Global Focus on Knowledge

Production and Application of matter

The University of Tokyo Hiroshi Komiyama

Lecture one: manufacturing processes, e.g., metal (iron and steel) Lecture two: Conjugation (devices), e.g., semiconductors, soft matters

Lecture three: Materials (devices) science for a sustainable future

fuel cells and micro-chemical chips

thermodynamics, kinetics

The figures, photos and moving images with ‡marks attached belong to their copyright holders. Reusing or reproducing them is prohibited unless permission is obtained directly from such copyright holders.

The 21st century trends

From wikipedia

Global focus on the Fearth J×F100 years JWhat will become of matter and energy on 2050?

Now is the time of "paradigm shift"

"the finite Earth"

"saturation of artificial materials"

"climate change increases"

"exhaustion of resources"

Vision for 2050: "the answer"

Energy efficiency improves

Constructing circularizing systems

Recyclable energy double

Appropriate from a theoretical and technical point of view Also, it is possible to gain the international consensus

Vision for 2050

developed countries and developing countries should compromise

Energy efficiency triple

Energy resource : primary energy

Energy : secondary energy electricity, hydrogen, gasoline

Transfer efficiency.....electricity generation, petroleum refinement Utilization efficiency...steelmaking, automobiles, air conditioning

Energy consumption in Japan

Energy in Japan 2007 (data 2005)

Note: the energy generating cites themselves consume some of the energy they generate, and also it is not possible, in reality, to put all of the available energy to use.

Structuration of knowledge : Energy consumption in Japan

Note: the energy generating cites themselves consume some of the energy they generate, and also it is not possible, in reality, to put all of the available energy to use.

Reduction in everyday life and energy-saving manufacture

Source: Japan Cement Association

Expression is the essence

Automobiles :energy consumption could be 1/10

Energy efficiency of automobiles (tank to wheel)

Current vehicles	13%	unchanged
Limit of hybrid cars	35%	3 times
Electric automobile (energy generation rate: 55%)	50%	4倍
0.96V fuel cells	80%	6 times
half weighted		12 times

Theoretical value is zero→crosses the origin

Principles of fuel cells

Provided by Prof. Yamaguchi, Tokyo Institute of Technology

Fuel Cell System and Materials

The cause of efficiency (E/E₀) drop is internal resistance

Maximum efficiency is expected if the Electric current is zero, but it is useless. (Electric voltage : E_0)

the theory of energy is composed of: "thermodynamics" and "kinetics"

Thermodynamics : idealistic

Kinetics : realistic

Low Efficiency Processes

- 1 A fuel cell with electromotive force of 0.12 volts→ 10% efficiency
- **2** Ignite in water and simply keep burning \rightarrow 0% efficiency

IgnitionPractically, there is no change.Hydrogen and oxygen become water at 25°C.

Infinite processes that is not in ideal conditions

Thermodynamics: an idealization

 $1.2 \times (2 \times 96500) = 237 \text{kJ} = \Delta \text{G}$

Not yet fully proved

Water electrolysis minimum1.2 [V] 25°C

Minimum energy = 1.2 [V] × Current[A]

If we can create a fuel cell that generates 2 [V],

$$H_{2} + \frac{1}{2} O_{2} \xrightarrow{2[V]} H_{2}O_{2} \xrightarrow{1} H_{2}O_{1.2[V]}$$

Single operation of water electrolysis and fuel cell can yield the energy of: 0.8 [V] × current

Which in fact violates the low of conservation of energy and matter \rightarrow it must be impossible

Fuel cell of **1.2** [V] possesses the maximum energy conversion efficiency.

Expectations for Fuel Cells

although the theoretical efficiency are the same,

Power generation can be achieved by rotating the shaft of a generator. ← bicycles

 Thermal power generation ← the turbines are spinning via steam power and combustion gas.

 ← Ideal conditions can be obtained by increase of temperature

 Steam turbines:
 limit of steam temperature

 gas turbines:
 limit in materials

Fuel cells←there is no restriction of temperature because there is no heat conversion concerned in the reaction

- possibility of efficient power generation at low temperature
- the solutions for efficiency improvement may become clear.
- Applications of miniaturizations, mobiles, dispersed stationary-types, and portable generators.

Be able to corresponds with the load fluctuation.

Nature is described by the kinetic theory

Internal Resistance Analysis 0.01A/cm² (it is possible now)

‡ Provided by Prof. Yamaguchi, Tokyo Institute of Technology

The molecules, ions, and electrons are being contacted with Platinum, Electrolyte, and Gas simultaneously

Q: what is the theoretical energy Consumed in cement production?

Hint 1: cement: limestone ->calcium oxide

Hint 2: energy dissipated in crush and deformation is assumed to be zero

Let's return to the main subject...

skepticism arises with rapidly increasing knowledge

There are many ways of thinking, complicated phenomena, No absolute truth

"common sense may be wrong" "Both arguments should be included"

IPPC concluded with 95% reliability

There is little room for skepticism

http://www.cir.tohoku.ac.jp/~asuka/

Global Climate Change (Temperature)

-Observations and simulations-

It is quite likely that the rise in global average temperature observed after mid 1970s is due to the increasing amount of green-house gases emitted by human

Swedish Parliament members visit

‡Information and Robot Technology Research Initiative

Examples of Micro-chemical Chips with Threedimensional Structure

Advantages:

High-function
High-controllability
High-designability

Unique technologies:

Micro unit operation (MUO) Continuous-flow chemical process (CFCP) Thermal lens microscope (TLM) Faculty of Engineering, Kitamori lab.

Analogy of Electronics and Micro-chemical Chips

Resistances, Capacitors, Diodes

Microchemical Chips

Reaction, extraction, purification, and distillation

Bio instrument with micro chemical chip

μ-Extraction chip Super-small environmental water analyzer

μ-ELISA chip Micro diagnostic analyzer

μ-Gas extraction chip Clean-room ammonia analyzer

Easy Desktop chemical plant (gel microparticle production30t/year)

Example 1: microdiagnostics system cancer, allergics, liver disease, heart trouble etc.

Conventional machine

- blood needed
- promptness
- operated by
- prices

•user

- : mL
 - : days and hours
- : professionals
- : ¥10 million~
- : hospitals, companies→ individual

\rightarrow minutes and seconds on site

- \rightarrow laymen
- \rightarrow ~¥0.1 million

less than μL

Microchip machine

personalizing the checkup

no pain

Two-phase flow in micro-channel —streamline tracing—

Ordinary system

‡

gravity does no work but instead, interfacial tension governs the flow → aligned both left and right
 Reynolds number can be 5 at its best → laminar flow

• the interface of laminar flow is stirred \rightarrow it appears as turbulent flow (extraordinary) Laminar flow (locally)

t Turbulent flow (grobally)

Nitrobenzene: 2.0uL/min 2.57dyn 1 1000 steps 0.0122505 seconds Three-dimensional simulation of micro-two-phase flow

Laminar flow (no turbulence) in macroscopic world

Water and Oil counter-flow

Parallel flow implementation of vapor phase and liquid phase(three conditions)

Size hierarchy and micro-nano chemical chips

Nano-in-Micro Structuring

‡

Medical expenses bring about innovating systems

Creation of new industries: Misunderstandings with ¥33 trillion budget

‡

Small earth

Smaller demands in advanced countries

Forced demand stimulation

Demand creation according to new paradigms is important

Japan is in a good position

Segmentalized knowledge

Difficult deductive solution

structurization of knowledge, Mobilization of knowledge with some goal

Social experiment

Aging society

Economic crises

Science of materials: Global Focus on Knowledge

