平成22年度冬学期 学術俯瞰講義「多彩な物質の世界」 第7回「原子・電子・分子のふるまいが生む物質の多様性」

分子の集団が生み出す高度な機能性

小島 憲道 東京大学 理事·副学長

平成22年度学術俯瞰講義 2010.11.18

「キ:このマークが付してある著作物は、第三者が有する著作物ですので、同著作物の再使用、同著作物の二次的著作物の創作等については、著作権者より直接使用許諾を得る必要があります。」

私の研究分野小島憲道

専門分野:化学(分子集合体の物性化学)

物性化学とは元素の物理・化学的性質を把握し、それらの元素を自在に操ることにより様々な分子集合体を開発し、新しい機能性や物性現象を発現させる学問であり、物質科学(マテリアルサイエンス)の中核を担う学問です。

- 主な研究テーマ
- 圧力や光で絶縁体を金属に変換する(遷移金属錯体における原子価転移)
- 磁石の性質を光で制御する(光磁性)、光で磁石の性質を調べる(磁気光
 学)
- 光で分子の形を変化させ(光異性化)、これを発火点にして連鎖する高度な 機能を発現させる(光応答性有機・無機複合錯体の設計と物性)
- 遥かなる夢:光で絶縁体を金属に変換し、超伝導を発現させる

元素の物理・化学的性質を俯瞰する

イオン化エネルギーの周期性

何故、Hgのイオン化エネルギーが著しく高いのか

‡『現代物性化学の基礎 : 化学結合論によるアプローチ』 小川桂一郎、小島憲道 編 講 談社 (2010) p39、図1.17

希ガス元素における最初の化合物 Xe⁺[PtF₆]⁻ の合成デモンストレーション

L. Graham, O. Graudejus, N.K. Jha and N. Bartlett, Coord. Chem. Rev., 197, 321 (2000).

•N. Bartlettは強力な酸化剤であるPtF₆を用いてO₂分子から電子を引き抜き、O₂+[PtF₆]⁻ を合成した。

・彼は、Xeのイオン化エネルギーがO₂分子のイオン化エネルギーと殆ど等しいことから、 PtF₆を用いてXeから電子を引き抜き、Xe⁺[PtF₆]⁻の合成に成功した(1962)。

元素の物理・化学的性質を俯瞰する

電気陰性度の周期性

‡『現代物性化学の基礎:化学結合論によるアプローチ』,小川桂一郎、小島憲道 編, 講談社 (2010) p37、図1.15

重元素の異常な物理的・化学的性質の起源 重元素に現れる相対論効果

$$m = m_0 / \{1 - (v/c)^2\}^{1/2}$$
 (電子の動的質量)

$$r_{
m n}=n^{2}h^{2}arepsilon_{0}/\pi m{
m Z}e^{2}$$
 (s軌道の半径)

$$E_{\rm n} = - \frac{mZ^2 e^2}{8 \varepsilon_0^2 h^2 n^2}$$
 (s軌道のエネルギー)

Hgの1s 電子の平均速度は光速の 60%に達する。

‡ P. Pyykko, et al., Accounts of Chemical Research, 12, 276 (1979).

‡工藤恵栄 著、『分光学的性質を主とした基礎物性図表』、共立出版 (1972)

相対論効果による重元素の不思議

- ・相対論効果のためHgは室温で液体である
 - *6s軌道が閉殻となり、希ガス元素に類似し た性質を示す ようになる。
- ・相対論効果のためAuは黄金色になる
 - *相対論効果が働かなければ、Auは銀白色
- ・Auの電気陰性度の異常
- ・Hgのイオン化エネルギーの異常

物質科学の多次元座標

私たちの眺めている物質は常温・常圧という一点にすぎない

1

p218、図9.1

1気圧, 7.4万気圧, 15.3万気圧における固体ヨウ素の電子分布

高圧下X線構造解析による固体ヨウ素の電子分布の圧力変化

0.1 MPa, 7.4 GPa, 15.3 GPaにおける固体ヨウ素のbc 面内での電子分布¹⁹⁾. [藤久裕司ほか,高圧力の科学と技術, 5,160 (1996)]

‡藤久ら, 固体ハロゲンの分子解離相転移と金属化, 高圧力の科学と技術, Vol.5, no.3,pp156-162. figure7

http://en.wikipedia.org/wiki/File:DiaAnvCell1.jpg

50 mm

‡小島lab

‡天谷喜一, 石塚守, 清水克哉, 他, 固体物理, **28,** 435 (1993).

放射光施設と放射光の発生原理

放射光は、高速に近い速さで運動する電子の方向を、 磁場の力で急激に曲げたとき、その接線方向に発生する。

+高エネルギー加速器研究機構 http://www.kek.jp/ja/index.html(画像提供:KEK) [‡] 産業技術総合研究所 地質調査総合センター http://staff.aist.go.jp/a.ohta/MyHome.htm

```
固体酸素は高圧下で超伝導になる
```


100万気圧かけると酸素は金属となり、0.5 Kで超伝導体となる

‡清水克哉, 高圧力の科学と技術, **10**, 194 (2000).

超伝導を示す元素(単体)

Η		= 高圧下で超伝導が発現する元素														He	
Li	Be	= 常圧下で超伝導が発現する元素											С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	C1	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	ランタ ノイド	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
Fr	Ra	アクチ ノイド	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh		Uuo

ランタ ノイド	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
アクチ ノイド	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

‡小川桂一郎、小島憲道編、新版『物性化学の基礎』、講談社 (2010)

p219、表9.1

高次な多重機能性の概念

~分子集合体から高度な機能性を発現させるために~

高度な機能性 (A + B, B + C, A + C, A + B + C)

液体酸素は、沸点が90Kの淡青色の液体である。磁石に近づけると、液体酸素は磁石に吸い寄せられる。

‡小川桂一郎、小島憲道 編、新版『物性化学の基礎』、講談社 (2010) p88、図3.15

O2**の分子軌道**

(C) スピン(磁気特性)

(A) 光(光学特性) 物質の色:15種類の起源

[Vibrations and Simple Excitations]

1. 黒体放射: 白熱電球、太陽光(5700°Cの黒体放射)

2. ガスの励起: ナトリウムランプ、ネオンサイン、オーロラ

3. 振動・回転による励起:水の青色(振動の高調波による光吸収)

[Transitions Involving Ligand Field Effects]

4. 遷移金属化合物の発色(d軌道間の遷移): 硫酸銅の青色

5. 不純物遷移金属元素による発色: ルビーの赤色

[Transitions Between Molecular Orbitals]

6. 有機化合物: 有機色素の発色、有機電荷移動錯体の発色

7. 電荷移動遷移による発色: ブルーサファイヤ、プルシアンブルー

[Transition Involving Energy Bands]

8. 金属の光沢: 金の黄金色、真鍮の黄金色、銀の銀白色

9. 真性半導体の色: 珪素の銀白色、硫化水銀の朱色

10. n(p)型半導体の発色: 有色ダイヤモンド、半導体レーザー

11. 色中心:紫水晶、黑水晶

[Geometrical and Physical Optics]

12. 拡散反射: 虹、ハロー

13. 光の散乱: レイリー散乱、ラマン散乱

14. 光の干渉: シャボン玉の色、

15. 光の回折:液晶の発色、オパール

The Physics and Chemistry of Color, by K. Nassau (John Wiley & Sons, 1983)

Diaryletheneの光異性化と色変化

‡T. Fukaminato, S. Kobatake, T. Kawai, and M.Irie, *Proc. Japan Acad., Ser. B*, 77, 30 (2001).

‡『現代物性化学の基礎 : 化学結合論によるアプローチ』, 小川桂一郎、小島憲道 編, 講談社 (2010) p129、図5.3

d-d遷移によるアクア錯イオン[M(H₂O)₆]ⁿ⁺の可視吸収スペクトル

講談社 (2010)

B. Figgis, *Introduction to Ligand Fields*, Wiley-Interscience (1966).

(A) 光(光学特性) 遷移金属錯体の色の起源

- (1)d軌道間の遷移(d-d遷移)
- (2) 電荷移動遷移
 - ①配位子の軌道から金属イオンのd軌道への電荷移動遷移: LMCT (Ligand-Metal Charge Transfer)
 - 例: 過マンガン酸イオン[MnO₄]⁻の濃赤紫色
 - ②金属イオンのd軌道から配位子の軌道への電荷移動遷移: MLCT (Metal-Ligand Charge Transfer)
 - 例: $[Fe(phen)_3]^{2+}(phen = フェナントロリン)の赤色$
 - ③金属イオンから金属イオンへの電荷移動遷移: IVCT (Inter-Valence Charge Transfer) 例: プルシアンブルーFe^{III}₄[Fe^{II}(CN)₆]₃·15H₂Oの濃青色

(A) 光(光学特性)

IVCT (Inter-Valence Charge Transfer) プルシアンブルーの濃青色

プルシアンブルー(Fe^{III}4[Fe^{II}(CN)6]3・15H2O)の基本骨格

‡『現代物性化学の基礎:化学結合論によるアプローチ』 小川桂一郎、小島憲道編 講談社(2010) p37、図1.15

『神奈川沖浪裏』

葛飾北斎は江戸時代に輸入されたプ ルシアンブルー(紺青)を用いて、富嶽 三十六景を描いた。

p.213 5-15図

(B + C) 電荷とスピンの相乗効果: λ-(BETS)₂FeCl₄の磁場誘起超伝導

‡「2次元有機伝導体λ-(BETS)2FeCl4の磁場誘起超伝導」,宇治進 也 固体物理, Vol. 36, No. 6, (2001), 図1, 図5 (a), 図6 (a), (b)

(A) 光(光学特性) Cs₂[Au^IC1₂][Au^{III}C1₄]の色 黄金色の起源: Au(I)からAu(III)への電荷移動遷移 (IVCT)

Cs₂[Au^{II}₂][Au^{III}₄]における金属相の出現とその振る舞い

[‡]N. Kojima, et al., Solid State Commun. 73, 743(1990)

放射光を用いたX線構造解析

 $P = 0 \sim 14 \text{ GPa}$ $T = \text{r.t.} \sim 1000 \text{ K}$

‡Fig. 1 Furnace assemblies used in a single-stage configuration of MAX80 and MAX90 high pressure apparatuses

5 mm

The cubic anvil type high-pressure apparatus (MAX90) in the National Laboratory for High Energy Physics, Tsukuba, Japan.

Cs₂[Au^IBr₂][Au^{III}Br₄]の圧力誘起原子価転移と 光誘起原子価転移

[‡]X. J. Liu, Y. Moritomo, M. Ichida, A. Nakamura and N. Kojima, *Phys. Rev.* B 61, 20(2000).

^{*}N. Kojima, Bull. Chem. Soc. Jpn., **73**, 1445(2000).

Cs₂[Au^IBr₂][Au^{III}Br₄]の光誘起原子価転移 レーザー光による絶縁相の消失と金属相の出現

[‡]X. J. Liu, Y. Moritomo, N. Kojima, et al., *Phys. Rev.* B, **61**, 20 (2000).

A(光) + B(電荷)

Cs₂[Au^{II}Br₂][Au^{III}Br₄]を光で絶縁体から金属に変換する

[‡]X. J. Liu, Y. Moritomo, N. Kojima, et al., *Phys. Rev.* B, **61**, 20 (2000).

A(光)+B(電荷) 2波長同時励起による光誘起超伝導の探索

Fe(II)錯体のd電子配置

孤立した自由イオン

高スピン状態

低スピン状態

‡S. Decurtins et al. *Inorg. Chem.*, **24**, 2174 (1985).

光誘起スピンクロスオーバー転移を用いた光分子メモリー

‡田辺行人 監修(小島憲道著) 『新しい配位子場の科学』 講談社 (1998). p26 図1.16

 $[Fe^{\parallel}(R-trz)_3]A_2-nH_2Oのスピンクロスオーバー転移$

透明スピンクロスオーバー錯体膜を作る

[‡]A. Nakamoto, et al., *Polyhedron*, **24**, 2909 (2005).

(1)透明スピンクロスオーバー錯体膜の開発

(2) 透明スピンクロスオーバー錯体膜によるプロトンの流れの可視化

pH 4.5 : $T_{1/2} = 290$ K

pH 8.5 : $T_{1/2}$ = 390 K

T = 300 K T = 77 KA. Nakamoto, et al., *Polyhedron*, 24, 2909 (2005).

[‡]O. Sato, Y. Einaga, T. Oyoda, A. Fujishima and K. Hashimoto, J. Electrochem. Soc., **144**, L11 (1997)

B(電荷)+C(スピン) (n-C₃H₇)₄N[FeFe(dto)₃]の電荷移動相転移

 $(n-C_{3}H_{7})_{4}N[Fe^{II}Fe^{III}(dto)_{3}] (dto = C_{2}O_{2}S_{2})の電荷移動相転移$ スピンエントロピーの差が電荷移動の駆動力

分子設計:層間分子の光異性化が電荷移動の駆動力となる

[‡]N. Kida, M. Enomoto, N. Kojima, et al., *J. Am. Chem. Soc.* **131**, 212 (2009)

^{‡*} S. Bernard, P. Yu, New Spiropyrans Showing Crystalline-State Photochromism , *Adv. Mater.*, **12**, 48 (2000). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

‡N. Kida, M. Enomoto, N. Kojima, et al., *J. Am. Chem. Soc.* **131**, 212 (2009)

SPの光異性化を発火点としたFe(II)-Fe(III)間電荷移動相転移

[‡]N. Kida, M. Enomoto, N. Kojima, et al., *J. Am. Chem. Soc.* **131**, 212 (2009)

Structure of rhodopsin

‡キリヤ化学 http://www.kiriya-chem.co.jp/q&a/q52.html

物質科学の多次元座標

私たちの眺めている物質は常温・常圧という一点にすぎない

