
Introduction to 
Molecular Computing

Masami Hagiya
Professor, University of Tokyo

Graduate School of Information Science and Technology
Department of Computer Science



What is Molecular Computing?
• Biomolecule = information processing machine

– Autonomous control of chemical reactions 
⇒ Encoded in molecules themselves

• Nanoscale, low energy
• Massive parallelism
• Physical and chemical functions of molecules

• Objectives of molecular computing
– Scientific investigation of computational power of molecules 

and their reactions
– Engineering realization of new computational paradigms based 

on molecular reactions
• References

– M. Hagiya, T. Yokomori: DNA Computer, Baifukan, 2001.
– M. Hagiya: Present and Future of Molecular Computer ---

Progress towards Molecular Programming, Saiensu-sha, 2004.



Objectives of Molecular Computing
• Analysis of computational power of molecular 

reactions and Applications:
– Molecular sensors using molecular computation

⇒ Application to biotechnology
– Programmed self-assembly and molecular machines

⇒ Application to nanotechnology
– Evolutionary computation by molecules

⇒ Application to molecular evolution
• New computational paradigms based on 

molecular reactions



Related Fields
（Biology & Information Technology）

Molecular Biology Bioinformatics

Molecular Computing
Evolutionary Computation

Molecular Evolutionary
Engineering Artificial Life

Raw object

Analysis

Synthesis

Software

Mathematical Biology

Evolution⊂Calculation



Related Fields
(Molecular Sciences）

• Molecular Electronics
– Electronic circuit using molecular devices

(existing computation paradigm)
– Molecular computing as tecnhologoy for 

constructing molecular circuits (nanotechnology)
• Nanotechnology
• Supramolecular chemistry
• Quantum computing
• Optical computing
• Molecular biology, biotechnology
• Molecular evolutionary engineering



Hagiya’s wet laboratory

・ School of Engineering, Bldg.９, Rm.５０１

・ Earthquake-proof reconstruction of Bldg. 9 
completed at the end of March

・ Experiments resumed in April
・ General cleaning of the bldg on April 19











Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membrane computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Analysis of Computational Power of 
Molecular Reactions

• Various computational models
– Inter-molecular reactions vs. intra-molecular reactions
– Liquid-phase vs. solid-phase
– Test tube, membrane, cell
– Heteronomous vs. autonomous

• Analysis of computational power 
(of various computational models) 

– Computability
– Complexity --- time and space
– Errors and yields --- probabilistic analysis
– Analysis more faithful to actual molecular reactions



• Adleman-Lipton
– Random generation of solution candidates by 

hybridization of DNA 
– Extraction of solutions by data-parallel computation
– Suyama --- Dynamic Programming
– Sakamoto-Hagiya --- SAT Engine
– Head-Yamamura --- Aqueous Computing

• Seeman-Winfree
– Self-assembly of various forms of DNA molecules
– Computation with self-assembly

Analysis of Various Computational Models



• Head
– Language generation by gene splicing

• Ogihara-Ray
– Parallel computation of Boolean circuits

• Hagiya-Sakamoto
– State machine (Whiplash)

• Shapiro
– Finite Automaton

→ molecular machines

Analysis of Various Computational Models



Adleman-Lipton Paradigm
• Adleman (Science 1994)

– Solving Hamilton path problem with DNA
• Lipton, et al.

– Solving SAT problem with DNA
• Massive parallelism using molecules

– Combinatorial optimization as a main purpose
– Random generation by DNA self-assembly

• solution candidate ＝ DNA molecule
– Extraction of solution using biological experiment

• Currently recognized as a benchmark for biotechnology
– Vision of the study: application to genomic analysis



Adleman’s First DNA Computer

O0

O6

PCR

PAGE
AF-SEP

O1

O2

O3

O4

O5

HP



start goal

4
1

2

3

5

0 6

ATCGATCG
TAGCATTC

TAAGATA

ATCGATCG

TAGCATTC

TAAGATA
Hybridization

vertex３ vertex４

edge ３ ４

Solution Molecule

Extract ・ Detect

Experiment by Adleman
（Science 1994）



Extraction and Detection of Solutions

vertex 0 vertex 6
PCR

length 140length 20

gel electrophoresis

complementary 
sequence
of vertex 1

magnet

extract sequences
including vertex 2

complementary 
sequence 
of vertex 5

magnet
execute each vertex

extract sequences
including vertex ５

extract solution molecules



変数X１ 変数X２ 変数X３
変数Xｎ

０ ０ ０ ０

１ １ １ １

generation of all solution candidates
generation of all assignments

(Lipton 1995,
satisfiability problem)

Τ2 ＝＋（T１, ｓ） ： extract sequences including s
Τ2 ＝－（T１, ｓ） ： extract sequences without s

Τ3 ＝T１ U T2 ： merge T1 and T2

Τi : multiset of strings （test tube)

(T2, T3) ＝T１ ： copy T1

[Merge]
[Amplify]

[Separate]

inspection and extraction of solutions

detection of 
solutions

[Detect]

Adleman-Lipton Paradigm



Suyama’s DNA Computer
• “Counting” （Ogihara and Ray）

– O(20.4n) molecules for n-variable 3-SAT
• “Dynamic programming” (Suyama)
• Iteration of generation and selection

– Partial generation of solution candidates
– Selection of solution candidates

• Although both are exponential orders,
O(20.4n) is far less than O(2n)

• Solid-phase
– Affinity separation with magnetic beads
– Suitable for automation ⇒ Robot !



Implementation of Basic Operations

annealing
and

ligation s

s

immobilization
and

cold wash
s

s

hot wash

s

Taq DNA ligase

get (T, +s), get (T, -s)

s

s

annealing

immobilization

cold wash

hot wash
s get (T, +s)

get (T, -s)

s

s

amplify (T, T1, T2, …Tn)

PCR

immobilization
and

cold wash

hot wash
and

divide

annealing T

T1, T2, …Tn

append (T, s, e)

e

e



DP Algorithm for 3CNF-SAT
on DNA Computers

end
return
end

end
end

thenif
end

thenif
dotofor

dotofor

begin
function

);(detect

);,merge(

);,,(append);,,(append

);,,(getuvsat

);,,(getuvsat

1
);,,(amplify

3
};,,,{

),,,...,,,(sat3dna

/
1

/
1

1

212121212

111

n

FT
k

F
k

FT
k

F
k

F
w

FT
k

FT
k

T
k

T
w

T

jj
T

w
T

w

kj

jj
F

w
F

w

kj

F
w

T
wk

FFFTTFTT

mmm

T

TTT

XXXTTXXXTT

vuTT

xw

vuTT

xw
mj

TTT
nk

XXXXXXXXT

wvuwvu

=

==

=

¬=

=

=
=

=
=

−−

−

end
return

begin
function

;

);,(merge

);,(get

/*/*);,'(get

);,(get');,(get

),,(getuvsat

T

T
v

T
u

T

T
v

F
u

T
v

F
u

F
u

F
u

T
u

F
u

T
u

T
u

T

TTT

XTT

omittedbecanXTT

XTTXTT

vuT

=

+=

+=

−=+=

merge)get3(

merge)
append2(amplify)2(

operationsofNumber

+××
+

+
×+×−

m

n



3CNF-SAT Solution on DP DNA Computer

}{
YES

)()(
)()(
)()(

)()(
)()(

clauses10variables,4

4321

432432

432431

421431

321321

321321

FFTT XXXX

xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx

:Solution

:Problem

∨¬∨¬∧∨¬∨
∧∨∨∧¬∨∨¬
∧¬∨∨¬∧¬∨¬∨

∧¬∨¬∨¬∧¬∨∨¬
∧∨¬∨∧∨∨



)( 321 xxx ∨¬∨

X1
T X2

T
k = 3
x3

X1
F X2

T

X1
T X2

F

X1
F X2

F

X1
T X2

F X3
F

X1
T X2

T X3
F

)( 321 xxx ∨∨

k’s loop: k ranges over variable indices
j’s loop: j ranges over clause indices

if xk is the 3rd literal of the j-th clause then
remove those assignments which satisfy
neither the 1st nor the 2nd literal

append Xk
F  to the remaining assignments

(do similarly  if ¬xk is the 3rd literal)

DP Algorithm for 3CNF-SAT on DNA Computer



)( 321 xxx ∨∨

X1
T X2

T
k = 3
¬x3

X1
F X2

T

X1
T X2

F

X1
F X2

F X1
FX2

F X3
T

X1
F X2

T X3
T

)( 321 xxx ¬∨¬∨¬

k’s loop: k ranges over variable indices
j’s loop: j ranges over clause indices

if xk is the 3rd literal of the j-th clause then
remove those assignments which satisfy

neither the 1st nor the 2nd literal
append Xk

F  to the remaining assignments
(do similarly  if ¬xk is the 3rd literal)

DP Algorithm for 3CNF-SAT on DNA Computer



)( 432 xxx ∨¬∨¬

k’s loop: k ranges over variable indices
j’s loop: j ranges over clause indices

if xk is the 3rd literal of the j-th clause then
remove those assignments which satisfy
neither the 1st nor the 2nd literal

append Xk
F  to the remaining assignments

(do similarly  if ¬xk is the 3rd literal)

X1
F X2

T X3
T

k = 4
x4

)( 432 xxx ∨¬∨

)( 432 xxx ∨∨

X1
F X2

F X3
T

X1
T X2

T X3
F

X1
T X2

F X3
F

X1
T X2

T X3
F X4

F

DP Algorithm for 3CNF-SAT on DNA Computer



)(
)()()(

)()()(
)()()(

)()()(
)()()(
)()()(

)()()(
)()()(

)()()(
)()()(
)()()(

)()()(
)()()(

)()()(

1081

108210311054

106510431072

10631084951

942971932

931964971

974942853

841852861

832851841

764761721

765751751

762651632

632642531

532532541

432431321

xxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx

xxxxxxxxx

¬∨∨¬∧
¬∨∨∧¬∨¬∨¬∧¬∨∨∧

¬∨¬∨¬∧¬∨¬∨∧∨¬∨¬∧
∨¬∨∧∨∨¬∧¬∨∨¬∧

¬∨∨¬∧¬∨¬∨∧¬∨∨¬∧
¬∨∨¬∧¬∨∨¬∧∨∨∧
∨∨∧∨∨¬∧¬∨¬∨¬∧

¬∨∨∧¬∨∨∧∨∨∧
∨¬∨∧∨∨¬∧∨∨∧

¬∨∨¬∧¬∨∨∧¬∨¬∨∧
¬∨¬∨∧¬∨¬∨¬∧∨∨∧
∨¬∨∧¬∨¬∨¬∧∨¬∨∧

∨∨¬∧∨¬∨¬∧¬∨¬∨¬∧
¬∨¬∨¬∧¬∨∨∧∨∨∧

¬∨¬∨∧∨∨∧¬∨∨¬

10-variable and 43-clause instance of 3SAT



DNA Computer Robot based on 
MAGTRATIONTM (Prototype No.1)



[Instrument]
[Reset Counter] 0
[Home Position] 0
[MJ-Open Lid]
･･･
[Get1(0)]
[Get2(1)]
[Append(2)]
･･･
[Exit]

protocol-level

(1-1-4) [MJ-Open Lid]
Do 2

_SEND "LID OPEN"
Do 10
_SEND "LID?"
Wait_msec 500
_CMP_GSTR "OPEN"
IF_Goto  EQ  0 ;open
Wait_msec  1000

Loop
Loop
; Time out
End
;open

script-level

end
return
end

end
end

thenif
end

thenif
dotofor

dotofor

begin
function

);(detect

);,merge(

);,,(append

);,,(append

);,,(getuvsat

);,,(getuvsat

1
);,,(amplify

3
};,,,{

),,,...,,,(sat3dna

/
1

/
1

1

212121212

111

n

FT
k

F
k

FT
k

F
k

F
w

F

T
k

FT
k

T
k

T
w

T

jj
T

w
T

w

kj

jj
F

w
F

w

kj

F
w

T
wk

FFFTTFTT

mmm

T

TTT

XXXTT

XXXTT

vuTT

xw

vuTT

xw
mj

TTT
nk

XXXXXXXXT

wvuwvu

=

=

=

=

¬=

=

=
=

=
=

−

−

−

Pascal/C-level

Programming DNA Computer



Hairpin Engine （SAT Engine）

• Sakamoto et al., Science, May 19, 2000.
• Selection by DNA hairpin structures

– Digestion by restriction enzyme
– Exclusive PCR

• 3-SAT
– Single-stranded DNA comprised of literals each selected from a clause
– Complementary literal ＝ complementary sequence
– Detection of inconsistency ⇒ hairpin
– 6-variable 10-clause 3-SAT problem

• The essential part of SAT computation = hairpin formation
– Number of steps is independent of the number of clauses/variables
– Autonomous molecular computation



b ￢be

(a∨b∨c)∧(￢d∨e∨￢f)∧ … ∧(￢c∨￢b∨a)∧ ...

b ￢b
digestion by restriction enzyme
exclusive PCR





Selection by Hairpin Structures
• Restriction enzyme digestion

– Hairpins are cut at the restriction site inserted in 
each literal sequence

• Exclusive PCR
– PCR is inefficient for hairpins
– In exclusive PCR, solution is diluted in each cycle 

to keep the difference in amplification
• Number of steps is independent of the number of 

variables/clauses



Current Consensus on 
Adleman-Lipton Paradigm

• Far from outperforming electronic computers
- Scale-up problem

• Important as a first proof that;
- Molecules can really compute

• At least serves as a benchmark for biotechnology
• Application to genomic analysis (Suyama)



Various DNA Molecular Structures

Linear

....

....

....
....

DX (Double Crossover)

Hairpin

....

........

....

33--JunctionJunction

...

......

...

Seeman-Winfree’s
Computation by DNA Self-Assembly





Sierpinski’s Triangle

Winfree’s Tiling



Splicing OperationSplicing Operation

y=y=
AA G  AA G  AATT  C TTAATT  C TT

TT C  TTAA  TT C  TTAA  G AAG AA

AAT
T  

CTT

AAT
T  

CTT

GAAGAA AATT CGG
AATT CGG

GCCGCC

w=w=
AAG  AAG  AATT CGGAATT CGG

TTC  TTAA TTC  TTAA GCCGCC

GGG
  GGG
  

CCC
 TT

AA
CCC

 TT
AA

CC C  TTAA  CC C  TTAA  G CCG CCx=x=
GG G  GG G  AATT  C GGAATT  C GG

EcoRI

AAG  
AAG  
TTC TTAA
TTC TTAA

z=z= GGGGGG AATT CTTAATT CTT

CCC  TTAA CCC  TTAA GAAGAA

Head’s Computation by Gene Splicing
• Theoretical model of gene splicing with restriction 
enzyme and ligase （Splicing Model）



Language Generation by Splicing

• Splicing rule： r = u1$u2#u3$u4

• (x1u1u2x2, y1u3u4y2) |−r (x1u1u4y2, y1u3u2x2)
• R： Set of splicing rules
• A： Set of strings (axiom)
• L： Language generated from R & A

– If x∈A  Then x∈L
– If x, y∈L and r∈R and (x, y) |−r (z,w) 

Then z, w∈L
• If R and A are finite, then L is regular



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Computability in Molecular Computing

• Computability of DNA self-assembly
– Winfree’s results

• Computability of gene splicing
– Various extensions of splicing model



Winfree’s Results on 
Computability of DNA Self-Assembly

• Language generated by linear molecules
＝ regular

• Language generated by 

linear + hairpin + 3-junction molecules

＝ context-free
• Language generated by linear + DX molecules

＝ recursively enumerable
＝ Turing computable



Imitation of 1Imitation of 1--dimensional Cellular Automatondimensional Cellular Automaton

Winfree’s Model: 
Example of Computation Process

c = f(a,b)c = f(a,b)
d = g(a,b)d = g(a,b)

Initial  ConfigurationInitial  Configuration

aa bb aa bb bbaa

ccdd

aa bb



Extentions of Splicing Model

＜ Regular language
Generative ability
of splicing model

（splicing）＋α? = Universal computational power

+ α ： circular molecules
multiple test tubes
time-dependent rules  etc.



Circular Splicing System
+α:

Allows to use circular strings （circular ＤＮＡ）

Allows to distinguish between terminal and non-terminal symbols

x 1 u 1 u 2 x 2

u 3 u 4

y

x 2

y

u 3

u 2

u 4u 1x 1

（ e.g.  splicing of colon bacillus chromosome and F plasmid）

Splicing Rule:  u1$u2#u3$u4



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Complexity of Molecular Computation
• Time

– Number of experiment steps 
– Time required for each operation

• Essential for the analysis of computational power of molecules

• Space (＝ degree of parallelism)
– Number of molecules

• Maximum
• Total

– Size of molecules (length)

• Trade-off analysis -- important



Complexity Analysis (Adleman-Lipton)

• Reif (SPAA’95)
– A nondeterministic Turing machine computation with input 

size n, space s and time 2O(s) can be executed in our PAM 
Model using O(s) PA-Match steps and O(s log s) other PAM 
steps, employing aggregates of length O(s).

• Beaver (DNA1, 1995)
– Polynomial-step molecular computers compute PSPACE.

• Rooß and Wagner (I&C, 1996)
– Exactly the problems in PNP=ΔP

2 can be solved in polynomial 
time using Lipton’s model.



Rooß and Wagner (I&C, 1996)

• Exactly the problems in PNP=ΔP
2 can be solved in 

polynomial time using Lipton’s model.
• BIO({UN,BX,IN},{EM})-P = PNP= ΔP

2

– UN: union (merge) Τ3 ＝T１ U T2

– BX: bit extraction (separate)

Τ2 ＝＋（T１, ｓ） Τ2 ＝－（T１, ｓ）

– IN: initialization (random generation)
– EM: emptiness test (detect)
– -P: polynomial time
– PNP: polynomial time with NP-oracle



Complexity Analysis

• Rothemund and Winfree (STOC 2000)
– For any f (N) non-decreasing unbounded computable 

functions, the number of tiles required for the self-
assembly of an N×N square is bounded infinitely often 
by f (N).

• Winfree, Eng and Rozenberg (DNA6, 2000)
– Linear assembly of string tiles can generate the output 

languages of finite-visit Turing Machines.



Errors and Yields of Reactions
• Yields

– Equilibrium --- equilibrium constant (K)
– Time to reach equilibrium --- reaction rate (k)
– Example: A ↔ Β

[B]  =  (K/(1+K))(1−e−(k+k
−1

) t )
K =  k/k−1

• Errors
– Example: mis-hybridization
– Error probability is never 0

• Probabilistic analysis



Probabilistic Analysis
• Karp, Keynon and Waarts (SODA’96)

– The number of extract operations required for achieving
error-resilient bit evaluation is Θ(⎡logε δ⎤×⎡logγ δ⎤).

• Kurtz (DNA2, 1996)
– Thermodynamical analysis of path formation in Adleman’s 

experiment
– Time needed to form a Hamiltonian path --- Ω(n 2)

• Winfree (1998, Ph.D. Thesis)
– Thermodynamical analysis of DNA Tiling

• Rose, et al. (GECCO’99, etc.)
– Computational incoherency

(Thermodynamical analysis of mis-hybridization)



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Computational Aspects of 
Molecular Systems Design

• Molecular programming
• Design of molecules

– Design of DNA ＝ sequence design
– Structure ⇒ sequence (inverse folding)
– Patterns for self-assembly
– Design of molecular machines

• Design of reactions
– Adjustment of reaction conditions
– Scheduling of experimental operations
– Simulation tool

• Molecular machines
– One of the current objectives of molecular programming



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Sequence Design
• Evaluation of sequence set

– Avoiding mis-hybridization
• Hamming distance
• Energy calculation ⇒ mfold (Zuker), Vienna Package

– Uniform Tm (melting temperature)
• Searching for sequence set

– Genetic algorithm
– Coding theory --- Arita’s template method

• Inverse problem
– Structure ⇒ sequence (inverse folding)
– Vienna group



Template Method

• Arita and Kobayashi, 2002
Same positioning of [AT] or [GC] in every sequence

(= “template”)
e.g. from 011010

ACCTGA, TGCTCA, TCGACA, etc.

→ Melting temperature of every sequence
will be the same



Stacking Energy 

2

1

-ΔG kcal/mol (DNA/DNA) by Sugimoto et al.

AA  AT  TA  CA  CT  GA  GT  CG  GC  GG
TT  TA  AT  GT  GA  CT  CA  GC  CG  CC



Template Including Mismatches

• Proper selection of template ensures 
mismatch(es) even with shift / reverse

e.g. when １１０１００

１１０１００

１１０１００ １１０１００ １１０１００

１１０１００ １１０１００

１１０１００

Includes at least 2 mismatches 
even with any shifting or concatenatoin



Template Selection
• Selecting template T which will include

minimum of (d ) mismatches in each of the 
following patterns

– TR

– TTR , TRT
– TT , TRTR

TR: reversed sequence of T
When T=110100, TR=001011



Examples of Templates
• Length 6 (2 mismatches)

110100 （of 26）

• Length 11 (4 mismatches)
01110100100, 01011100010, 11000100101
（of 211）

• Length 23 (9 mismatches）
01111010110011001010000, 
10110011001010000011110, 
11100000101001100110101 （of 223）



Design of DNA Sequence

“Template + Error Correcting Code”

Any Error Correcting Code can be used
1. BCH Code
2. Golay Code
3. Hamming Code  etc.

A T C A G G (DNA sequence)

1 1 0 1 0 0 (template)
+ 0 1 0 0 1 1 (any code)



Inverse Folding
• Vienna group
• Using McCaskill’s algorithm
• Sequence search by minimization of cost function

– Ω ： Target structure
– x： Sequence
– E(x,Ω)： Free energy of Ω at x
– G(x)： ensemble free energy of sequence x

（McCaskill）
– p： Probability of Ω at x



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Design of Molecular Reactions

• Condition of reactions
– Temperature
– Salt concentration
– Time

• Operation scheduling
• Simulation

– e-PCR
• http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi

– VNA

http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi


VNA: Simulator for Virtual DNA
• Abstract, but sufficiently physical

Bridging the gap between abstract models and actual 
reactions
molecule ― hybrid of virtual strands

abcd
||
CDEF

• Reactions
– hybridization
– denaturation
– restriction
– ligation
– self-hybridization
– extension



VNA (cont)
• Objectives

– Verifying feasibility of algorithms for DNA computation
– Verifying validity of molecular biology experiments

(e.g., PCR experiments)
– Parameter fitting in molecular biology experiments

• Examples
– Ogihara and Ray’s computation of Boolean circuits
– Winfree’s construction of double-crossover units
– PCR experiments

• Implementation
– Java ⇒ executable as an applet



VNA (cont)
• Methods

– Combinatorial enumeration
– Continuous simulation (diff. eq.)

• Avoiding combinational explosion
• Contributions in simulation technology

– Threshold
– Stochastic

• Parameter fitting by GA
– Optimizing amplification in PCR experiments

unify





Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Information Processing of Gene Expression Analysis 
Using DNA Computation

DNA computer

Information processing 
inside the test tube

in vitro

ATATCCCCGGGGGGGG

CCCCTTTT

Direct input:

G
ene Expression

• Direct input of DNA molecule
• Massive parallelism

Output:

Output on 
DNA chipsDNA encoding

(Encode)



Intelligent DNA Chip

Dcn3markerstopperDcn1marker

Dcn3markerstopper￢Dcn2Dcn1marker

￢Dcn3Dcn2markerstopper￢Dcn1marker

label

 marker
label label

 marker

 marker

“(Dcn1∧￢Dcn2)∨Dcn3”

“Dcn1∨Dcn3”

“￢Dcn1∨ (Dcn2 ∧ ￢Dcn3)”



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



ＤＮＡ Nanotechnology
ＤＮＡ Self-Assembly

• ＤＮＡ lattice
• DNA as a connector of molecules 

– Self-assembly of nanoparticles using DNA
– Self-assembly of nanowires using DNA

• ＤＮＡ tile
– Structure formation by DNA itself

• Programmed self-assembly



• C. A. Mirkin et al.
DNA-based method for rationally 
assembling nanoparticles into macroscopic 
materials. Nature 382, 607-609 (1996)

• A. P. Alivisatos et al.
Organization of ‘nanocrystal molecules’
using DNA. Nature 382, 609-611 (1996)

DNA-Based Self-Assembly of Nanoparticles 
Early Studies



Winfree-Seeman’s DNA Tiles
（double crossover molecules)



Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



Molecular Machines
• Machines as Actuators

– Motor
– Transporter

• Abstract Machines --- Finite State Machines (Automaton)
– Have a finite number of states
– Change their state autonomously or according to inputs
– May produce outputs
– Are the first step towards general-purpose computers
– Have many kinds of applications

• Switch
• Memory (both holding contents and addressing)

• The difference between the two is still unclear



Molecular System Consisting of Finite State Machines

Molecular System

Output：
movement
transformation
structural formation
light
electricity
heat

Information Processing Computation

molecule
temperature
light
salt concentration
voltage

Input：



Molecular (DNA) State Machines

• Terminal-sequence machines
– The terminal sequence encodes the state
– Our whiplash machine

• Gets longer as it changes the state
– Shapiro’s automaton

• Gets shorter as it changes the state

• Conformational machines
– The state is encoded as a structure
– Yurk’s molecular tweezers
– Seeman’s PX-JX2 Switch
– Our hairpin-based machine…



B A
C

B

: stopper sequence

1)
B

B A
C

B

A2) B

A

Whiplash PCR (WPCR)

Komiya et al.



Whiplash PCR (WPCR)

B A C B

3)

B A

C

B A C B

4)
B

A



Polymerization Stop



B A C B

B A

Back-hybridization

B A C B

B

A

B A C

B
B A

Competing Alternative Hairpin Forms



・8 M urea 8% PAGE

Temperature optimization for WPCR

incubated 62.2          69.9         78.0 86.1          92.2 (℃)
not 59.8          65.9         74.0          82.1         89.8

Thermal schedule
94℃ for 1 min.

↓
x ℃ for 5 min.

x =59.8 ~ 92.2

Komiya, et al.

in  1X Pfx buffer 
(the composition unknown)
1 mM  MgSO4

0.2 mM  dATP, dCTP, dGTP
1.5 units  Platinum Pfx DNA polymerase



・12％ PAGE

65

80
95

110
125
140

50

155

( bp )

Successful implementation of transitions

Komiya, et al.



Shapiro’s DNA Automata
IIS-type restriction
Restriction cite Spacer

<S,a>
<S,a>

a’ Rest of input

Rest of input

a’ Rest of input

<S’,a’>

S,a → S’
Transition molecule

The input sequence encoding the symbol a’ contains <S’,a’> for each S’.
The transition molecule cuts the input at the site regulated by the spacer.



Shapiro’s DNA Automata
• Nature 2001
• 2 input symbols, 2 states
• FokI

a=CTGGCT b=CGCAGC

5’-p…22…GGATGTAC
3’-GGT…22…CCTACATGCCGAp

5’-p…22…GGATGACGAC
3’-GGT…22…CCTACTGCTGCCGAp

S0,a→S0

S0,a→S1



Yurke’s Molecular Tweezers





Introduction to Molecular Computing
Table of Contents:

• Analysis of computational power of molecular reactions
– Computational models ・ Computability ・ Complexity

• Computational aspects of molecular systems design
– Design of molecules ・ Design of molecular reactions

• Application of computational power of molecular reactions
– Intelligent molecular sensing
– Self-assembly
– Molecular machines

• New computational paradigms based on molecular reactions
– Membranous computing ・ Amorphous computing
– Association with optical and quantum
– Association with molecular electronics



New Computational Paradigms
• Membrane Computing

– Paun
• Amorphous Computing

– MIT Group 
• Abelson & Sussman
• Knight

• And others…
– Smart Dust
– Programmable Matter
– Quantum-Dot Cell Automaton
– …



Cell Membrane Model
• G. Paun (1998)
• Control of computation process using membrane
• Supercell system ＝ universal computation model

G=(V,μ, M  ,..., M  ,
(R  ,ρ ),...,(R  ,ρ ),4)

(e.g.）

alphabetV={a,b,b',c,f}

1

1

44

4

1

μ=[ [ [  ] [ ] ] ]1 1 22 3 3 44
membrane structure

M i

(R , ρ )i i

multiset of elements within membrane “i”
ordered set of rules within membrane “i”



Computation of “n  ” using cell membrane model2

a, fa, f

a a -->b'>b'
a a -->b>bδδ
f f -->ff>ff

11

22

33

44

b b -->b'>b'
b b -->b(c, in  )>b(c, in  )
(f(f-->ff)>(f >ff)>(f -->a>aδδ))

44

b'b'

f f 

11

22

44

b b -->b'>b'
b b -->b(c, in  )>b(c, in  )
(f(f-->ff)>(f >ff)>(f -->a>aδδ))

44

n+1n+1

n+1n+1
22

bb

f f 

11

22

44

b b -->b'>b'
b b -->b(c, in  )>b(c, in  )
(f(f-->ff)>(f >ff)>(f -->a>aδδ))

44

n+1n+1

22

aa 22

n+1n+1
cc

bb

aa

11

44n+1n+1

n+1n+1
22 (n+1)(n+1)

cc
22

nn



Amorphous Computing
• New computation paradigm for self-assembly

– Microfabrication and cytoengineering
– Various processors at low cast 

• Computational particle
– Small computational power 

and small memory
– Random distribution, mobility
– Asynchronous, local interaction
– Wrong behavior, 

environmental influence
– Identical program
– No knowledge of their location 

nor orientation
– Short distance (radius: r) communication with the neighboring 

particles
• Massive parallel computation system as a whole
• Simulation of the self-assembly of a circuit



What is Amorphous Computing?
• Background

– Microfabrication and cytoengineering
– Developing various processors at low cost

(Not necessary to work precisely）

– Study as a new computational paradigm
• Developing the model as an aggregate of 

“computational particles” that are randomly 
distributed and interact locally and asynchoronously

• How can it be programmed effectively?
– Relation to the formation of biological structure?
– Is it possible to use biology for implementation, not just as 

a metaphor?



Characteristics of Computational Particles

• Have possibility of failure
• Will be influenced by the environment
• May make some movements
• May move around
• Have small computational power and small memory
• All particles are programmed identically

（Capable of staying locally and generating random 
numbers）

• Have no knowledge about their location and orientation
• Make short distance (radius: r) communication with 

neighboring particles
• Massive parallel computational system as a whole



Pattern Formation Using Wave 
Propagation

• Start with first “anchor” particle, and convey the 
message （with information of the hop）

• Related to biological pattern formation
• “Impediment to growth” and “tropism” can be 

programmed using 2 anchor particles
• Program with Coore’s growing-point language(GPL), 

and compile to set into a particle



Quantum Dot Computer
• Bluffing?

• Different from quantum computers

• Quantum dot cell automaton (QCA)
– Line up 4 quantum dots like dominoes

– Electrons move inside dominoes (cells) by tunnel effect

– The condition transmits by interaction of dominoes

• No need for wiring?

• Still, quantum dots must be arranged properly



Homework

① Explain methods of; 
- DNA/RNA secondary structure prediction 
- Minimum energy and partition function
calculation using dynamic programming

- Sequence design using secondary structure
（use references）

② Explain DNA self-assembly and possibility of
realization and applications of molecular machines



BASICS



DNA
• Sugar

– Deoxyribose

• Phosphate
• Bases

– Purine Bases --- 2 rings (hexagon and pentagon)
• Adenine (A)
• Guaninen (G)

– Pyrimidine Bases --- 1 ring (hexagon)
• Thymine (T)
• Cytosine (C)



Experimental Operations

• PCR（Polymerase Chain Reaction）

• Gel electrophoresis
• Affinity separation
• Restriction enzyme digestion
• Coupling with ligase
• Cloning and sequencing



Denature
Primer

Primer

Priming

Elongation

PCR (Polymerase Chain Reaction)

3’
3’



negative pole positive pole

long molecule short molecule

top bottom

polyacrylamide gel electrophoresis

Gel Electrophoresis



Dissociation of Single-Stranded DNA

biotin

annealing

extract

complementary

magnet

probe avidin bead

target molecule



Secondary Structure of DNA（RNA） and 
Its Prediction



Secondary Structure of DNA（RNA)
• A set of base pair i.j
• k-loop --- a loop closed by k base pairs

– 1- loop
• Hairpin

– 2- loop
• Stack
• Bulge
• Interior

– Multiple loop
• Energy is assigned to each loop



Hairpin Stack Bulge Interior

3-loop

Assign energay to each of these structures
（nearest neighbor model）



Dynamic Programming
• W(i, j) : Minimum energy between i-th and j-th bases
• V(i, j)  : Minimum energy when i, j  form a pair

• W(i, j) = min(W(i+1, j), W(i, j−1), V(i, j),
min(W(i, k)+W(k+1, j))
i≤k<j

• V(i, j) = min(eh(i, j), es(i, j)+V(i+1, j−1),
VBI(i, j), VM(i, j))

– eh(i, j) : Hairpin energy
– es(i, j) : Stack energy



Dynamic Programming

• VBI(i, j) = min(ebi(i, j, i′, j′)+V(i′, j′))
i<i′<j′<j

i′−i+j−j′>2

– ebi(i, j, i′, j′) :  Interior loop energy
→ O(n4)

• VM(i, j) = min(W(i+1, k)+W(k+1, j−1))
i<k<j−1

– When multiple loop energy is 0



Interior Loop
• If interior loop energy ebi(i, j, i′, j′) is proportional to

the length of the loop, (i′−i+j−j′)×c 

• VBI(i, j) = min(VBI(i, j, l))
l

• VBI(i, j, l) = min(VBI(i+1, j, l−1) + c,
VBI(i, j−1, l−1) + c,
c×l + V(i+1, j−l+1),
c×l + V(i+l−1, j−1))

→ O(n3) 



Multiple Loop
• Approximate energy of a multiple loop：

a + b×k´ + c×k
k´： Number of bases outside pairs
k  ： Number of pairs

→ O(n3)

k´ = 5
k = 3



McCaskill’s Algorithm

• Rather than calculating energy of each 
structure,
Calculate energy distribution of all possible 
structures
– Partition function
– Probability of the formation of specific base pair

• Both can be calculated using dynamic 
programming



Basic Arrays

•w[i,j]
minimum energy between i and j

• ww[k,j]
w[k,j] on condition that k forms a pair 
-- reusable, only needed to memorize 
the case of j and j-1

• v[i,j]
minimum energy between i and j
when i, j form a pair

• Initialize all arrays to INF (infinite)



for (j=2; j<=n; j++) 
for (i=j-1; i>=1; i--) {

ww[i,j] = ww[i,j-1];
if (i.j is a pair)

ww[i,j] = min(ww[i,j], v[i,j]);
for (temp=INF, k=i+1; k<=j; k++)

temp = min(temp, w[i,k-1]+ww[k,j]);
w[i,j] = min(temp, ww[i,j]);

}



• v[i,j]
minimum energy between i and j
when i, j form a pair

• vm[i,j]
minimum energy under assumption 
that the i, j pair belongs to a multiple loop
-- includes at least one pair

• vvm[k,j]
vm[k,j] on condition that k forms a pair 
-- reusable, only needed to memorize 
the case of j and j-1

Arrays for Multiple Loop



for (j=2; j<=n; j++)
for (i=j-1; i>=1; i--) {

if (i.j is a pair) {
v[i,j] = min(v[i,j], Hairpin energy);
for (l=i+2; l<j-1; l++)

for (k=l-1; k>i; k--)
if (k.l is a pair)

v[i,j] = min(v[i,j], 
v[k,l]+ 2-loop energy);

for (temp=INF, k=i+2; k<=j-1; k++)
temp = min(temp, vm[i+1,k-1]+vvm[k,j-1]);

v[i,j] = min(v[i,j], temp+MLclosing+MLintern);
}
set vm and vvm;

}



Multiple Loop

• Approximate energy of a multiple loop：

a + b×k´ + c×k
k´： Number of bases outside pairs
k  : Number of pairs

→ O(n3)

k´ = 5
k = 3

MLclosing

MLbase

MLintern



Setting vm and vvm：

vvm[i,j] = vvm[i,j-1]+MLbase;
if (i.j is a pair)

vvm[i,j] = min(vvm[i,j], v[i,j]+MLintern);
for (temp=INF, k=i+1; k<=j; k++) {

temp = min(temp, vm[i,k-1]+vvm[k,j]);
temp = min(temp, MLbase*(k-i)+vvm[k,j]);

}
vm[i,j] = min(temp, vvm[i,j]);



Partition Function

• With state energy G, 
the probability of state occurrence is
proportional to Boltzmann factor exp(-G/kT) 

• Partition function Z is a sum of 
the Boltzmann factors of all states

• Probability of state occurrence of energy G is
given by exp(-G/kT)/Z



Calculation of Partition Function

• Instead of calculating the minimum energy 
while traversing secondary structures,
calculate the sum of the Boltzmann factors
while traversing secondary structures

Minimum Energy Partition Function 

G exp(-G/kT) 

initial value INF initial value 0 

min + 

+ * 
 

 



Basic Arrays
• w[i,j]

partition function between i and j
• ww[k,j]

w[k,j] on condition that k forms a pair 
-- reusable, only needed to memorize 
the cases of j and j-1

• v[i,j]
partition function between i and j
when i, j form a pair

• Initialize all arrays to INF（infinite）



for (j=2; j<=n; j++)
for (i=j-1; i>=1; i--) {

ww[i,j] = ww[i,j-1];
if (i.j is a pair)

ww[i,j] = ww[i,j]+v[i,j];
for (temp=0, k=i+1; k<=j; k++)

temp = temp+w[i,k-1]*ww[k,j];
w[i,j] = temp+ww[i,j];

}



Arrays for Multiple Loop
• v[i,j]

partition function between i and j
when i, j form a pair

• vm[i,j]
partition function under the assumption 

that the i, j pair belongs to a multiple loop
-- includes at least one pair

• vvm[k,j]
vm[k,j] on condition that k forms a pair 
-- reusable, only needed to memorize 
the cases of j and j-1



for (j=2; j<=n; j++)
for (i=j-1; i>=1; i--) {

if (i.j is a pair) {
v[i,j] = v[i,j]+ Hairpin partition function;
for (l=i+2; l<j-1; l++)

for (k=l-1; k>i; k--)
if (k.l is a pair)

v[i,j] = v[i,j]+v[k,l]* 2-loop partition function;
for (temp=0, k=i+2; k<=j-1; k++)

temp = temp+vm[i+1,k-1]*vvm[k,j-1];
v[i,j] = v[i,j]+temp*expMLclosing*expMLintern;

}
set vm and vvm;

}



Setting vm and vvm:

vvm[i,j] = vvm[i,j-1]*expMLbase;
if (i.j is a pair)

vvm[i,j] = vvm[i,j]+v[i,j]*expMLintern;
for (temp=0, k=i+1; k<=j; k++) {

temp = temp+vm[i,k-1]*vvm[k,j];
temp = temp+expMLbase^(k-i)*vvm[k,j];

}
vm[i,j] = temp+vvm[i,j];


	Introduction to �Molecular Computing
	What is Molecular Computing?
	Objectives of Molecular Computing
	Related Fields�（Biology & Information Technology）
	Related Fields�(Molecular Sciences）
	Hagiya’s wet laboratory
	Introduction to Molecular Computing
	Introduction to Molecular Computing
	Analysis of Computational Power of �Molecular Reactions
	Analysis of Various Computational Models
	Analysis of Various Computational Models
	Adleman-Lipton Paradigm
	Extraction and Detection of Solutions
	Suyama’s DNA Computer
	Implementation of Basic Operations
	DP Algorithm for 3CNF-SAT�on DNA Computers
	3CNF-SAT Solution on DP DNA Computer
	Hairpin Engine （SAT Engine）
	Selection by Hairpin Structures
	Current Consensus on �Adleman-Lipton Paradigm
	Seeman-Winfree’s�Computation by DNA Self-Assembly
	Language Generation by Splicing
	Introduction to Molecular Computing
	Computability in Molecular Computing
	Winfree’s Results on �Computability of DNA Self-Assembly
	Extentions of Splicing Model
	Circular Splicing System
	Introduction to Molecular Computing
	Complexity of Molecular Computation
	Complexity Analysis (Adleman-Lipton)
	Rooß and Wagner (I&C, 1996)
	Complexity Analysis
	Errors and Yields of Reactions
	Probabilistic Analysis
	Introduction to Molecular Computing
	Computational Aspects of �Molecular Systems Design
	Introduction to Molecular Computing
	Sequence Design
	Template Method�
	Stacking Energy 
	Template Including Mismatches
	Template Selection
	Examples of Templates
	Design of DNA Sequence
	Inverse Folding
	Introduction to Molecular Computing
	Design of Molecular Reactions
	VNA: Simulator for Virtual DNA
	VNA (cont)
	VNA (cont)
	Introduction to Molecular Computing
	Information Processing of Gene Expression Analysis Using DNA Computation
	Intelligent DNA Chip
	Introduction to Molecular Computing
	ＤＮＡ Nanotechnology�ＤＮＡ Self-Assembly
	DNA-Based Self-Assembly of Nanoparticles �Early Studies
	Introduction to Molecular Computing
	Molecular Machines
	Molecular (DNA) State Machines
	Shapiro’s DNA Automata
	Shapiro’s DNA Automata
	Introduction to Molecular Computing
	New Computational Paradigms
	Cell Membrane Model
	Amorphous Computing
	What is Amorphous Computing?
	Characteristics of Computational Particles
	Pattern Formation Using Wave Propagation
	Quantum Dot Computer
	BASICS
	DNA
	Experimental Operations
	Secondary Structure of DNA（RNA） and Its Prediction
	Secondary Structure of DNA（RNA)
	Dynamic Programming
	Dynamic Programming
	Interior Loop
	Multiple Loop
	McCaskill’s Algorithm
	Arrays for Multiple Loop
	Multiple Loop
	Partition Function
	Calculation of Partition Function
	Basic Arrays
	Arrays for Multiple Loop

