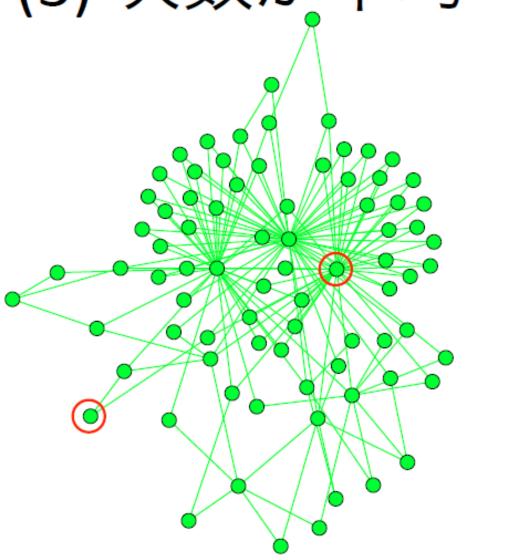
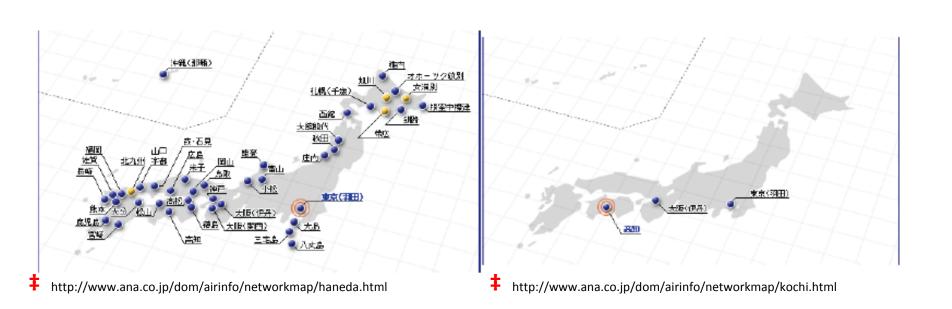
ネットワークの数理: つながりを解く

(2)不平等性の数理

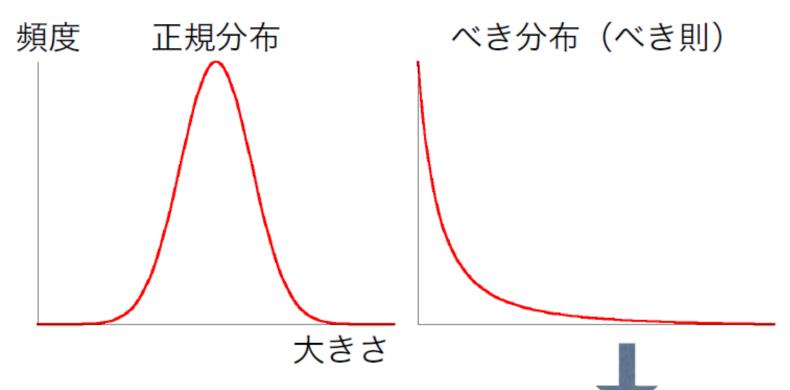

增田直紀 工学部 計数工学科

http://www.stat.t.u-tokyo.ac.jp/~masuda

‡:このマークが付してある著作物は、第三者が有する著作物ですので、同著作物の再使用、同著作物の二次的著作物の創作等については、著作権者より直接使用許諾を得る必要があります。


しかし

(3) 次数が不均一



航空網のハブ

羽田空港はハブ空港 たいていの空港は小さい

どっちが現実?

答:両方

しかし,あまり注目されて いなかった!

べき則とは?

正規分布

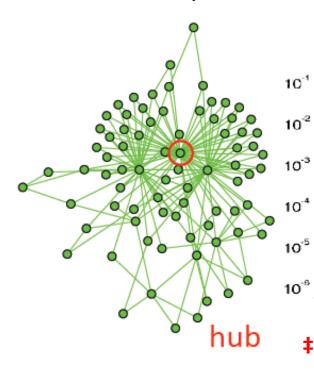
$$p(k) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(k - \langle k \rangle)^2}{2\sigma^2}\right)$$

<k>: 平均

σ:標準偏差

べき分布

$$p(k) = ck^{-\gamma}$$


$$\updownarrow$$

γ:べき指数

c:定数(重要でない)

$$\log p(k) = \log c - \gamma \log k$$
 → 両対数グラフ で直線に乗る

世の中の多くのネットワークは、 "スケールフリー・ネットワーク"

役者の共演関係

Internet

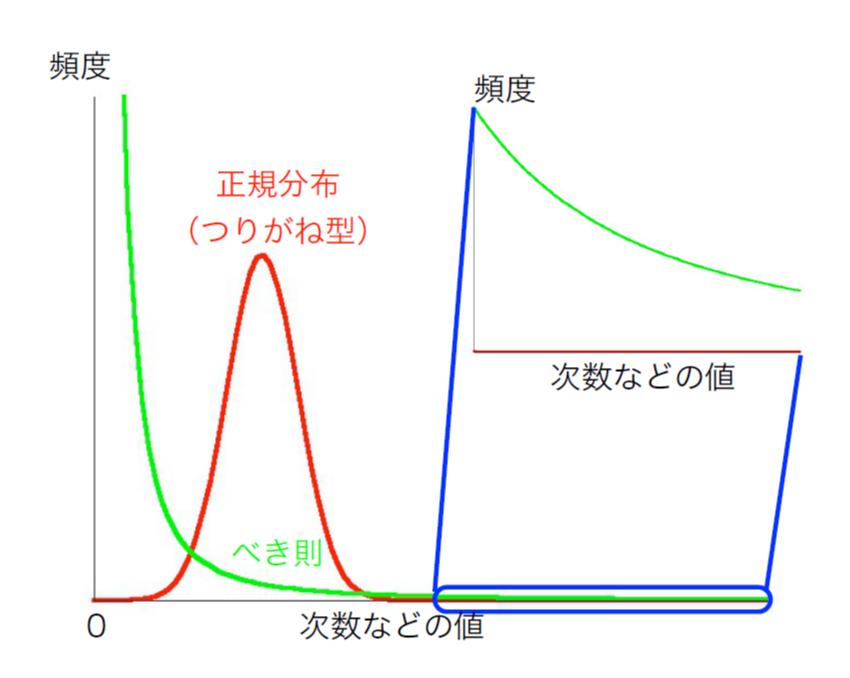
А

著作権の都合により、 ここに挿入されていた画像を削除しました。

M.Faloutsos et al.,(1999) On power-law relationships of the Internet topology, ACM SIGCOMM Computer Communication Review 29(4): 251-262, p.255 Fig.4(a)

101 10² (Barabási & Albert, 1999)

(Faloutsos et al., 1999)

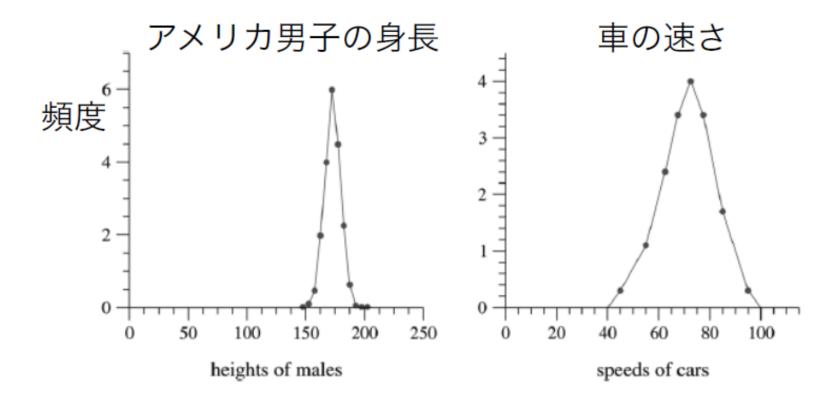

茸 Albert-László Barabási and Réka Albert (1999) Emergence of Scaling in Random Networks, Science 286(5439):509-512, p.510 Fig.1(A)

100

$$p(k) = ck^{-\gamma}$$

$$\updownarrow$$

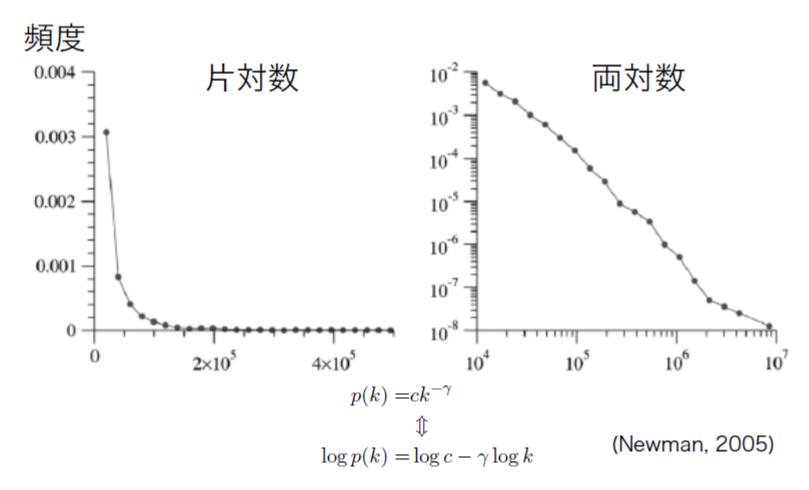
$$\log p(k) = \log c - \gamma \log k$$


べき則の減り方

Х	X −2	正規分布(平均 1,標準偏差5)
1	1	1
2	0.25	0.9802
3	0.11	0.9231
5	0.04	0.7261
10	0.01	0.1979
100	0.0001	7.4x10 ⁻⁸⁶
1000	10 ⁻⁶	3.0x10 ⁻⁸⁶⁶⁹

← x=1 での値が 1 になる ように「規格化」する

• 減り方が遅い

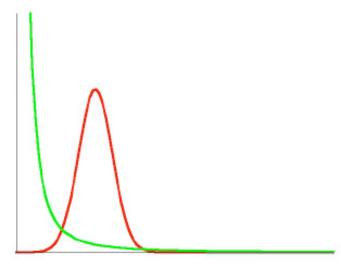

正規分布に近い量

(Newman, 2005)

アメリカの都市サイズ (人口 ≥10000人)

べき則の普遍性

- 収入 (Pareto の法則, 1896) ← 格差社会
- 都市の人口(Zipfの法則, 1949; Auerbach, 1913)
- 研究者の書く論文数(Lotka の法則, 1926)
- 本の売れ行き
- 土地の価格
- 会社の規模
- 単語の頻度
- ウェブページが訪問される回数
- 地震の規模
- 月のクレーターの大きさ
- 戦争の被害規模


佐藤俊樹 『不平等社会日本: さよなら総中流』 中公新書、2000年

橘木俊 『格差社会:何が問 題なのか』 岩波新書、2006年

べき則の驚き(1) 平均から何倍も離れた人がいる

- 収入
 - 平均年収500万円
 - 1 億円プレーヤー (いなくはない)
- ひとり勝ち
- 正規分布(など)では 説明できない。

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \langle x \rangle)^2}{2\sigma^2}\right)$$

べき則の驚き (2) 平均がない

$$p(x) = (\gamma - 1)x_{\min}^{\gamma - 1}x^{-\gamma} \quad (x_{\min} \le x < \infty)$$

規格化定数(確率なので和を1にする)

$$\langle x \rangle = \int_{x_{\min}}^{\infty} x p(x) dx = \begin{cases} \infty & (\gamma \le 2) \\ \frac{\gamma - 1}{\gamma - 2} x_{\min} & (\gamma > 2) \end{cases}$$

期待値(平均値)

べき則の驚き(3) 大半の人が平均以下

- 中央値 < 平均値
- ・ 平均以下でも慌てない $\int_{x_{1/2}}^{\infty} p(x)dx = \frac{1}{2} \int_{x}^{\infty} p(x)dx$
- 平均は(あるとして も)あまり意味を持た ない

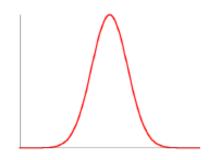
$$p(x) = (\gamma - 1)x_{\min}^{\gamma - 1}x^{-\gamma}$$
 を代入すると $x_{1/2} = 2^{\frac{1}{\gamma - 1}}x_{\min}$

先入観を変えよう!

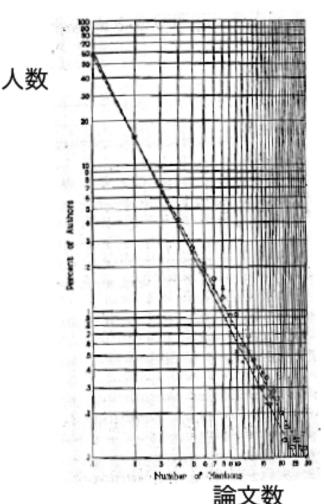
$$\gamma = 3 \implies x_{1/2} = 1.41 x_{\min}, \langle x \rangle = 2 x_{\min}$$
 $\gamma = 2.5 \implies x_{1/2} = 1.59 x_{\min}, \langle x \rangle = 3 x_{\min}$

ビジネス応用

- 20%の商品から売上の80%.80%の商品から売上の20%
- 90:10 や70:30 でもよい.
- 80 対 20 の法則 → 20% の商品に注目
 - 在庫を整理すべき
 - 20 % の仕事時間から 80% の成果 → たいていの仕事はやめるべき
- ロングテールの法則 \rightarrow 80% の商品に注目(在庫コストがほぼ 0)
 - 書籍 → 注文がきてから印刷
 - 音楽、映画(例:アップル)

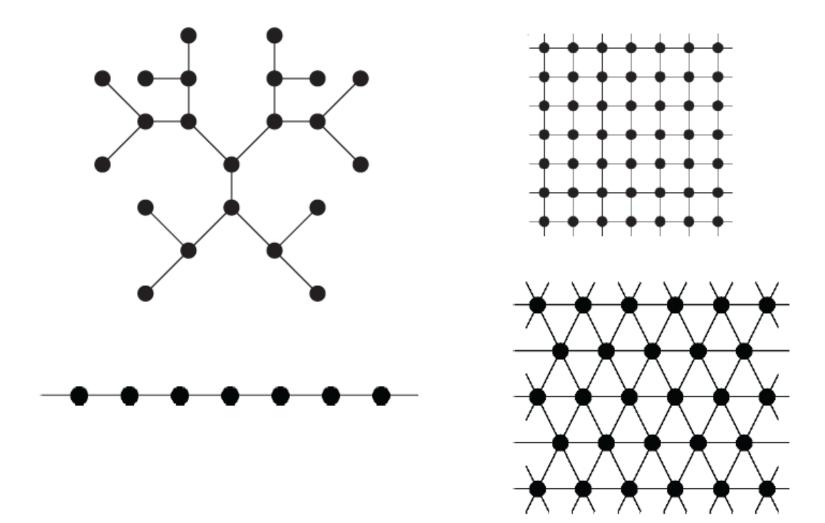

リチャード・コッチ 『人生を変える80対 20の法則』 仁平 和夫訳、阪急 コミュニケーションズ、 1998年

グルとネット社会の未来について 希望と不安が見えてくる。 tons sereseros w <u>後</u>ちくま新書


日本人は正規分布がお好き?

- 偏差値 → 正規分布
 - = 50 + 10×(得点 平均点)/ 標準偏差
 - 平均 = 50
 - 標準偏差 = 10 → 40~60 に 68%, 30~70 に 95% の人が入る.
- 直観的にべき則よりわかりやすい
- 平等的 → 日本人の精神に合う?

Lotka の法則 (1926)


- 仕事の生産性のべき則
- 一部の天才,秀才の存在
 - 芸術,スポーツ,科学
 - 仕事能力も?
- タブーなので触れにくい
 - 出る杭は打つ
 - 機会平等の勘違い

(Lotka, 1926)

(Lotka,

格子や木では頂点次数は均一

ランダム・グラフでは

次数 二項分布 ポアソン分布
$$p(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k} \approx \frac{e^{-\langle k \rangle} \langle k \rangle^k}{k!}$$
 where $\langle k \rangle = (N-1)p$ 平均次数

- べき則ほど裾野が長くない
- 正規分布の仲間

べき則が出る仕組み

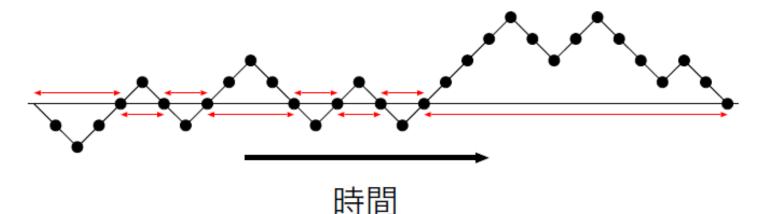
- 相転移と自己組織化
 - 1990 年代くらいの複雑系ブーム
 - でも、いつでもそうなのか?
- ある種の変数変換
- ランダム・ウォークの「再帰」時間
- 乗算過程
 - 金融データなど
- そもそも能力に差がある
- 教訓:1つの普遍則があるわけではない
 - 「統一」主義にだまされないように

自己組織化 今野紀雄 『複雑系 (図解雑学) 第2版』 ナツメ社、2006年 講談社、2009年 新潮社、2000年

早川書房、2009年

(1) 変数変換

$$p(y):$$
 0 をまたいで分布する変数 y の密度
$$x = \frac{1}{y}$$

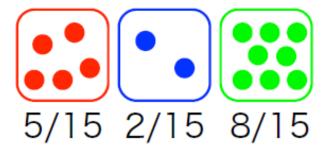

$$p(x) = p(y)\frac{dy}{dx} = -\frac{p(y)}{x^2}$$

x の大きい所では

$$p(x) \approx -\frac{p(0)}{x^2}$$

参考: Newman (2005)

(2) ランダム・ウォーク


t: ウォーカーが初めて原点に戻ってくる時間(偶数)

$$p(t) = \frac{\binom{t}{t/2}}{(t-1)2^t} = \frac{t!}{(t/2)!(t/2)!(t-1)2^t}$$

Sterling の公式 $t! \approx t^{t+\frac{1}{2}}e^{-t}$ を用いると $p(t) \approx \frac{1}{t^{\frac{1}{2}}\left(t-\frac{1}{2}\right)} \propto t^{-\frac{3}{2}}$ 例:

(3) The rich get richer

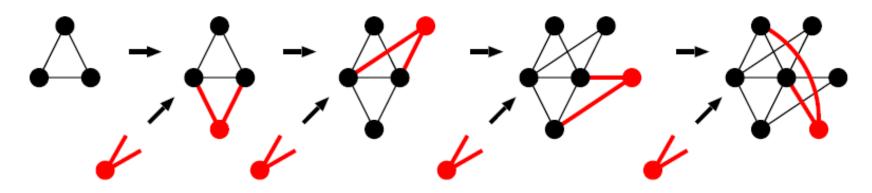
- 富める者はますます富む。様々な別名
 - Yule process (1920s)
 - Gibrat 則
 - バンドワゴン効果

- マタイ効果 (Simon, 1955; Merton 1968)
- Cumulative advantage (Price, 1965)
- 優先的選択 (Barabási & Albert, 1999)
- 都市の人口,論文の被引用数,キーボードの配列, Windows vs Mac ...

Pólya の壺

 問題:5個の白玉と3個の赤球の入った壺から1個ずつ球を 取り出し、以下の条件のとき、4回目に白球が出る確率を求 めなさい。


【条件】取り出した球が


- ①白球⇒その白球と新たに白球を 1 個追加して壺に 戻す
- ②赤球⇒その赤球と新たに赤球を1個追加して壺に 戻す (たけしのコマ大・数 学科の第 152 回目)
- 直観でわかること:貧富の差がつくこと
- 数学でわかること:具体的な法則

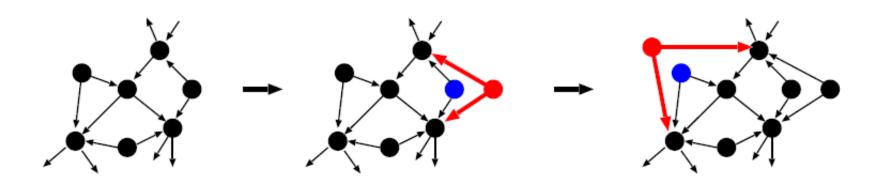
Barabási & Albert のスケールフリー・ ネットワーク(1999)

- スケールフリー = べき則
- ネットワークの成長(インターネット, WWW, 航空網)
- 優先的選択 $\Pi(k_i) = \frac{k_i}{\sum_{j=1}^N k_j}$ k_i : 頂点 i の次数 富めるものは富む

 - ハブはますますハブになる

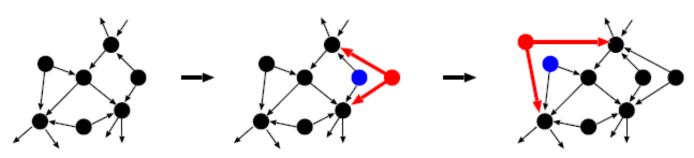
BA モデルの性質

- スケールフリー: p(k) ∝ k⁻³
 - (この枠組みでは)優先的選択は 必要
- *L*: 小さい
- C: 小さい. "現実"に合わない
- たくさんの変形版がある

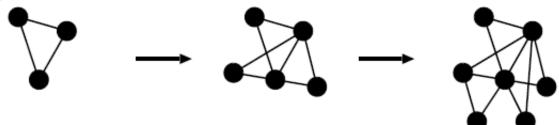

BA モデルの落とし穴

$$\Pi(k_i) = \frac{k_i}{\sum_{j=1}^N k_j}$$
 k_i : 頂点 i の次数

- N(頂点数)は、通常大きい
- どうやって既存の頂点の次数を調べる?

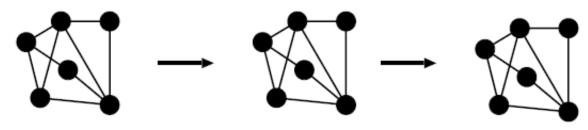

頂点コピーモデル

- 便宜上、枝に方向があるとする(無くてもよいようにできるが).
- 新しい頂点は、ある「親」頂点を選び
 - 確率 1-α で、「親」の行き先を引き継ぐ
 - 確率 α で、無作為に行き先を決める


べき則になる!

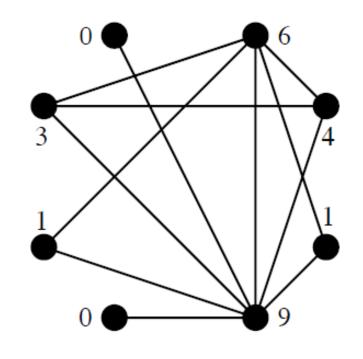
- 隣にはハブがいやすい
 - ネットワークを歩けばハブに当たる
 - 自分の友人は自分より有名人
- タンパク質の相互作用ネットワーク (PIN)
 - 複製直後は、(タンパク質を作る)新しい遺伝子と元の遺伝子は隣接点が全て同一
 - その後、突然変異を経て進化、多様化
- WWW
 - 新しいウェブサイトは、あるサイト(のリンク)をひな形から作られやすい。
 - その後、徐々にサイトを書き換えて、リンク先も変えていく

ネットワークは成長するとは限らない


成長する

成長しないが変化する

成長も変化もしない

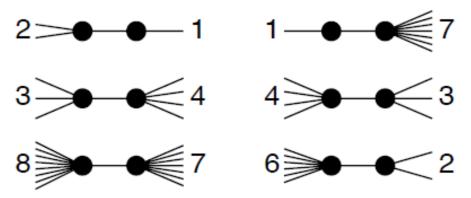


知人紹介モデル

- 頂点数は固定
- 確率 1-pで、ある頂点が自分の知人 2 人同士を紹介する
- 確率 p で,ある頂点を除去し,新しい頂点(と枝 1本)を入れる ↓ ↓ ↓ ↓ ↓
- pは小さいとする
- スケールフリー(風)になる
- 知人紹介を行うから三角形ができる. (Davidsen, Ebel & Bornholdt, Physical Review Letters, 88, 128701, 2002)

閾値モデル

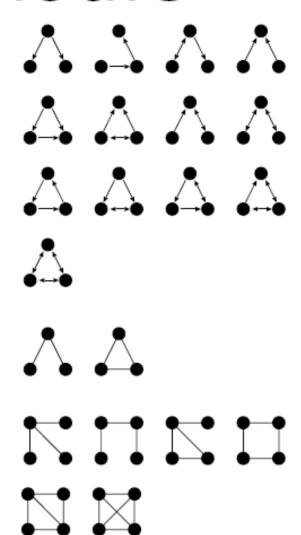
- iとjをつなぐ ⇔W_i + W_j ≥ "閾値"
- 成長しない
- スケールフリー
 - Wi の振り方に あまり寄らずに


閾値 = 7

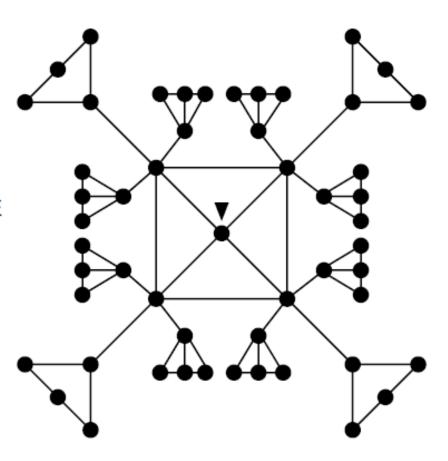
ハブになるには?

- 先手を打つ
- 運
- そもそも能力が高い

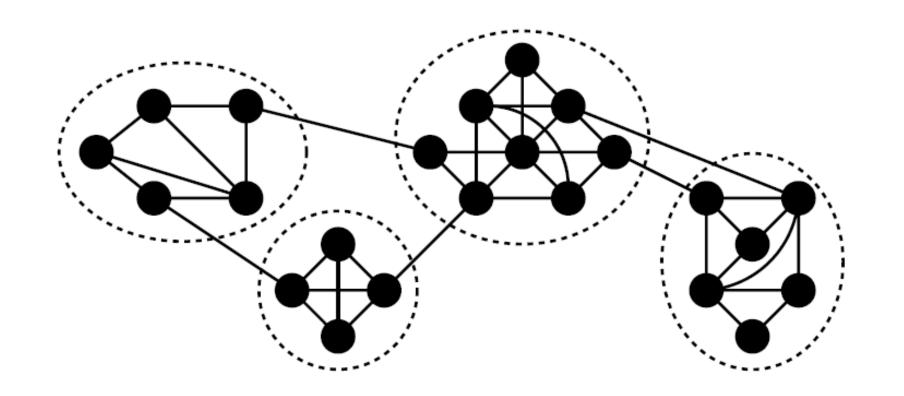
● 放っておくと(次数の)格差は広がる


次数相関

- 正 (assortative)
 - 人間関係 ← homophily
- 負 (disassortative)
 - 生物系(食物網,神経,タンパク質)
 - 工学・情報系(Internet, WWW)
- しばしば、ネットワーク上の諸現象の行方を左右する

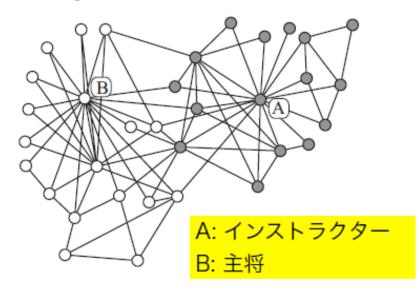

Network motifs

- 3 nodes → 13 motifs
- 4 nodes → 199 motifs
- 有向ネットに対して 使うことが多い



中心性

- 次数中心性
- 近接中心性
- 媒介中心性
- ・ 固有ベクトル中心性
- ランダム・ウォーク(媒介)中心性
- サブグラフ中心性
- ページランク
- HITTS
- ...
- ・ 適切な定義は、応用による



コミュニティ分割

Zachary の空手クラブ (1977)

- コミュニティ = グループ
 - 家族、学級、課、サークル
 - WWW のホスト,ドメイン
- 何のために分割?
 - 機能ごとのグループ分け
 - ともかく分類
 - 描画(粗視化)
- 色々なアルゴリズム. 分割の答は 1 つでない
 - 社会学 (1950年代から)
 - 計算機科学
 - ネットワーク科学
- 計算量(計算速度) もそれなりに大切

イルカ

著作権の都合により、 ここに挿入されていた画像を削除しました。

David Lusseau and M. E. J. Newman (2004) Identifying the role that animals play in their social networks, Proceedings of the Royal Society of London B, 271:S477-S481, p.S478 Fig.1(a)

(Lusseau & Newman, 2004)

ネットワーク	頂点	枝	コミュニティ
空手クラブ	メンバー	友人関係	インストラクター 派, 主将派
ジャズ	ジャズ音楽家	バンドへの 所属	ニューヨーク 系, シカゴ系
共著関係	研究者	論文の共著	何々一派, 何々分野
単語ネット	英単語	同じ文脈で 使われる	科学系単語, 音楽系単語