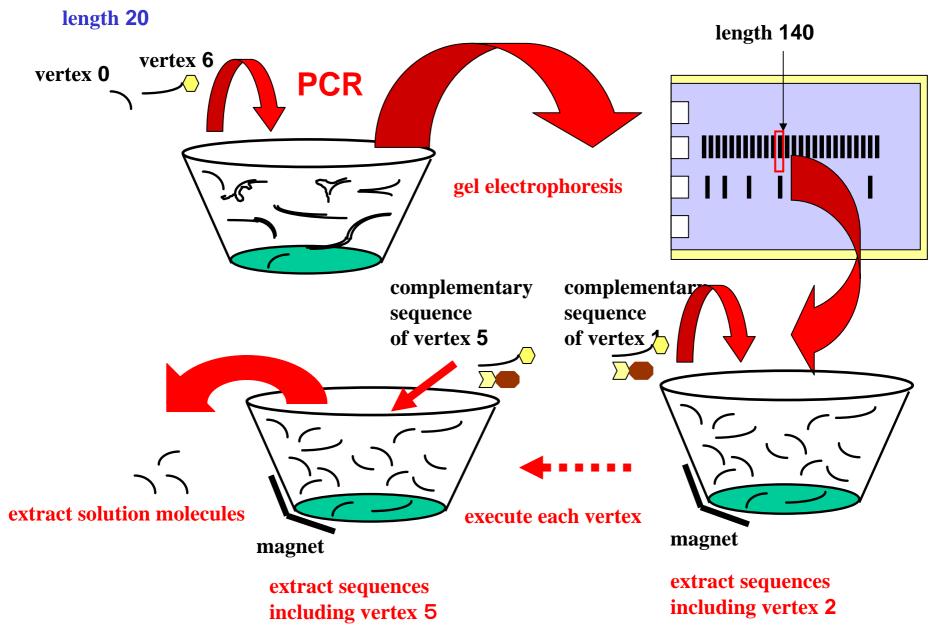
- Adleman (*Science* 1994)
 - Solving Hamilton path problem with DNA
- Lipton, et al.
 - Solving SAT problem with DNA
- Massive parallelism using molecules
 - Combinatorial optimization as a main purpose
 - Random generation by DNA self-assembly
 - solution candidate = DNA molecule
 - Extraction of solution using biological experiment
- Currently recognized as a benchmark for biotechnology
 - Vision of the study: application to genomic analysis

Adleman's First DNA Computer



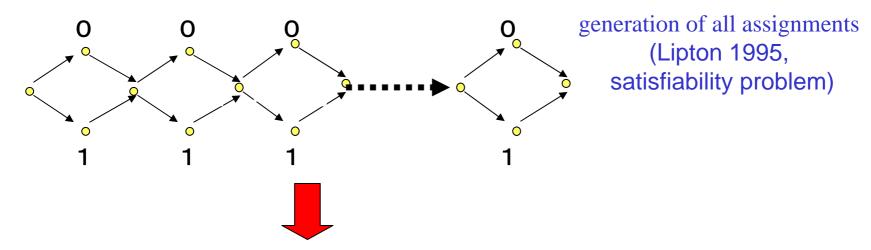


Extraction and Detection of Solutions



Adleman-Lipton Paradigm

generation of all solution candidates



inspection and extraction of solutions

T_i: multiset of strings (test tube)

[Separate] $T_2 = +(T_1, s)$: extract sequences including s

 $T_2 = -(T_1, s)$: extract sequences without s

[Merge] $T_3 = T_1 \cup T_2 : merge T_1 \text{ and } T_2$

[Amplify] $(T_2, T_3) = T_1 : copy T_1$

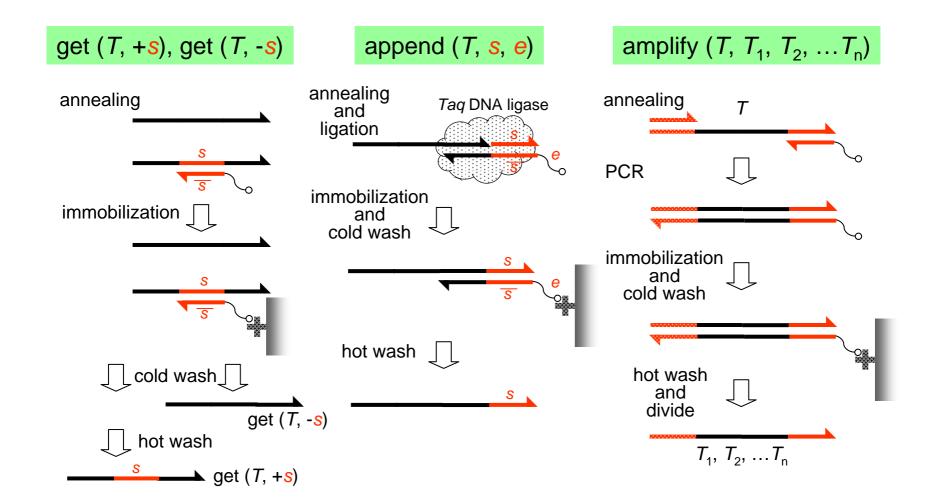
detection of solutions

[Detect]

Suyama's DNA Computer

- "Counting" (Ogihara and Ray)
 - $O(2^{0.4n})$ molecules for *n*-variable 3-SAT
- "Dynamic programming" (Suyama)
- Iteration of generation and selection
 - Partial generation of solution candidates
 - Selection of solution candidates
- Although both are exponential orders, $O(2^{0.4n})$ is far less than $O(2^n)$
- Solid-phase
 - Affinity separation with magnetic beads
 - Suitable for automation ⇒ Robot!

Implementation of Basic Operations



DP Algorithm for 3CNF-SAT on DNA Computers

```
function dna 3 sat (u_1, v_1, w_1, \dots, u_m, v_m, w_m)
begin
   T_2 = \{X_1^T X_2^T, X_1^F X_2^T, X_1^T X_2^F, X_1^F X_2^F\};
   for k = 3 to n do
       amplify (T_{k-1}, T_{k-1}^T, T_{k-1}^F);
       for j = 1 to m do
           if w_i = x_k then
              T_w^F = \text{getuvsat}(T_w^F, u_i, v_i);
           end
           if w_i = \neg x_i then
              T_w^T = \text{getuvsat}(T_w^T, u_i, v_i);
           end
       end
       T^T = \operatorname{append}(T_{w}^T, X_{k}^T, \overline{X_{k-1}^{T/F} X_{k}^T}); \quad T^F = \operatorname{append}(T_{w}^F, X_{k}^F, \overline{X_{k-1}^{T/F} X_{k}^F});
       T_{\nu} = \text{merge}(T^T, T^F);
    end
    return detect (T_n);
end
```

```
function getuvsat (T, u, v)

begin

T_u^T = \gcd(T, + X_u^T); \quad T_u^{F} = \gcd(T, - X_u^T);

T_u^F = \gcd(T_u^F, + X_u^F); \quad /* \ can \ be \ omitted \ */

T_v^T = \gcd(T_u^F, + X_v^T);

T^T = \operatorname{merge}(T_u^T, T_v^T);

return T^T;

end
```

Number of operations

$$(n-2) \times (\text{amplify} + 2 \times \text{append} + \text{merge}) + m \times (3 \times \text{get} + \text{merge})$$

3CNF-SAT Solution on DP DNA Computer

Problem: 4 variables, 10 clauses

$$(x_{1} \lor x_{2} \lor x_{3}) \land (x_{1} \lor \neg x_{2} \lor x_{3}) \land$$

$$(\neg x_{1} \lor x_{2} \lor \neg x_{3}) \land (\neg x_{1} \lor \neg x_{2} \lor \neg x_{3}) \land$$

$$(x_{1} \lor \neg x_{3} \lor \neg x_{4}) \land (\neg x_{1} \lor x_{2} \lor \neg x_{4}) \land$$

$$(\neg x_{1} \lor x_{3} \lor \neg x_{4}) \land (x_{2} \lor x_{3} \lor x_{4}) \land$$

$$(x_{2} \lor \neg x_{3} \lor x_{4}) \land (\neg x_{2} \lor \neg x_{3} \lor x_{4})$$

Solution:

YES

$$\{X_1^T X_2^T X_3^F X_4^F\}$$

DP Algorithm for 3CNF-SAT on DNA Computer

k's loop: k ranges over variable indices j's loop: j ranges over clause indices if x_k is the 3rd literal of the j-th clause then remove those assignments which satisfy neither the 1st nor the 2nd literal append X_k^F to the remaining assignments (do similarly if $\neg x_k$ is the 3rd literal) k=3 $X_{1}^{T}X_{2}^{T}X_{3}^{F}$ $X \xrightarrow{F} X \xrightarrow{T}$ $(\chi_1 \vee \neg \chi_2 \vee \chi_3)$ $X_{1}^{T}X_{2}^{F}X_{3}^{F}$ $X_1^T X_2^F$ $(x_1 \vee x_2 \vee x_3)$

DP Algorithm for 3CNF-SAT on DNA Computer

$$k$$
's loop: k ranges over variable indices
 j 's loop: j ranges over clause indices
if x_k is the 3^{rd} literal of the j -th clause **then**
remove those assignments which satisfy
neither the 1^{st} nor the 2^{nd} literal
append X_k^F to the remaining assignments
(do similarly if $\neg x_k$ is the 3^{rd} literal)
 $k = 3$
 $\neg x_3$ $x_1^T x_2^T$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3)$
 $x_1^F x_2^T$ $(x_1 \lor x_2 \lor x_3)$
 $x_1^F x_2^F$ $(x_1 \lor x_2 \lor x_3)$
 $x_1^F x_2^F$ $(x_1 \lor x_2 \lor x_3)$
 $x_1^F x_2^F$ $(x_1 \lor x_2 \lor x_3)$

DP Algorithm for 3CNF-SAT on DNA Computer

$$K$$
's loop: K ranges over variable indices
 j 's loop: j ranges over clause indices
if X_k is the 3^{rd} literal of the j -th clause **then**
remove those assignments which satisfy
neither the 1^{st} nor the 2^{nd} literal
append X_k^F to the remaining assignments
(do similarly if $\neg X_k$ is the 3^{rd} literal)
 $k = 4$
 $x_4 = \frac{X_1^F X_2^T X_3^T}{X_1^F X_2^T X_3^T} \qquad (\neg x_2 \lor \neg x_3 \lor x_4)$
 $X_1^T X_2^T X_3^F \qquad (x_2 \lor \neg x_3 \lor x_4)$
 $X_1^T X_2^T X_3^F \qquad (x_2 \lor x_3 \lor x_4)$

 $\mathcal{X}_{\!arDelta}$

10-variable and 43-clause instance of 3SAT

$$(\neg x_{1} \lor x_{2} \lor \neg x_{3}) \land (x_{1} \lor x_{3} \lor x_{4}) \land (x_{2} \lor \neg x_{3} \lor \neg x_{4})$$

$$\land (x_{1} \lor x_{4} \lor x_{5}) \land (x_{2} \lor x_{3} \lor \neg x_{5}) \land (\neg x_{2} \lor \neg x_{3} \lor \neg x_{5})$$

$$\land (\neg x_{1} \lor \neg x_{3} \lor \neg x_{5}) \land (\neg x_{2} \lor \neg x_{4} \lor x_{6}) \land (\neg x_{2} \lor x_{3} \lor x_{6})$$

$$\land (x_{2} \lor \neg x_{3} \lor x_{6}) \land (\neg x_{1} \lor \neg x_{5} \lor \neg x_{6}) \land (x_{2} \lor \neg x_{6} \lor x_{7})$$

$$\land (x_{1} \lor x_{5} \lor x_{7}) \land (\neg x_{1} \lor \neg x_{5} \lor \neg x_{7}) \land (x_{5} \lor \neg x_{6} \lor \neg x_{7})$$

$$\land (x_{1} \lor x_{5} \lor x_{7}) \land (\neg x_{1} \lor \neg x_{5} \lor \neg x_{7}) \land (\neg x_{4} \lor x_{6} \lor \neg x_{7})$$

$$\land (x_{1} \lor x_{4} \lor x_{8}) \land (\neg x_{1} \lor x_{5} \lor x_{8}) \land (x_{2} \lor \neg x_{3} \lor x_{8})$$

$$\land (x_{1} \lor x_{4} \lor x_{8}) \land (\neg x_{1} \lor x_{5} \lor x_{8}) \land (x_{1} \lor x_{4} \lor \neg x_{8})$$

$$\land (x_{1} \lor x_{6} \lor x_{8}) \land (\neg x_{2} \lor x_{4} \lor x_{9}) \land (x_{4} \lor x_{7} \lor x_{9})$$

$$\land (x_{1} \lor x_{7} \lor x_{9}) \land (\neg x_{4} \lor x_{6} \lor \neg x_{9}) \land (\neg x_{1} \lor x_{3} \lor \neg x_{9})$$

$$\land (\neg x_{2} \lor x_{3} \lor \neg x_{9}) \land (\neg x_{4} \lor x_{8} \lor x_{10}) \land (x_{3} \lor \neg x_{6} \lor \neg x_{10})$$

$$\land (\neg x_{2} \lor \neg x_{7} \lor x_{10}) \land (x_{3} \lor \neg x_{4} \lor \neg x_{10}) \land (\neg x_{5} \lor \neg x_{6} \lor \neg x_{10})$$

$$\land (x_{4} \lor x_{5} \lor \neg x_{10}) \land (\neg x_{1} \lor \neg x_{3} \lor \neg x_{10}) \land (x_{2} \lor x_{8} \lor \neg x_{10})$$

$$\land (\neg x_{1} \lor x_{8} \lor \neg x_{10})$$

DNA Computer Robot based on MAGTRATIONTM (Prototype No.1)

Programming DNA Computer

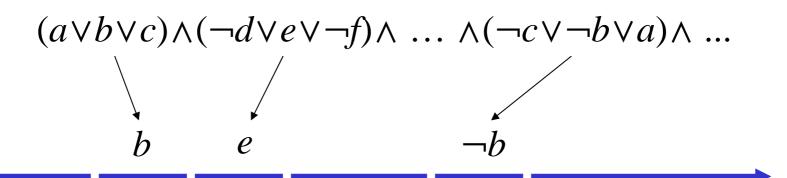
```
function dna 3 sat (u_1, v_1, w_1, ..., u_m, v_m, w_m)
begin
   T_2 = \{X_1^T X_2^T, X_1^F X_2^T, X_1^T X_2^F, X_1^F X_2^F\};
   for k = 3 to n do
       amplify (T_{k-1}, T_{w}^T, T_{w}^F);
       for j = 1 to m do
           if w_i = x_k then
              T_w^F = \text{getuvsat}(T_w^F, u_i, v_i);
           end
           if w_i = \neg x_k then
              T_w^T = \text{getuvsat}(T_w^T, u_i, v_i);
           end
        end
       T^{T} = \operatorname{append}(T_{w}^{T}, X_{k}^{T}, X_{k-1}^{T/F} X_{k}^{T});
       T^{F} = \operatorname{append}(T_{w}^{F}, X_{k}^{F}, X_{k-1}^{T/F} X_{k}^{F});
       T_{\iota} = \operatorname{merge}(T^{T}, T^{F});
    end
   return detect (T_n);
end
```

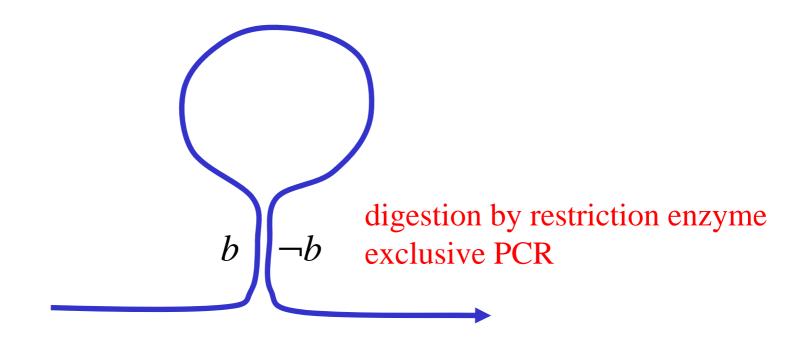
Pascal/C-level

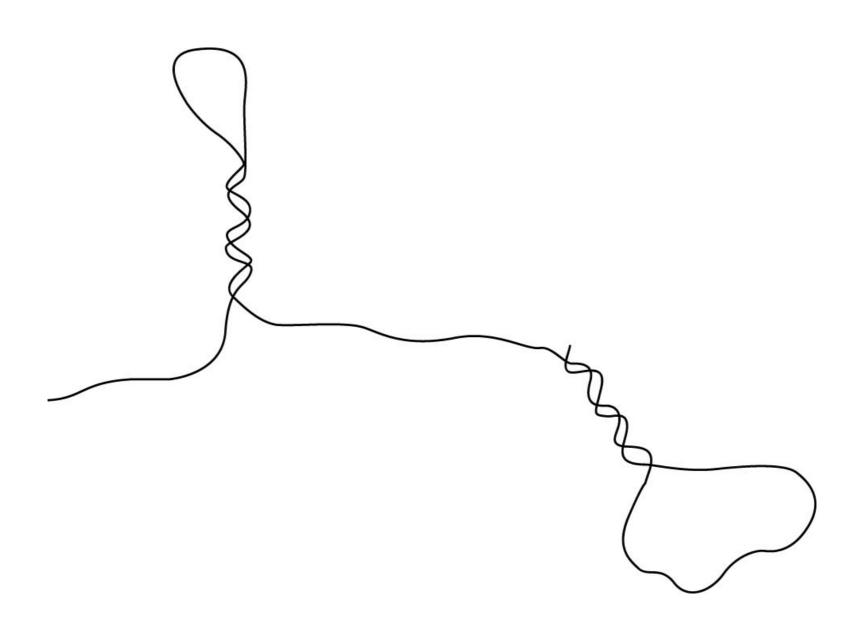
```
(1-1-4)
                                    [MJ-Open Lid]
[Instrument]
[Reset Counter] 0
                         Do 2
                           SEND "LID OPEN"
[Home Position] 0
「MJ-Open Lid≯
                           Dο
                                    10
                             SEND "LID?"
[Get1(0)]
                             Wait msec
                                              500
                                              "OPEN"
[Get2(1)]
                             CMP GSTR
[Append (2)]
                             IF Goto EQ 0
                                              ; open
                             Wait msec 1000
[Exit]
                           Loop
                         Loop
protocol-level
                         : Time out
                         End
                          ; open
                                    script-level
```

Hairpin Engine (SAT Engine)

- Sakamoto et al., Science, May 19, 2000.
- Selection by DNA hairpin structures
 - Digestion by restriction enzyme
 - Exclusive PCR
- 3-SAT
 - Single-stranded DNA comprised of literals each selected from a clause
 - Complementary literal = complementary sequence
 - Detection of inconsistency ⇒ hairpin
 - 6-variable 10-clause 3-SAT problem
- The essential part of SAT computation = hairpin formation
 - Number of steps is independent of the number of clauses/variables
 - Autonomous molecular computation







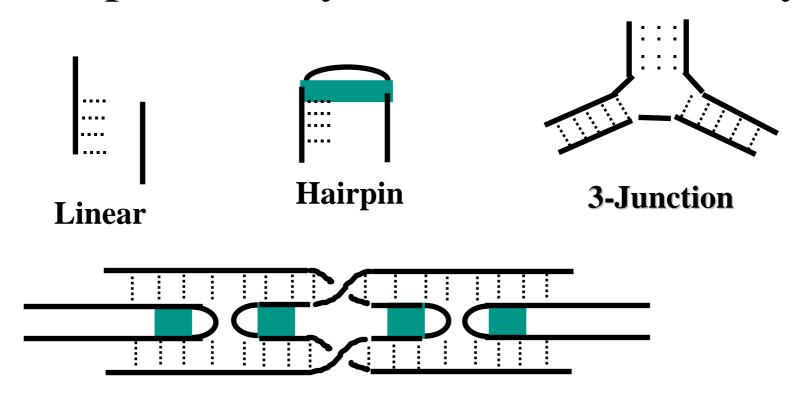
Selection by Hairpin Structures

- Restriction enzyme digestion
 - Hairpins are cut at the restriction site inserted in each literal sequence
- Exclusive PCR
 - PCR is inefficient for hairpins
 - In exclusive PCR, solution is diluted in each cycle to keep the difference in amplification
- Number of steps is independent of the number of variables/clauses

Current Consensus on Adleman-Lipton Paradigm

- Far from outperforming electronic computers
 - Scale-up problem
- Important as a first proof that;
 - Molecules can really compute
- At least serves as a benchmark for biotechnology
- Application to genomic analysis (Suyama)

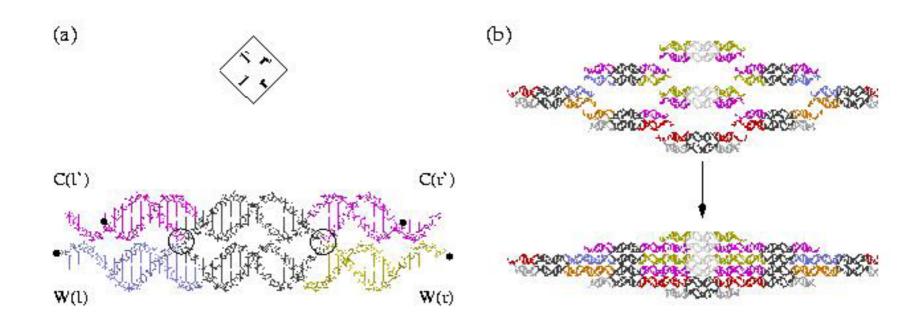
Seeman-Winfree's Computation by DNA Self-Assembly



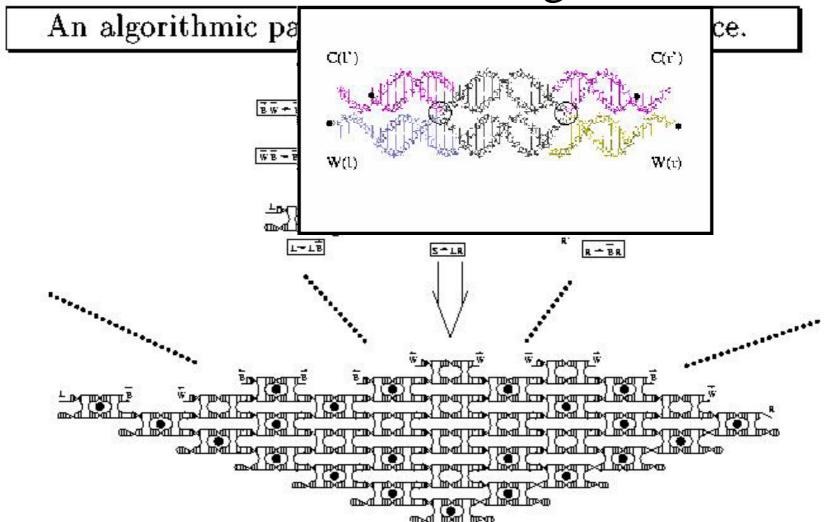
DX (Double Crossover)

Various DNA Molecular Structures

The DNA representation of Wang tiles.



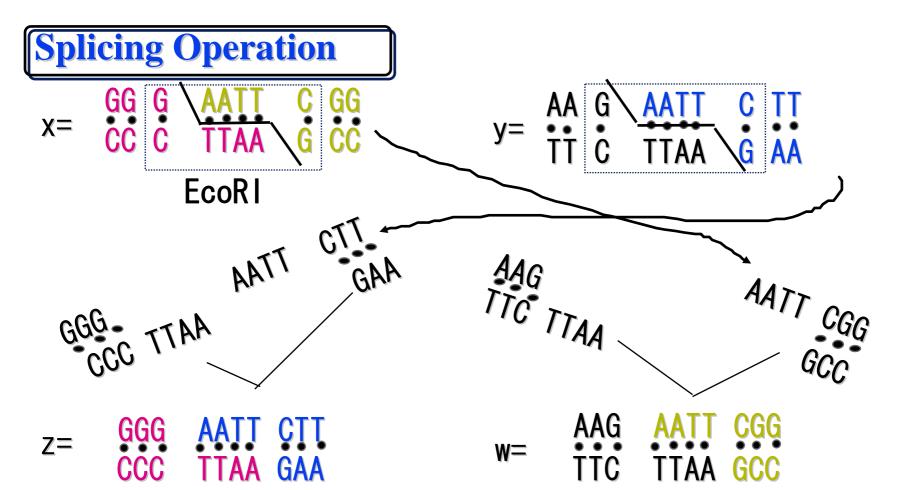
Winfree's Tiling



Sierpinski's Triangle

Head's Computation by Gene Splicing

• Theoretical model of gene splicing with restriction enzyme and ligase (Splicing Model)



Language Generation by Splicing

- Splicing rule: $r = u_1 \$ u_2 \# u_3 \$ u_4$
- $(x_1u_1u_2x_2, y_1u_3u_4y_2) \mid -_r (x_1u_1u_4y_2, y_1u_3u_2x_2)$
- R: Set of splicing rules
- A: Set of strings (axiom)
- L: Language generated from R & A
 - If $x \in A$ Then $x \in L$
 - If $x, y \in L$ and $r \in R$ and $(x, y) \mid -_r(z, w)$ Then $z, w \in L$
- If R and A are finite, then L is regular

Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Computability in Molecular Computing

- Computability of DNA self-assembly
 - Winfree's results

- Computability of gene splicing
 - Various extensions of splicing model

Winfree's Results on Computability of DNA Self-Assembly

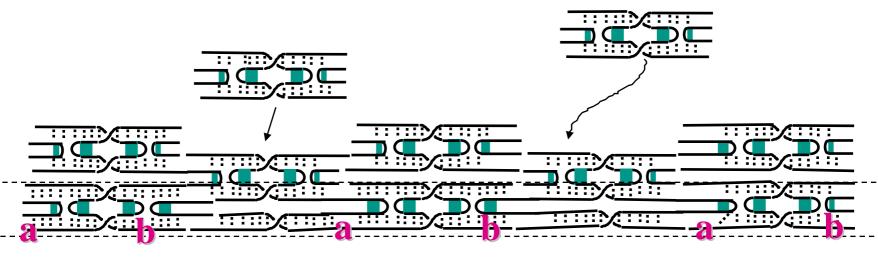
- Language generated by linear molecules
 - = regular
- Language generated by
 - linear + hairpin + 3-junction molecules
 - = context-free
- Language generated by linear + DX molecules
 - = recursively enumerable
 - = Turing computable

Winfree's Model:

Example of Computation Process

$$\mathbf{c} = \mathbf{f}(\mathbf{a}, \mathbf{b})$$

$$\mathbf{d} = \mathbf{g}(\mathbf{a}, \mathbf{b})$$



Initial Configuration

Imitation of 1-dimensional Cellular Automaton

Extentions of Splicing Model

Generative ability of splicing model

< Regular language

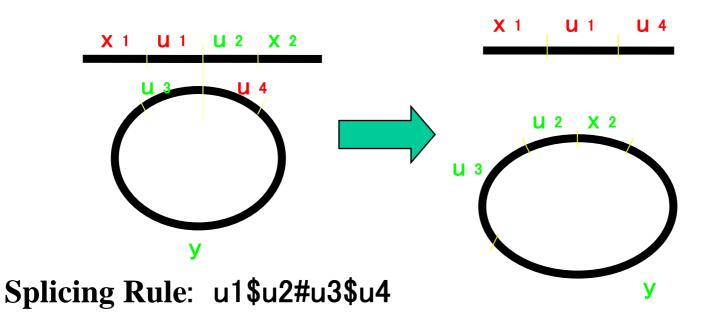
(splicing) $+ \alpha$? = Universal computational power

+ α: circular molecules multiple test tubes time-dependent rules etc.

Circular Splicing System

 $+\alpha$:

Allows to use circular strings (circular DNA)
Allows to distinguish between terminal and non-terminal symbols (e.g. splicing of colon bacillus chromosome and F plasmid)



Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Complexity of Molecular Computation

- Time
 - Number of experiment steps
 - Time required for each operation
 - Essential for the analysis of computational power of molecules
- Space (= degree of parallelism)
 - Number of molecules
 - Maximum
 - Total
 - Size of molecules (length)
- Trade-off analysis -- important

Complexity Analysis (Adleman-Lipton)

- Reif (SPAA'95)
 - A nondeterministic Turing machine computation with input size n, space s and time $2^{O(s)}$ can be executed in our PAM Model using O(s) PA-Match steps and $O(s \log s)$ other PAM steps, employing aggregates of length O(s).
- Beaver (DNA1, 1995)
 - Polynomial-step molecular computers compute PSPACE.
- Rooß and Wagner (I&C, 1996)
 - Exactly the problems in $P^{NP} = \Delta^{P}_{2}$ can be solved in polynomial time using Lipton's model.

Rooß and Wagner (I&C, 1996)

- Exactly the problems in $P^{NP} = \Delta^{P}_{2}$ can be solved in polynomial time using Lipton's model.
- BIO({UN,BX,IN},{EM})-P = $P^{NP} = \Delta^{P}_{2}$
 - UN: union (merge) $T_3 = T_1 U T_2$
 - BX: bit extraction (separate)

$$T_2 = +(T_1, s)$$
 $T_2 = -(T_1, s)$

- IN: initialization (random generation)
- EM: emptiness test (detect)
- P: polynomial time
- P^{NP}: polynomial time with NP-oracle

Complexity Analysis

- Rothemund and Winfree (STOC 2000)
 - For any f(N) non-decreasing unbounded computable functions, the number of tiles required for the self-assembly of an $N \times N$ square is bounded infinitely often by f(N).
- Winfree, Eng and Rozenberg (DNA6, 2000)
 - Linear assembly of string tiles can generate the output languages of finite-visit Turing Machines.

Errors and Yields of Reactions

- Yields
 - Equilibrium --- equilibrium constant (*K*)
 - Time to reach equilibrium --- reaction rate (*k*)
 - Example: $A \leftrightarrow B$

[B] =
$$(K/(1+K))(1-e^{-(k+k_{-1})t})$$

 $K = k/k_{-1}$

- Errors
 - Example: mis-hybridization
 - Error probability is never 0
- Probabilistic analysis

Probabilistic Analysis

- Karp, Keynon and Waarts (SODA'96)
 - The number of extract operations required for achieving error-resilient bit evaluation is $\Theta(\lceil \log_{\varepsilon} \delta \rceil \times \lceil \log_{\gamma} \delta \rceil)$.
- Kurtz (DNA2, 1996)
 - Thermodynamical analysis of path formation in Adleman's experiment
 - Time needed to form a Hamiltonian path --- $\Omega(n^2)$
- Winfree (1998, Ph.D. Thesis)
 - Thermodynamical analysis of DNA Tiling
- Rose, et al. (GECCO'99, etc.)
 - Computational incoherency
 (Thermodynamical analysis of mis-hybridization)

Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Computational Aspects of Molecular Systems Design

- Molecular programming
- Design of molecules
 - Design of DNA = sequence design
 - Structure ⇒ sequence (inverse folding)
 - Patterns for self-assembly
 - Design of molecular machines
- Design of reactions
 - Adjustment of reaction conditions
 - Scheduling of experimental operations
 - Simulation tool
- Molecular machines
 - One of the current objectives of molecular programming

Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Sequence Design

- Evaluation of sequence set
 - Avoiding mis-hybridization
 - Hamming distance
 - Energy calculation ⇒ mfold (Zuker), Vienna Package
 - Uniform T_m (melting temperature)
- Searching for sequence set
 - Genetic algorithm
 - Coding theory --- Arita's template method
- Inverse problem
 - Structure ⇒ sequence (inverse folding)
 - Vienna group

Template Method

Arita and Kobayashi, 2002

Same positioning of [AT] or [GC] in every sequence (= "template")

e.g. from 011010

ACCTGA, TGCTCA, TCGACA, etc.

 → Melting temperature of every sequence will be the same

Stacking Energy

- Δ G kcal/mol (DNA/DNA) by Sugimoto et al. AT TA CA CT GA GT CG GC TA AT, GT GA CT CA GC CG

Template Including Mismatches

 Proper selection of template ensures mismatch(es) even with shift / reverse

```
e.g. when 110100
```

110100 110100 110100 110100

110100 110100 110100

Includes at least 2 mismatches even with any shifting or concatenatoin

Template Selection

• Selecting template *T* which will include minimum of (*d*) mismatches in each of the following patterns

- $-T^{R}$
- $-TT^{R}$, $T^{R}T$
- -TT, T^RT^R

 T^R : reversed sequence of TWhen T=110100, $T^R=001011$

Examples of Templates

• Length 6 (2 mismatches) 110100 (of 2⁶)

Length 11 (4 mismatches)
 01110100100, 01011100010, 11000100101
 (of 2¹¹)

Design of DNA Sequence

"Template + Error Correcting Code"

```
1 1 0 1 0 0 (template)
+ 0 1 0 0 1 1 (any code)
A T C A G G (DNA sequence)
```

Any Error Correcting Code can be used

- 1. BCH Code
- 2. Golay Code
- 3. Hamming Code etc.

Inverse Folding

- Vienna group
- Using McCaskill's algorithm
- Sequence search by minimization of cost function

$$\Xi(x) = E(x,\Omega) - G(x) = -RT \ln p$$

- $-\Omega$: Target structure
- -x: Sequence
- $-E(x,\Omega)$: Free energy of Ω at x
- G(x): ensemble free energy of sequence x
 (McCaskill)
- -p: Probability of Ω at x

Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Design of Molecular Reactions

- Condition of reactions
 - Temperature
 - Salt concentration
 - Time
- Operation scheduling
- Simulation
 - e-PCR
 - http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi
 - VNA

VNA: Simulator for Virtual DNA

• Abstract, but sufficiently physical

Bridging the gap between abstract models and actual reactions

molecule — hybrid of virtual strands

Reactions

- hybridization
- denaturation
- restriction
- ligation
- self-hybridization
- extension

VNA (cont)

Objectives

- Verifying feasibility of algorithms for DNA computation
- Verifying validity of molecular biology experiments
 (e.g., PCR experiments)
- Parameter fitting in molecular biology experiments

Examples

- Ogihara and Ray's computation of Boolean circuits
- Winfree's construction of double-crossover units
- PCR experiments

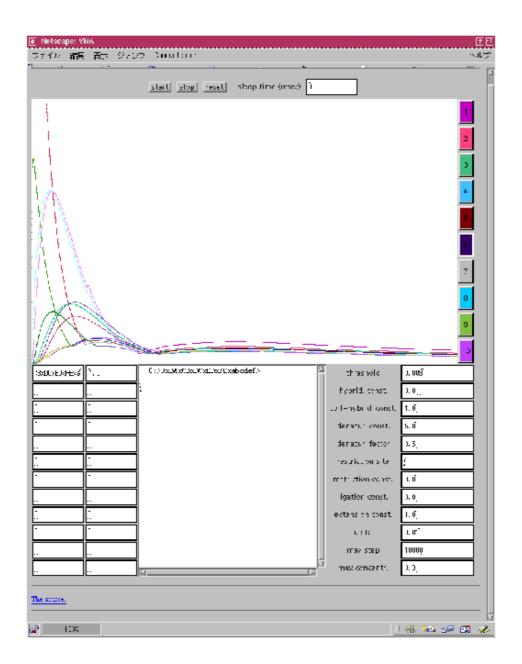
Implementation

- Java \Rightarrow executable as an applet

VNA (cont)

- Methods
 - Combinatorial enumeration
 - Continuous simulation (diff. eq.)

- unify
- Avoiding combinational explosion
- Contributions in simulation technology
 - Threshold
 - Stochastic
- Parameter fitting by GA
 - Optimizing amplification in PCR experiments



Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

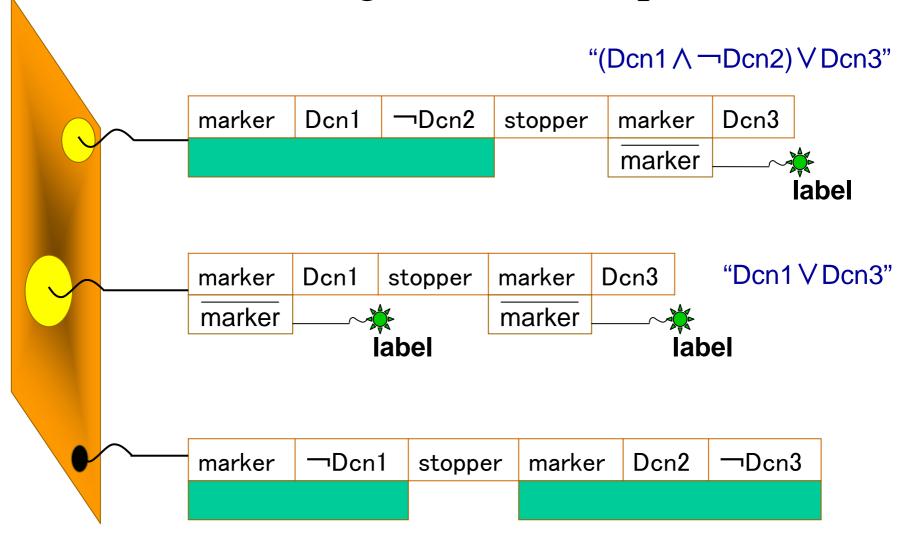
Information Processing of Gene Expression Analysis Using DNA Computation

Direct input: DNA computer **Output:** GGGGGGG (Encode) Output on Information processing **DNA** encoding **DNA** chips inside the test tube in vitro

Gene Expression

- Direct input of DNA molecule
- Massive parallelism

Intelligent DNA Chip



"¬Dcn1 V (Dcn2 ∧ ¬Dcn3)"

Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

DNA Nanotechnology DNA Self-Assembly

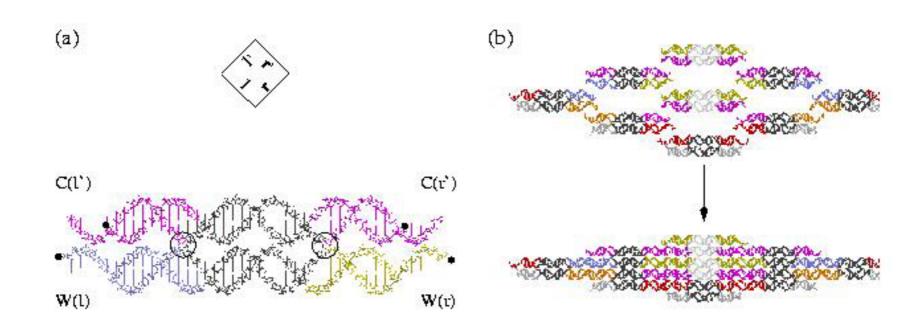
- DNA lattice
- DNA as a connector of molecules
 - Self-assembly of nanoparticles using DNA
 - Self-assembly of nanowires using DNA
- DNA tile
 - Structure formation by DNA itself
- Programmed self-assembly

DNA-Based Self-Assembly of Nanoparticles Early Studies

- C. A. Mirkin et al.
 - DNA-based method for rationally assembling nanoparticles into macroscopic materials. *Nature* **382**, 607-609 (1996)
- A. P. Alivisatos et al.
 - Organization of 'nanocrystal molecules' using DNA. *Nature* **382**, 609-611 (1996)

Winfree-Seeman's DNA Tiles (double crossover molecules)

The DNA representation of Wang tiles.



Introduction to Molecular Computing

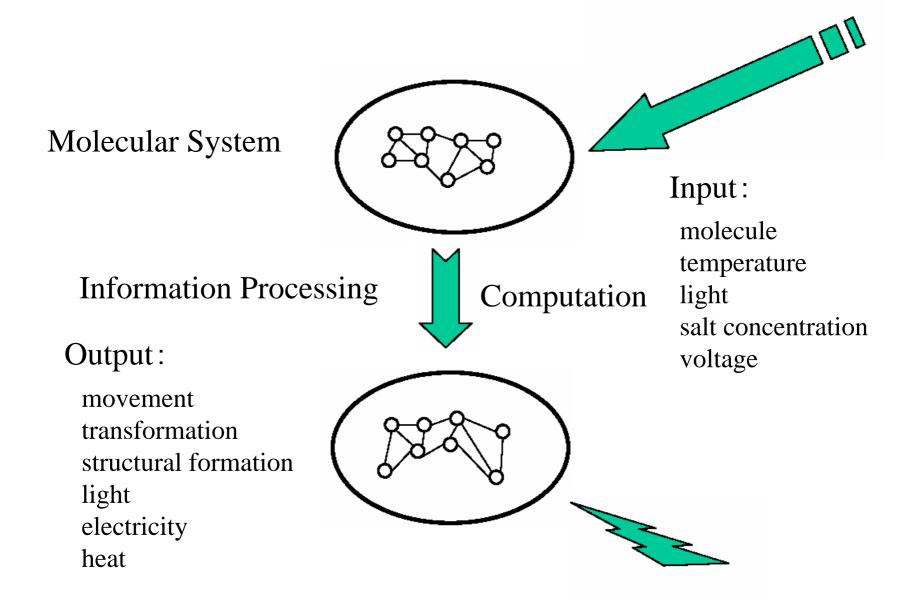
Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

Molecular Machines

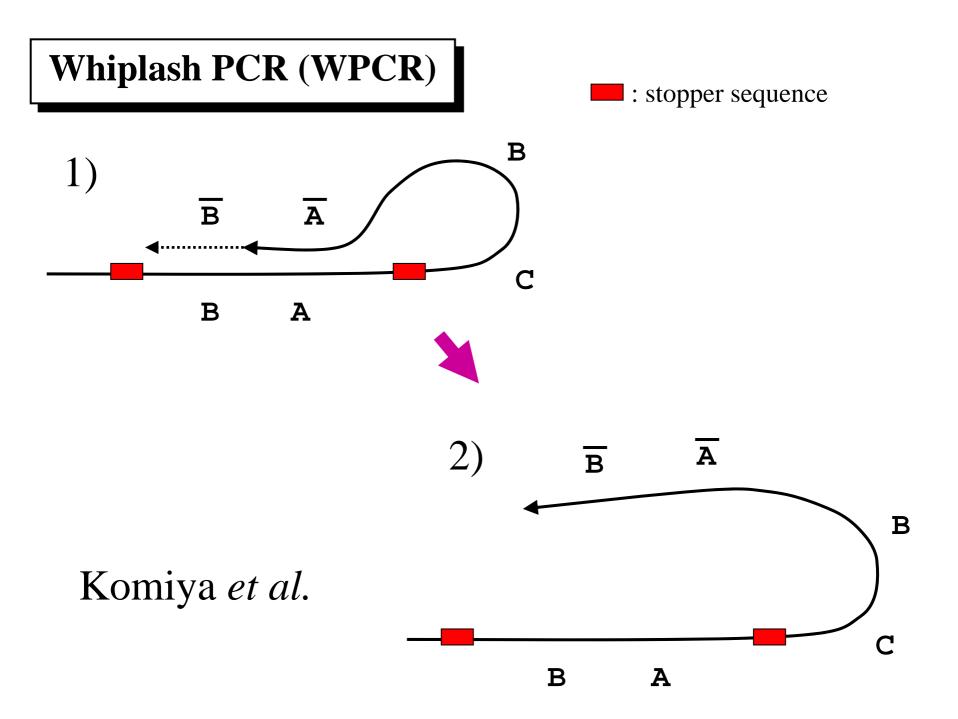
- Machines as Actuators
 - Motor
 - Transporter
- Abstract Machines --- Finite State Machines (Automaton)
 - Have a finite number of states
 - Change their state autonomously or according to inputs
 - May produce outputs
 - Are the first step towards general-purpose computers
 - Have many kinds of applications
 - Switch
 - Memory (both holding contents and addressing)
- The difference between the two is still unclear

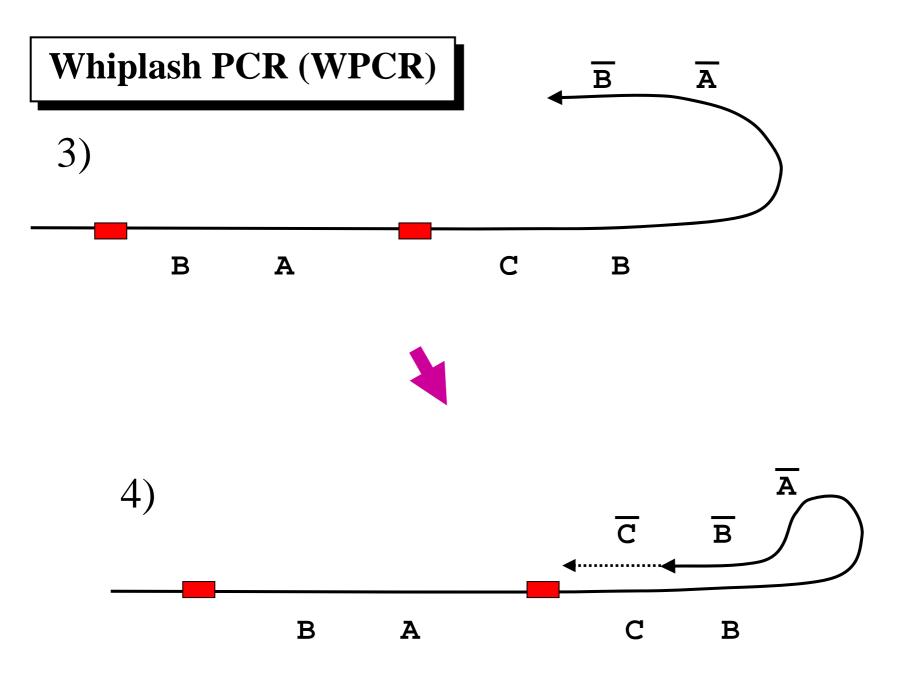
Molecular System Consisting of Finite State Machines



Molecular (DNA) State Machines

- Terminal-sequence machines
 - The terminal sequence encodes the state
 - Our whiplash machine
 - Gets longer as it changes the state
 - Shapiro's automaton
 - Gets shorter as it changes the state
- Conformational machines
 - The state is encoded as a structure
 - Yurk's molecular tweezers
 - Seeman's PX-JX₂ Switch
 - Our hairpin-based machine...

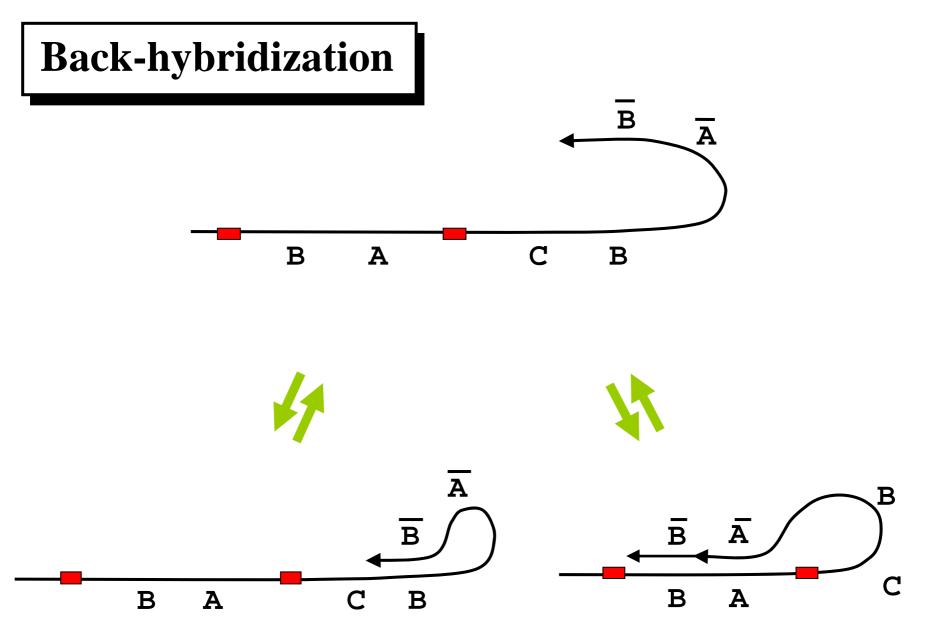




Polymerization Stop



Polymerization by DNA polymerase with dATP, dCTP, dGTP

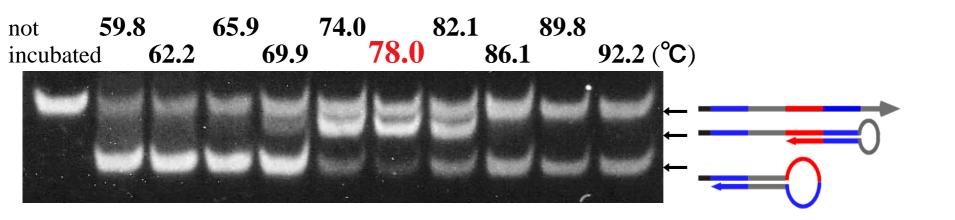


Competing Alternative Hairpin Forms

Temperature optimization for WPCR

•8 M urea 8% PAGE

Komiya, et al.



in 1X Pfx buffer
(the composition unknown)
1 mM MgSO₄
0.2 mM dATP, dCTP, dGTP
1.5 units Platinum Pfx DNA polymerase

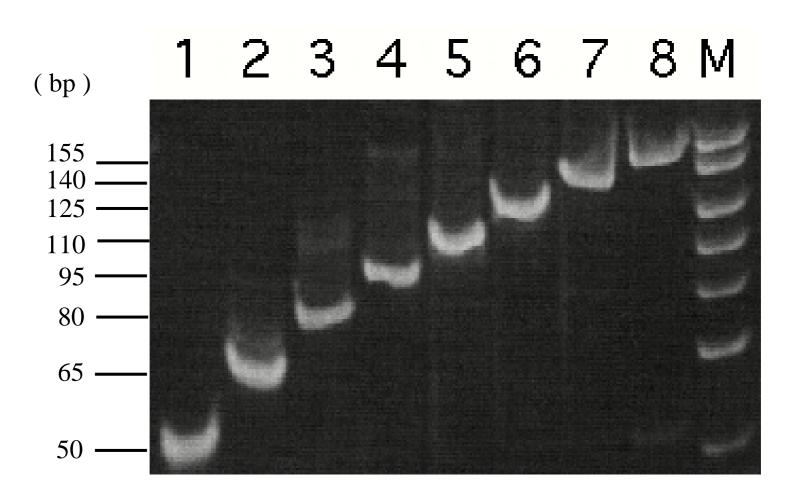
Thermal schedule 94°C for 1 min.

 $x ^{\circ}C \text{ for 5 min.}$ $x = 59.8 \sim 92.2$

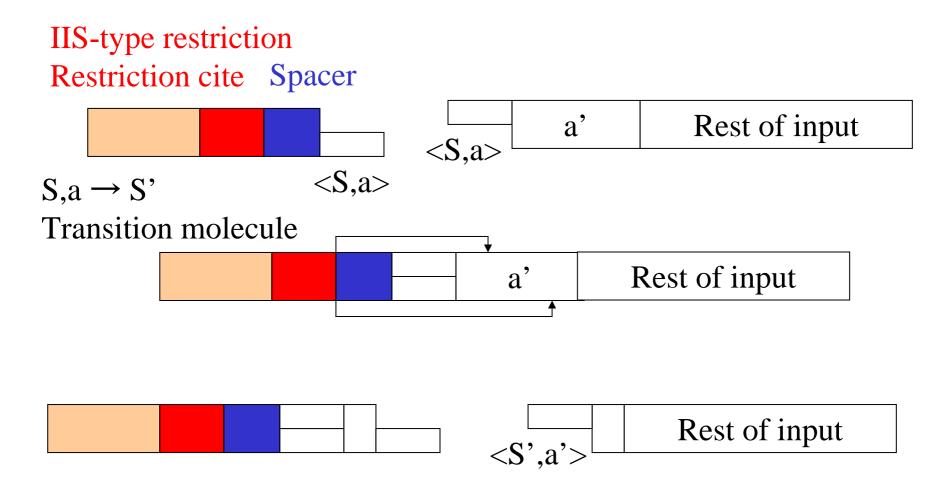
Successful implementation of transitions

-12% PAGE

Komiya, et al.



Shapiro's DNA Automata



The input sequence encoding the symbol a' contains <S',a'> for each S'. The transition molecule cuts the input at the site regulated by the spacer.

Shapiro's DNA Automata

- *Nature* 2001
- 2 input symbols, 2 states
- FokI

a=CTGGCT

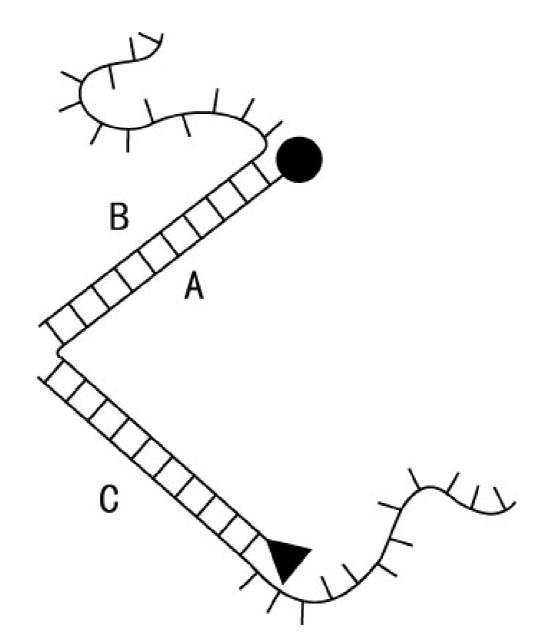
b=CGCAGC

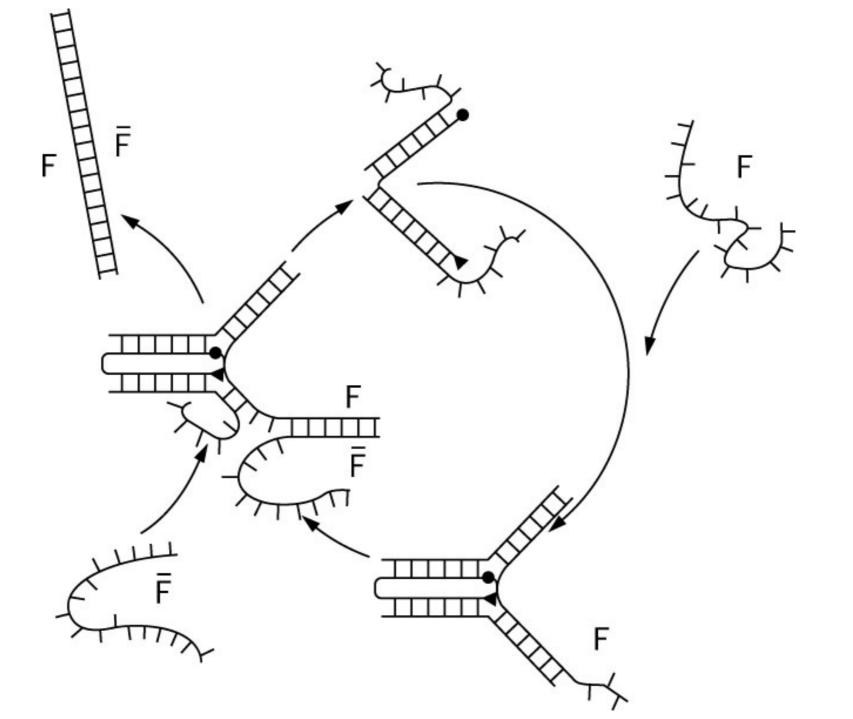
```
5'-p...22...GGATGTAC

3'-GGT...22...CCTACATGCCGAp
S0,a\rightarrow S0
```

5'-p...22...GGATGACGAC
$$S0,a\rightarrow S1$$
 3'-GGT...22...CCTACTGCTGCCGAp

Yurke's Molecular Tweezers





Introduction to Molecular Computing

Table of Contents:

- Analysis of computational power of molecular reactions
 - Computational models Computability Complexity
- Computational aspects of molecular systems design
 - Design of molecules Design of molecular reactions
- Application of computational power of molecular reactions
 - Intelligent molecular sensing
 - Self-assembly
 - Molecular machines
- New computational paradigms based on molecular reactions
 - Membranous computing Amorphous computing
 - Association with optical and quantum
 - Association with molecular electronics

New Computational Paradigms

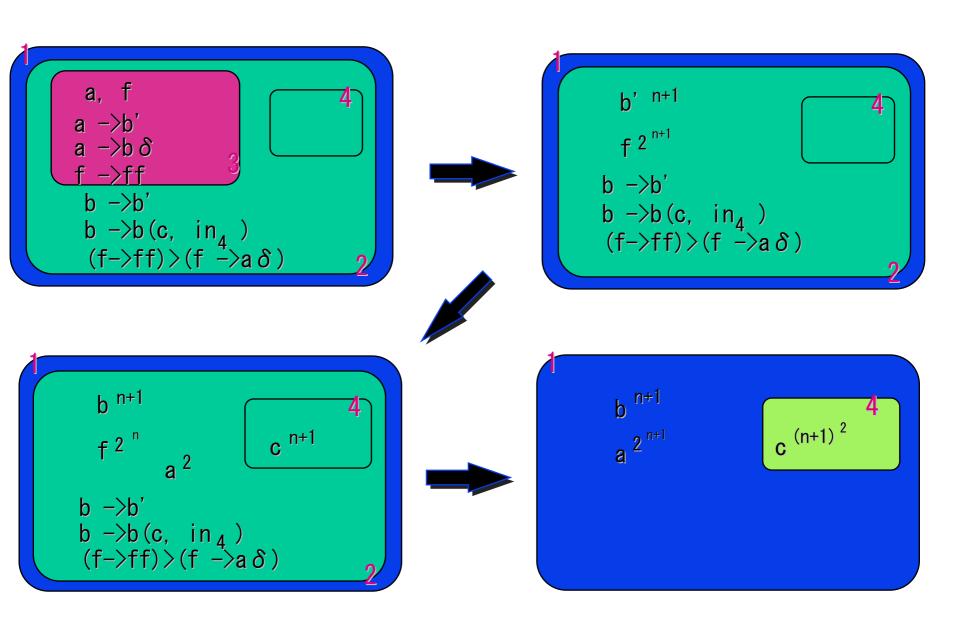
- Membrane Computing
 - Paun
- Amorphous Computing
 - MIT Group
 - Abelson & Sussman
 - Knight
- And others...
 - Smart Dust
 - Programmable Matter
 - Quantum-Dot Cell Automaton

— ...

Cell Membrane Model

- G. Paun (1998)
- Control of computation process using membrane
- Supercell system = universal computation model

```
(e.g.) G = (V, \mu, M_1, \dots, M_4, (R_1, \rho_1), \dots, (R_4, \rho_4), 4)
V = \{a, b, b', c, f\} \qquad \text{alphabet}
\mu = \begin{bmatrix} 1 & 2 & 3 & 3 & 4 & 2 & 1 \\ & & & & \text{multiset of elements within membrane "i"} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```



Computation of "n '2 using cell membrane model

Amorphous Computing

- New computation paradigm for self-assembly
 - Microfabrication and cytoengineering
 - Various processors at low cast
- Computational particle
 - Small computational power and small memory
 - Random distribution, mobility
 - Asynchronous, local interaction
 - Wrong behavior,
 environmental influence
 - Identical program
 - No knowledge of their location nor orientation
 - Short distance (radius: r) communication with the neighboring particles
- Massive parallel computation system as a whole
- Simulation of the self-assembly of a circuit

What is Amorphous Computing?

- Background
 - Microfabrication and cytoengineering
 - Developing various processors at low cost
 (Not necessary to work precisely)
 - Study as a new computational paradigm
- Developing the model as an aggregate of "computational particles" that are randomly distributed and interact locally and asynchoronously
- How can it be programmed effectively?
 - Relation to the formation of biological structure?
 - Is it possible to use biology for implementation, not just as a metaphor?

Characteristics of Computational Particles

- Have possibility of failure
- Will be influenced by the environment
- May make some movements
- May move around
- Have small computational power and small memory
- All particles are programmed identically (Capable of staying locally and generating random numbers)
- Have no knowledge about their location and orientation
- Make short distance (radius: r) communication with neighboring particles
- Massive parallel computational system as a whole

Pattern Formation Using Wave Propagation

- Start with first "anchor" particle, and convey the message (with information of the hop)
- Related to biological pattern formation
- "Impediment to growth" and "tropism" can be programmed using 2 anchor particles
- Program with Coore's growing-point language(GPL), and compile to set into a particle

Quantum Dot Computer

- Bluffing?
- Different from quantum computers
- Quantum dot cell automaton (QCA)
 - Line up 4 quantum dots like dominoes
 - Electrons move inside dominoes (cells) by tunnel effect
 - The condition transmits by interaction of dominoes
- No need for wiring?
- Still, quantum dots must be arranged properly

Homework

- 1 Explain methods of;
 - DNA/RNA secondary structure prediction
 - Minimum energy and partition function calculation using dynamic programming
 - Sequence design using secondary structure (use references)
- 2 Explain DNA self-assembly and possibility of realization and applications of molecular machines

BASICS

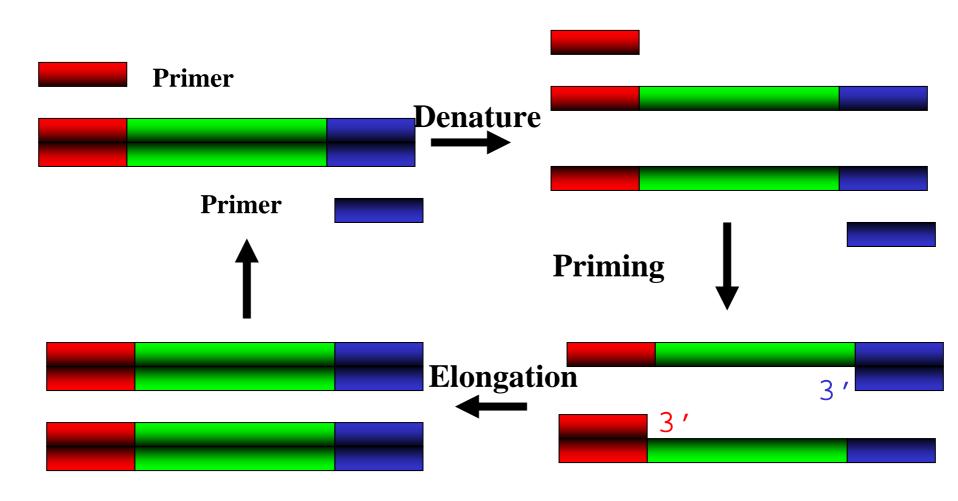
DNA

- Sugar
 - Deoxyribose
- Phosphate
- Bases
 - Purine Bases --- 2 rings (hexagon and pentagon)
 - Adenine (A)
 - Guaninen (G)
 - Pyrimidine Bases --- 1 ring (hexagon)
 - Thymine (T)
 - Cytosine (C)

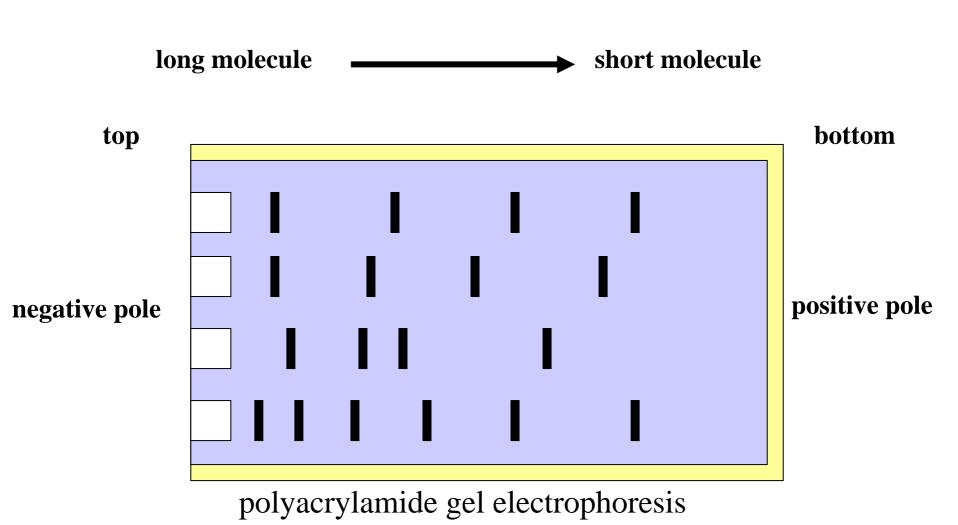
Experimental Operations

- PCR (Polymerase Chain Reaction)
- Gel electrophoresis
- Affinity separation
- Restriction enzyme digestion
- Coupling with ligase
- Cloning and sequencing

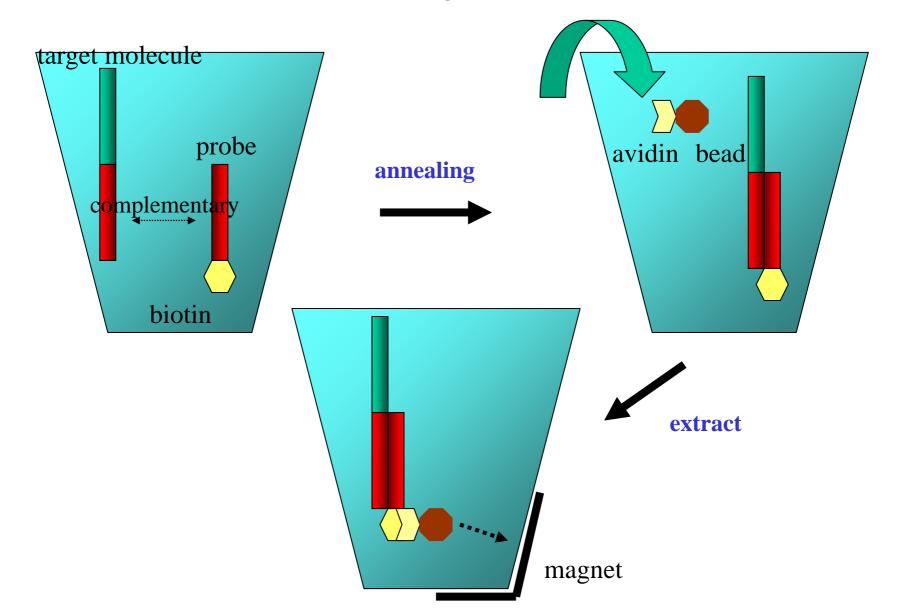
PCR (Polymerase Chain Reaction)



Gel Electrophoresis



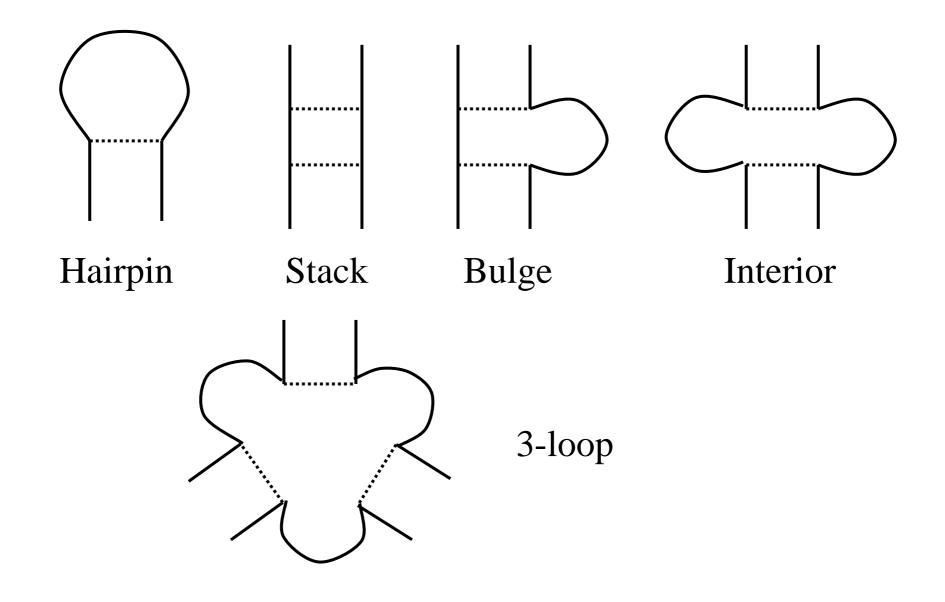
Dissociation of Single-Stranded DNA



Secondary Structure of DNA (RNA) and Its Prediction

Secondary Structure of DNA (RNA)

- A set of base pair *i.j*
- k-loop --- a loop closed by k base pairs
 - 1- loop
 - Hairpin
 - − 2- loop
 - Stack
 - Bulge
 - Interior
 - Multiple loop
- Energy is assigned to each loop



Assign energay to each of these structures (nearest neighbor model)

Dynamic Programming

- W(i, j): Minimum energy between i-th and j-th bases
- V(i, j): Minimum energy when i, j form a pair
- $W(i, j) = \min(W(i+1, j), W(i, j-1), V(i, j), \min_{i \le k < j} (W(i, k) + W(k+1, j))$
- $V(i, j) = \min(eh(i, j), es(i, j) + V(i+1, j-1), VBI(i, j), VM(i, j))$
 - $-\operatorname{eh}(i,j)$: Hairpin energy
 - $-\operatorname{es}(i,j)$: Stack energy

Dynamic Programming

- $VBI(i, j) = \min_{\substack{i < i' < j' < j \\ i' i + j j' > 2}} (ebi(i, j, i', j') + V(i', j'))$
 - ebi(i, j, i', j'): Interior loop energy
 - $\rightarrow O(n^4)$
- $VM(i, j) = \min_{i < k < j-1} (W(i+1, k) + W(k+1, j-1))$
 - When multiple loop energy is 0

Interior Loop

• If interior loop energy ebi(i, j, i', j') is proportional to the length of the loop, $(i'-i+j-j') \times c$

•
$$VBI(i, j) = \min_{l}(VBI(i, j, l))$$

•
$$VBI(i, j, l) = \min(VBI(i+1, j, l-1) + c,$$

 $VBI(i, j-1, l-1) + c,$
 $c \times l + V(i+1, j-l+1),$
 $c \times l + V(i+l-1, j-1))$

$$\rightarrow O(n^3)$$

Multiple Loop

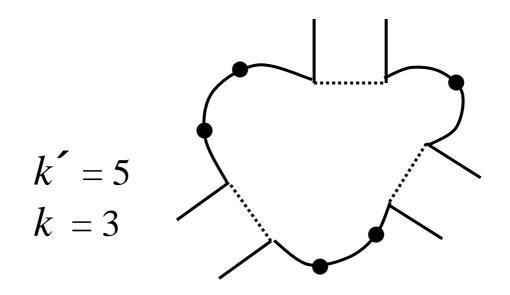
• Approximate energy of a multiple loop:

$$a + b \times k' + c \times k$$

k': Number of bases outside pairs

k: Number of pairs

$$\rightarrow O(n^3)$$



McCaskill's Algorithm

• Rather than calculating energy of each structure,

Calculate energy distribution of all possible structures

- Partition function
- Probability of the formation of specific base pair
- Both can be calculated using dynamic programming

Basic Arrays

```
\bulletW[1,j]
       minimum energy between i and j
• ww[k,j]
       w[k,j] on condition that k forms a pair
       -- reusable, only needed to memorize
       the case of j and j-1
• v[i,j]
        minimum energy between i and j
        when i, j form a pair
```

• Initialize all arrays to INF (infinite)

```
for (j=2; j<=n; j++)
   for (i=j-1; i>=1; i--) {
      ww[i,j] = ww[i,j-1];
      if (i.j is a pair)
        ww[i,j] = min(ww[i,j], v[i,j]);
      for (temp=INF, k=i+1; k < =i; k++)
        temp = min(temp, w[i,k-1]+ww[k,j]);
      w[i,j] = min(temp, ww[i,j]);
```

Arrays for Multiple Loop

- v[i,j]
 minimum energy between i and j
 when i, j form a pair
- vm[i,j]
 minimum energy under assumption
 that the i, j pair belongs to a multiple loop
 -- includes at least one pair
- vvm[k,j]
 vm[k,j] on condition that k forms a pair
 reusable, only needed to memorize
 the case of j and j-1

```
for (j=2; j<=n; j++)
 for (i=i-1; i>=1; i--) {
   if (i.j is a pair) {
     v[i,j] = min(v[i,j], Hairpin energy);
     for (l=i+2; l<j-1; l++)
      for (k=l-1; k>i; k--)
        if (k.l is a pair)
          v[i,j] = min(v[i,j],
                      v[k,l]+ 2-loop energy);
     for (temp=INF, k=i+2; k<=j-1; k++)
      temp = min(temp, vm[i+1,k-1]+vvm[k,j-1]);
     v[i,j] = min(v[i,j], temp+MLclosing+MLintern);
 set vm and vvm;
```

MLclosing

Multiple Loop

• Approximate energy of a multiple loop:

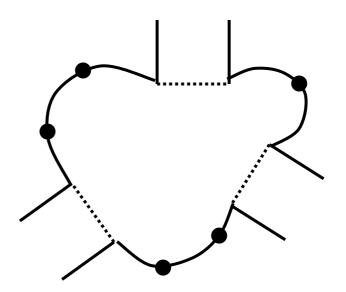
$$a + b \times k' + c \times k$$

k': Number of bases outside pairs k: Number of pairs

MLbase

$$k'=5$$

$$k = 3$$



Setting vm and vvm:

```
vvm[i,j] = vvm[i,j-1]+MLbase;
if (i.j is a pair)
    vvm[i,j] = min(vvm[i,j], v[i,j]+MLintern);
for (temp=INF, k=i+1; k<=j; k++) {
    temp = min(temp, vm[i,k-1]+vvm[k,j]);
    temp = min(temp, MLbase*(k-i)+vvm[k,j]);
}
vm[i,j] = min(temp, vvm[i,j]);</pre>
```

Partition Function

- With state energy G,
 the probability of state occurrence is
 proportional to Boltzmann factor exp(-G/kT)
- Partition function Z is a sum of the Boltzmann factors of all states
- Probability of state occurrence of energy G is given by exp(-G/kT)/Z

Calculation of Partition Function

• Instead of calculating the minimum energy while traversing secondary structures, calculate the sum of the Boltzmann factors while traversing secondary structures

Minimum Energy	Partition Function
G	exp(-G/kT)
initial value INF	initial value 0
min	+
+	*

Basic Arrays

- $\begin{tabular}{ll} \bullet & w[i,j] \\ & partition & function & between i and j \\ \end{tabular}$
- ww[k,j]
 w[k,j] on condition that k forms a pair
 reusable, only needed to memorize
 the cases of j and j-1
- v[i,j]
 partition function between i and j
 when i, j form a pair
- Initialize all arrays to INF (infinite)

```
for (j=2; j<=n; j++)
  for (i=i-1; i>=1; i--) {
     ww[i,j] = ww[i,j-1];
     if (i.j is a pair)
        ww[i,j] = ww[i,j] + v[i,j];
     for (temp=0, k=i+1; k<=j; k++)
        temp = temp+w[i,k-1]*ww[k,j];
     w[i,j] = temp+ww[i,j];
```

Arrays for Multiple Loop

• v[i,j]

partition function between i and j

when i, j form a pair

• vm[i,j]

partition function under the assumption that the i, j pair belongs to a multiple loop -- includes at least one pair

• vvm[k,j]

vm[k,j] on condition that k forms a pair -- reusable, only needed to memorize the cases of j and j-1

```
for (j=2; j<=n; j++)
  for (i=j-1; i>=1; i--) {
     if (i.j is a pair) {
       v[i,j] = v[i,j] + Hairpin partition function;
       for (l=i+2; l<j-1; l++)
         for (k=l-1; k>i; k--)
            if (k.l is a pair)
              v[i,j] = v[i,j] + v[k,l]^* 2-loop partition function;
       for (temp=0, k=i+2; k<=j-1; k++)
          temp = temp+vm[i+1,k-1]*vvm[k,j-1];
       v[i,j] = v[i,j] + temp*expMLclosing*expMLintern;
     set vm and vvm;
```

Setting vm and vvm:

```
vvm[i,j] = vvm[i,j-1]*expMLbase;
if (i.j is a pair)
    vvm[i,j] = vvm[i,j]+v[i,j]*expMLintern;
for (temp=0, k=i+1; k<=j; k++) {
    temp = temp+vm[i,k-1]*vvm[k,j];
    temp = temp+expMLbase^(k-i)*vvm[k,j];
}
vm[i,j] = temp+vvm[i,j];</pre>
```