Global Focus on Knowledge

The Production and Application of Matter

Hiroshi Komiyama (The University of Tokyo)

Prof. Yasushi Suto

The Origin of Matter

Prof. Yasuhiro Iye

The Character of Material

Prof. Masakatsu Shibasaki

Material and Living Organisms

The figures, photos and moving images with ‡marks attached belong to their copyright holders. Reusing or reproducing them is prohibited unless permission is obtained directly from such copyright holders.

1. The Structure and Properties of Matter

The property depends on its structure

Materials of the same crystalline phase can show different properties

Hard and soft irons

Colorless, Yellow, and Black Diamonds

Ductile, powdery, and smooth split silicon.

1.1 Dynamic Characteristics

Water does not start boiling at 100 ° C.

Water does not start freezing at 0 ° C.

Dynamic Models of Liquid Ebullition: Nucleation

1.2 Diversity of structure: nucleation -> crystal

monocrystal

Polycrystal

Uniform structure

Uneven structure

Diversity of Structure: Phase diagram of iron

1.3 Almost all of substances on the earth Are in non-equilibrium state

Liquid water at 120°C or -10°C

Diamonds are in equilibrium state

under high pressure

Iron should be in the form of iron oxide

in equilibrium state on the earth

Calcium carbonate in the ocean

Is supersaturated

1.4 the properties of Matter are attributed to its structure

The same material can have infinite kinds of structure (distribution of crystal forms and their scales)infinite

× (Phase types) infinite

× (structures at phase boundaries)infinite

→infinite

Natural phenomenon mediates structure control

(The formation and the growth of nuclei)

1.5 The definition and elements of the Production Process of Matter

Definition: to realize a structure in a particular range out of all the structures of infinite possibility by making a phenomenon in a particular range proceed out of all the phenomena of infinite possibility.

Four elements of the production process

Material: Chemical composition, Crystalline(amorphous) phases, impurities(inclusions)

Cf. Prof. Iye's lecture

Structure: Polycrystalline (amorphous) structure... form, size, uniformity, dimension

Speed: generation rate

Condition: Principles, Instruments, Operations, materials, and

control

Steel is used in many ways

2.1 pig iron(a blast furnace): iron ore $Fe_2O_3 \rightarrow deoxidized \rightarrow Fe$

^{*} Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

2.2 Steelmaking (converter furnace)

^{*} Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

2.3 Continuous Cast (CC)

^{*} Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

2.4 hot rolling

rolling () (deformation driving, solid small-size crystal particle

* Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

2.5 Outline of an iron-making process

- Shaft furnace (deoxidizing iron oxide)
- Converter furnace (removing impurities)
- Casting (Liquid → Solid)
- Rolling (crystal fine grain)
- Control: When Rolling

Pressure, Temperature, Speed of Roll Uniformity (µm to km) Feedback, Feedforward

2.6 Four elements in the production of matter

Material: Composition, Crystalline phase, impurities (inclusions)

Structure: polycrystalline structure, form, size, uniformity

Speed: rate of the process

Conditon: Principle of the process, instruments,

Operating condition (Temperature, Pressure, Concentration),

Control, Measurement

Matter and structure →function (property)

Speed and Condition → Productivity

Function and Productivity → Application range

3. Function and Applications (an example: Steel)

3.1 Thin plate for automobiles

High strength and elasticity thanks to controls over phase transitions

→weight saving, collision safety

3.2 Wire ropes for Akashi Kaikyo Bridge

High strength thanks to nano self-organization

→long span structure

3.3 Supermetals

High strength thanks to superfine crystal grain

→high recyclability, high strength material

3.1 Structure and Energy absorption:

Pressure-Induced Structure Change and high strength steel

Car-to-car 50% front offset impact test (50km/h)

(http://www.toyota.co.jp/jp/tech/safety/)

injured

High-Strength Steel produced by Fabrication-Induced Structural Change (Process-Induced Transformation)

In no time, (distortion \rightarrow transformation \rightarrow hardening) leading to martensitic transformation \rightarrow hardening

Remaining austenite (soft) is distorted, and transforms to hard martensite Distortion propagates uniformly, and there are few local constriction, Realizing high ductility

Structures of TRIP steel

Omanufacturing automobile steel plates

Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

3.2 High-Strength Steel at Akashi Kaikyo Bridge:

High-strength wire for bridges with texture control technology at atomic level

+

Strength of zinc galvanized steel wire for bridges

OAkashi Kaikyo Bridge

^{*} Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

Cross-Section
of Main Cable
at Akashi Kaikyo Bridge

Cross section of main cable used for Akashi Strait Bridge.

Strength of galvanized wire
Diameter of galvanized wire
Diameter of main cable
Number of galvanized wire / cable: 36,830
Weight of main cable: 25,265 ton:

Wires used previously and wires for Akashi-Kaikyo Bridge

after galvanization of Si,Cr-induced steel (keeping the structure)

Previously used steel

Transmission electron micrographs of wire aged at 450°C

AP-FIM of steel wire

Owire rod rolling

<NSC/Kimitsu, Tokyo Rope MFG/Tsuchiura>

[‡] Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

3.3 Supermetals

Transition of public demand

Mass production of ordinary products Efficient production

Energy saving, resource saving,

Environment, Automation,

Highly-functional, high-tension, high-tenacity

Even higher function New demands

Crash safety

Materials for a sustainable society:

Energy saving, horizontal recycling

Simultaneous achievements

Recyclability

Iron is recycled →electric furnace

400 million tons of steel out of 1.4 billion

Produced annually are for scrap metal

homogenization and degradation as a

Consequence of recycling
Now used as constructional materials

Supermetals

Controlling the structure of matter

Composed of only single element

Orolling experiment of ultra fine particle steel

* Provided by: Nippon Steel Engineering Co.Ltd. Kimitsu Works

High strength thanks to small size of crystalline particles

Previous (same as rolled)

TMCP steel

ultrafine particle steel

* Figure 1.the increase of strength due to the size of crystalline particles (a frame format)

The definition and elements of manufacture

Definition

Causing selected phenomena Realizing selected structure

• Elements

Material: Composition, Crystalline Phase Structure, impurities (contaminant)

Structure: Various crystalline structure, form, size, uniformity, thickness

Speed: Speed of the process..

Conditions: Principle, Device, manipulation,

heat control, measurement

4. Outline of this lecture

Lecture One: manufacturing processes e.g. metal(steel)

Lecture Two: Conjugation (devices)

semiconductors, inorganic materials

soft matters, e.g., liquid crystals

Lecture Three: materials for a sustainable future

fuel batteries, microchips

End of Lecture One