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MATHEMATICS

Introduction
Takeshi Saito

The histery of Termal's Last Theorem began when Pierre e Fermat,
a LFth-century Trench matheratician, wrobe e following Lantakiz-
ingz sentences in Lalin in the maggin nf a maihemabics book he wis
reacding! “IE is mnposginle for o cube b b the s of baeo cubes, o
fourth poweer to be 1he sum ol eee fourth poters, be i general for
any numiber that is 2 power groater than the seoond Lo be Lhe sum uf
two Like powens. L have discovered a truly mamvelous demonstra
tivar of 1his proposition that this margin is & natrow o contain.®

Termat 15 asserling that the equation x4 7 — 20 has o nontrivial,
e ays = 0, inkegral solubon i & 5= % But he doesn 't huve eneugh
space in the margin, he says, towrire dowelhe marvelots proof he
huie found. This assertion wis 1o challewege any number of groad
athermaticians in Lhe cemburics that follusweed, 10 isknowras bermat’s
Lasl ‘I'hecrem becatse it was lhe bast one o be proved among the
several mathematical statements bermat made withoul providing
proool

Mare than tlree hundred vears after Termat made is uaproven
asserlion, two young [apancese mathemadicians, Youtaka lanivomi
ang Goro Shimura of the University of Tekwo, fund a crucial due
o ilg solution, o clue that was lied o Teomat's Last Thearem by a
corection thit wag quite undaoeen at the tme The clue was thu
totally nnexpected and surpelsing link belween two ol rhe Tl
subjects of mudlermatios: cliplic curves and modular Lorms. While
the study of clliptic curves has a long history dating back 1o ancicrt
Ursece, with Tepmar himscll playing o prroaminent rale in s revival,
the stndy of moedular furms is a relatively new field, dating back
only o fhe 15t century. As Lhese origins supmest. thee o wen
considered to have besn vory different subjects, anwl eatablishing
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Last
Theorem
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Fermat’s note (around 16407?)

It is impossible for a cube to be the sum of
two cubes, a fourth power to be the sum of
two fourth powers, or in general for any
number greater than the second to be the
some of two like powers. | have discovered a
truly marvelous demonstration of this
proposition that this margin is too narrow to
contain.
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Fermat’'s note (original version)

Cubum autem in duos cubos, aut
quadratoquadratum in duos
quadratoquadratos, et generaliter nullam
in infinitum ultra quadratum potestatem in
duos ejusdem nominis fas est dividere:
cujui rei demonstrationem mirabilem sane
detexi. Hanc, marginis exiguitas non
caperet.
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Fermat was asserting that the equation
x1 + yn = 0

has no nontrivial, i.e. xyz = 0, integral solution
if n~ 3.

But he didn’t have enough space in the margin,
he said, to write down the truly marvelous
proof he had found.



Pierre

de Fermat

(1601.8.20-
1665.1.12)

a man of Toulouse,
France
“Father of number
theory”

Reprinted from
http://en.wikipedia.org/wiki/File:Pierre_de_Fermat.png(2010/09/03)



Pierre

de Fermat

(1601.8.20-
1665.1.12)

a man of Toulouse,
France
“Father of number
theory”

Reprinted from
http://en.wikipedia.org/wiki/File:Pierre_de_Fermat.jpg(2010/09/03)
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DIOPHANTI
ALEX ANDRINI

LIARL SEX.

A copy of the book
Fermat left a note on

A book on number
theory written by
Diophantus of
Alexandria in 3"
century, and revived oo

oy
Bachet on 1621

Reprinted from
http://en.wikipedia.org/wiki/File:Diophantus-cover.jpg(2010/09/03)



Diophantus of Alexandria (-300)



Fermat’s
annotation was
written on a copy
of this page
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Equation X1 + yn =7z!
Integer solution (X, Y, Z)=(a4, b, C)

at least one of a, b, C should be zero



Towards the resolution of Fermat’s
last theorem

e -1640 Fermat’s note
e -1659 Fermat in case of n=4
e 1753 Euler in case of n=3
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Fuler(1707.4.15 - 1783.9.18)



Towards the resolution of Fermat’s
last theorem

e -1640 Fermat’s note
e -1659 Fermat in case of n=4
e 1753 Euler in case of n=3

e 1994 Wiles, Taylor a complete proof



Figure removed due to

copyright restrictions

"copyright C. J. Mozzochi, Princeton N.J"
http://www.mozzochi.org/deligne60/Delignel/ DSC0024.jpg

Wiles (1953.4.11- ) and
his article on the proof of Fermat’s last theorem



the Difficulty in proving Fermat’s last
theorem

e the statement is easy to understand.

superficially even for a junior high school
student

e But the solution is elusive



the Difficulty in proving Fermat’s last
theorem

Why did it took as long as 360 years?

Because it was necessary to create a
mathematical world before getting to the
heart of Fermat’s last theorem.



Before the general proof of

Fermat’s last theorem

-1640 Fermat’s note
-1659 Fermat in case of n=4

1753 Euler in case of n=3
1800- Gauss et al. elliptic curves
1850- Eisenstein et al. automorphic forms

1960- Taniyama and Shimura
elliptic curves and automorphic forms
1986 Frey
Fermat’s Last theorem and elliptic curves
1994 Wiles and Taylor complete proof



n=Im
If a, b, ¢ are the solution of
X"+ yn= z" then

a™ b™ c™ are the solution of
|

the problem reduces to

either n = | is a prime number larger than 3

or n = | equals to 4



A Prime number

e a natural number p with p=>2

and cannot be divided by any natural
numbers other than 1 and p itself.

e 1is notaprime number.

(unigueness of prime factor decomposition)



A V\V‘:Mf\ V\IIML\
A MJLiic hiutiiv

er
e There are infinite number of prime
numbers.

(demonstrated by ancient Greeks)
e 2,3,5,7,11, 13,17, 23, 29, 31, 37, 41,

43,47,53,59,61,67/,71,73,79, 83, 8/,
389,97,101, 103, 10/, 109, 113,127, 131,
137, 143, 149,......

* Alot of unresolved problems
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2,2+1=3,

2*3+1=7,
2=3=7+1=143,
2=3-7-43+1=13 - 139
2=3-7-43-13+1=53-443
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2"+ 1isaprime C—) n=2m

23 +1 =32 2°+1=33-11,
2641 =5-13

210+ 1 =52-401,
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Inverse

2"+ 1lisaprime{—1 n=2"M
true or not true?(Fermat)

2'+1=3,2°+1=5,

24+1=17,2%8+1 =257,

216+ 1 =65537,
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210+ 1 = 65537,

23°+1=641-6700417,

(Euler)
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p=22"+1is a prime

regular p-gon can be

It is possible to construct regular
using compass and ruler only

(Gauss 1796.3.30)
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Reprinted from

http://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss.jpg(2010/09/03)

Gauss (1777.4.30-1855.2.23)
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Serre’s conjecture was settled
( Khare 2005)

 inductive reasoning concerned with
prime number

* there are infinite number of prime
numbers that are not Fermat prime
number



Reprinted from
http://www.math.ucla.edu/~shekhar/(2010/09/03)

Khare (1967 -)
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e Tangent lines, maximum/minimum
(pioneer work in differentiation and integration)

 The concept of coordinates

(contemporary with Decartes)



Fermat’s contribution
“Father of number theory”

e Fermat’s little theorem

 On the condition for a prime p to be written as
the sum of two square numbers

e Rational point on elliptic curves



Fermat’s little theorem

let p be a prime then ap = d can be divided by p.
(fundamentals for RSA cryptography)

27-2=12-2=126=7 X 18,
2112 =2048-2 =2046 =11 X 186,
3°-3=243-3=240=5 X 48§,



The condition for a prime p#2 to be
the sum of two square numbers:

p =a’+ b?

p leaves a remainder of 1 when divided
by 4.



Prime numbers that leave a remainder
of 1 when divided by 4

2,3,5,7,11,13,17/, 23, 29, 31, 37/, 41,
43,47,53,59,61, 67,71, 73,79, 83, ...
5=1+4, 13 =449, 17=1+16, 29 =4+25,

37 =1+36, 41 =16+25, 53 =4+49, 61 = 25+36,
73=9+64, ...



Rational solution of
Eq. y2=Xx3- X
(elliptic curves)
There are only three solutions
(x,y)=1(0,0), (1,0), (-1,0)
(infinite descent)

e n=4version of Fermat’s last theorem

 There exist no right triangles of unit area with
three sides whose lengths are all rational
number
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Elliptic curves

e are different from ellipses ax? + by?=1

(concerned with integrals used to calculate the
length of ellipses)

e “There are unlimited things to write about
elliptic curves. | am not exaggerating”(S. Lang)



Elliptic curves and Fermat’s last
theorem

e I[Incaseofn=3,4

equations that define certain elliptic curves
y2=x3-x (Fermat)
y3=x3-1 (Euler)
Demonstrated by studying the properties of
their rational number solution

* |n case a prime number nis larger than 5

Demonstrated by showing that
the equation that defines an elliptic curve y? = x (x-a") (x-c")
does not exist
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nis a prime number larger than 5
Equation XM + yn =Z"
Integer solution (X, Y, Z)=(d, b, C)

at least one of d, b, C should be zero



In January of 1954 a talented young
mathematician at the University of Tokyo paid
a routine visit to his departmental library. Goro
Shimura was in search of a copy of
Mathematische Annalen, Vol. 24. In particular
he was after by Deuring on his algebraic theory
of complex multiplication, which he needed in
order to help him with a particulary awkward
and esoteric calculation.

Ta n Iya m a To his surprise and dismay, the volume was

already out. The borrower was Yutaka

a n d Taniyama, a vague acquaintance of Shimura
who lived on the other side of the campus.

. Shimura wrote to Taniyama explaining that he

S h I m u ra urgently needed the journal to complete the

nasty calculation, and politely asked when it
would be returned. A few days later, a postcard
landed on Shimura’s desk. Taniyama had
replied, saying that he too was working on the
exact same calculation and was stuck at the
same point in the logic. He suggested that they
share their ideas and perhaps collaborate on the
problem.

Cited from “On Campus” p36



Yutaka

Taniyama
(1927.11.12-
1958.11.17)

a n d copyright restrictions

Goro

Shimura
(1930- )

Figure removed due to
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Reprinted from
http://www.s.u-tokyo.ac.jp/imagebank/?mode=show&id=sc0028(2010/09/03)

ex. Faculty of Science Bldg.1



In September 1955 an international symposium was held in Tokyo. It was a unique
opportunity for the many young Japanese researchers to show off to the rest of the world
what they had learned. They handed around a collection of thirty-six problems related to
their work, accompanied by a humble introduction — Some unsolved problems in
mathematics.: no mature preparation has been made, so there may be some trivial or
already solved ones among these. The participants are requested to give comments on
any of these problems.

Four of the questions were from Taniyama, and these hinted at a curious relationship
between modular forms and elliptic equations. These innocent questions would ultimately
lead to a revolution in number theory. All of the questions handed out by Taniyama at the
symposium were related to his hypothesis that each modular form is really an elliptic
equation in disguise. The idea that every elliptic equation was related to a modular form
was so extraordinary that those who glanced at Taniyama’s questions treated them as
nothing more than curious observation. Taniyama’s only ally was Shimura, who believed in
the power and depth of his friend’s idea. Following the symposium, he worked with
Taniyama in an attempt to develop the hypothesis to a level where the rest of the world
could no longer ignore their work. Shimura wanted to find more evidence to back up the
relationship between the modular and elliptic worlds.

Cited from “On Campus” p42
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N is a prime number larger than 5
Equation XM + yn =Z"
Integer solution (X, Y, Z)=(d, b, C)

at least one of d, b, C should be zero



Equation X1 + yn =7z!

Integer solution (X, Y, Z)=(4, b, C)

R
All of a, D, C are not zero

(nontrivial solution)

Contradiction
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Nontrivial solution (a,b,c)

Elliptic curve y%=x (x-a") (x-c")

. 2

Corresponding automorphic forms

L

Contradiction



Before the general proof of
Fermat’s last theorem

-1640 Fermat’s notes
1960- Taniyama and Shimura
elliptic curves and automorphic forms 2
1986 Frey
Fermat’s Last theorem and elliptic curves 1
1987 Mazur and Ribet
Characteristics of automorphic forms 3
1994 Wiles and Taylor complete proof 2



Taniyama-Shimura conjecture 2

or

conjecture about the automorphicity of elliptic curves

e All elliptic curves defined by an equation
with rational number coefficient

y2 = 3" order x
are related to automorphic forms
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e With 1and 3,

Fermat’s last theorem was found to be
a consequence of Taniyama and
Shimura Conjecture.

(Frey, Serre, Mazur, Ribet)



Reprinted from Reprinted from
http://www.math.uoc.gr/~antoniad/frey_crete_2003/(2010/09/03)  http://en.wikipedia.org/wiki/File:Jean-Pierre_Serre.jpg(2010/09/03)

Frey(1944-) and Serre(1926.9.15-)



(c)1992 George M. Bergman
Reprinted from Reprinted from
http://en.wikipedia.org/wiki/File:Barry_Mazur_1992.jpg(2010/09/03) http://en.wikipedia.org/wiki/File:Ribet.JPG(2010/09/03)

Mazur(1937.12.19- )and Ribet(1948.6.28- )
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e Very popular
e Of historical importance

Algebraic number theory (Kummer)
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e Very popular
e Of historical importance
Algebraic number theory (Kummer)
but

e itis doubtful whether it is true
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e Linked to the central unresolved problem of
number theory

* Fairly certain to be true
* For a proof, it would take fairly long time ?



CarrmAat’ec lacy +tlhaAnavrarmas Aaf+FAr 10077
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Linked to the central unresolved problem of
number theory

Fairly certain to be true
For a proof, it would take fairly long time ?

A man did not think so.



Figure removed due to

copyright restrictions

Andrew Wiles(1953.4.11- )
proved in 1994



Before the general proof of

Fermat’s last theorem
-1640 Fermat’s note

1832 Galois Galois theory
1920 Teiji Takagi Class field theory

1960- Taniyama and Shimura
elliptic curves and automorphic forms
1986 Frey
Fermat’s Last theorem and elliptic curves
1987 Mazur and Ribet
Characteristics of automorphic forms
1994 Wiles and Taylor complete proof



Class field theory (1920-)

e A great theory that extends the fact “a prime
number that leaves a remainder of 1 when
divided by 4 is expressed by the sum of two

square numbers” (Fermat)
e Teiji Takagi
the first world-famous mathematician in Japan



Reprinted from
http://kyokan.ms.u-tokyo.ac.jp/~gakubu/takagi.htm|(2010/09/03)

Teiji Takagi (1875.4.21-1960.2.28)



Class field theory (1920-)

e Class field theory
one dimensional representation theory of
absolute Galois group of the rational number field

(a group that controls the solution of an equation with
rational number coefficient)



Reprinted from
http://en.wikipedia.org/wiki/File:Galois.jpg(2010/09/03)

Galois (1811.10.25-1832.5.31)



Class field theory and Taniyama-
Shimura Conjecture

e Class field theory

one dimensional representation theory of the
absolute Galois group of the rational number

field
e Taniyama-Shimura Conjecture

Consequences of two dimensional
representation theory of the absolute Galois
group of the rational number field
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e Fermat’s last theorem was
not simply solved,
 But solved along with a clue to
a central problem in number theory.

 And now, the two dimensional representation
theory of the absolute Galois group of rational
number field is near completion.



The connection of Elliptic curves
with automorphic forms

The number of combination(x, y) = (a, b),
a,b=0,1,2,..,p-1(pisaprimenumber)

Such that

y?-( x3-x ) is divisible by p

Is denoted by n(p)



The connection of Elliptic curves with

automorphic forms

P 5 11 | 13 | 17
n(p) 7 11 | 7 | 15
p-n(p) -2 0 6 2
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he connection of Elliptic curves
with automorphic forms
*q X {(1-9%)(1-9°)}
X {(1-9°)(1-9"°)}*
X {(1-ag")(1-g*)} X ==
=q_2q5 _3q9 +6q13 _|_2q17
—g5-1092° =237 + ===



The connection of Elliptic curves with
automorphic forms

P 2 3 5 /7 |11 | 13 | 17

p-n(p)] O | O | -2| 0| 0| 6 | 2

q_qu _3q9 _|_6q13 _|_2q17
_q25_10q29 _2q37 4 = ou




what is Automorphic forms ?

eq=ez  (z=x+yi ,y>0)
=e 2V (cos 2nx + | sin 27mx)

Z=X+Yy
y |




