Research in Psychology

- **basic research**
- **practical research**

Practical research
(\clinical psychology, educational psychology, forensic psychology...)

Main goal - to deal with real problems

Basic research

Main goal - to clarify human mental activities

The core of psychology is research in cognitive psychology.
A Framework of Understanding

Cognitive psychology’s assumption:
mental activities = information processing

Input of information = perception
Selection of information = attention
Storage of information = memory
Representation of information = concept
Expression of information = language
Processing of information = thought
etc.
To clarify the mechanisms of human information processing

ex. : Memory

- How do we remember things?
- Why do we forget things?
- Why is memory distorted?
- Why are some things easy to forget,
Research Themes Closely Related to Real Life

◆ Why is eyewitness testimony fallible?

◆ Do “subliminal cuts” have any effect?

◆ Do children have a special ability to learn language?
Research Methods in Cognitive Psychology

Main methods - experiments

Additional methods:
- computer simulation,
- measuring brain function,
 etc.

Cognitive psychology \neq “process industry”
$=$ “intellectual industry”

Experiments \times expensive experimental equipment
\bigcirc PCs
\bigcirc paper and pencil
Takano’s Research Themes

1. Visual perception
2. Memory
3. Visual imagery
4. Language and thought
5. Form cognition
6. Inference
7. Culture
Discussion on English as an official language (ex. Yoichi Funabashi)

A proposal to adopt English as the national language (ex. Arinori Mori)
Criticism of the Japanese Language

- English — logical
- Japanese — illogical

 \[\text{ex.: omission of subjects, equivocal expressions, etc.}\]

∴ Using Japanese prevents speakers from thinking theoretically

 (The linguistic relativity hypothesis)
The Linguistic Relativity Hypothesis
(The Sapir-Whorf Hypothesis)

Language
\{=\text{means of communication}\}
\text{means of thinking}

The strong hypothesis: language = thought
The weak hypothesis: language \Rightarrow \text{thought}

\therefore \text{A difference in language} \Rightarrow \text{a difference in thinking}
"Snow"

- **English**: one word (snow)
- **Eskimo**: many words (fluttering snow, melting snow, dry snow, etc.)
The Hopi Indian language

“Flying things” (except birds) = insects, airplanes, aviators, etc.
Whorf’s argument: Problems

Differences in language:

The evidence was presented

Differences in thought:

The evidence was not presented

∴ Subsequent studies — Consider differences in thought patterns.
Research on Colors

Language = basic color terms
Thought = color perception

Basic color terms
- English: 11 words
- the Dani language: 2 words (light/dark)

Hypothesis: The Dani are inferior to Americans in color perception.

Psychologists’ research findings
- In their ability to distinguish colors: Americans = The Dani
“Peach” ≠ a basic color term

However, we can distinguish \{ “red” and “peach”
 different tones of “peach” \}

∴ Test results on Dani people concur.

But..., color perception = thought?
Color perception: genetically determined
∴ The possibility that it is affected by language is small.
Bloom’s Hypothesis

「思考らしい思考」: language ⇒ thought ？

Alfred H. Bloom: a psychologist and linguist at Swarthmore College
“The Linguistic Shaping of Thought” (1981)

English vs. Chinese
Japanese
Differences in Language

Linguistic devices

1. Counterfactual conditionals
2. Hypostatization

English — ○
Chinese, Japanese — ×
Counterfactual Conditionals

= \{ \begin{align*}
& \text{Subjective past} \\
& \text{Subjective past past perfect}
\end{align*} \}

\text{ex. : If John had gone to the library, he would have seen Mary.}
That measure will be approved by Congress.

The approval of that measure by Congress may be quicker than expected.
Differences in Thinking

Counterfactual conditionals

Hypostatization

= expressions of abstract & scientific thought

Americans: linguistic training — ○
Chinese, Japanese: " " — ×

∴ Ability for abstract & scientific thinking
: Americans > Chinese, Japanese
Bloom’s Experiments

Presenting paragraphs ⇒ multiple-choice questions

◆ Five experiments: comparing American college students
 Chinese college students

◆ One experiment: comparing American college students
 Japanese college students

Results (percentage of correct answers):

Americans > Chinese, Japanese
Arguments

◆ Criticism from Chinese psychologists (Au, Liu):
The results of Bloom’s experiments are not replicable

◆ Bloom’s counterarguments

\[
\begin{align*}
\text{Difference in linguistic materials} \\
\text{English ability of the subjects}
\end{align*}
\]
failed to replicate

Points of the Arguments

Extraneous variables — uncontrolled

∴ Interpretation of the experimental results — unclear

Extraneous variables
 = variables that can affect effect variables (the percentage of correct answers) in addition to cause variables (language)
Confounding Extraneous Variables

Cause ? Effect Extraneous variables
Extraneous Variables

Differences between \(\begin{cases} \text{Americans} \\ \text{Chinese, Japanese} \end{cases} \neq \text{only language} = \text{many other things} \)

[Assumption]
General mental ability: American subjects > Chinese subjects

[Results]
The score: "" > ""
Control Conditions

Control conditions → control of extraneous variables

[Methods]
- Experimental conditions: counterfactual conditions → ○
- Control conditions: "" → ×

[Results]
- Experimental conditions: Americans > Chinese
- Control conditions: "" = ""

→ proving Bloom’s hypothesis
Lack of Control Conditions

Bloom’s experiments
Au’s experiments
Liu’s experiments

\[\therefore \text{certain conclusions} \rightarrow \text{impossible} \]

Only one of Bloom’s experiments has a control condition.

\[= \text{an experiment in hypostatization} \]
Read the following paragraph and the question based on it. Choose the best answer from the four alternatives below and write your answer in the blank.
A recent report on pollution stated: Living in a polluted environment can cause lung disease; but living in a polluted, comparatively high altitude location increases the danger and, conversely, living in a polluted, low altitude location decreases it. Oddly enough, however, living in a polluted high altitude location and eating a lot of fatty foods turns out to be just like living in a polluted, low altitude location.
Q: According to the above report, which of the circumstances below would be likely to be the most harmful to your health?

A. A polluted, low altitude location, and eating a lot of fatty foods.

B. A polluted, relatively high altitude location, and eating a lot of fatty foods.

C. A polluted, relatively high altitude location, and eating very little fatty foods.

D. Crazy question.
A recent report on pollution stated: There exists a relationship between living in a polluted environment and getting lung disease; at comparatively high altitudes the relationship is stronger and at comparatively low altitudes it is weaker. Oddly enough, moreover, at comparatively high altitudes, eating more fatty foods renders the relationship between living in a polluted environment and getting lung disease equivalent to that existing in low altitude locations.
Bloom’s assumption

\{ \text{Paragraph 1} \} \text{\{ Paragraph 2 \}}

\begin{itemize}
\item The content is the same.
\item Only the degree of hypostatization is different.
\end{itemize}

\begin{itemize}
\item Paragraph 1: the degree of hypostatization \textendash\ small
\item Paragraph 2: the degree of hypostatization \textendash\ large
\end{itemize}
[Paragraph 1]
Living in a polluted environment can cause lung disease; but living in a polluted, comparatively high altitude location increases the danger and, conversely living in a polluted, low altitude location decreases it.

[Paragraph 2]
There exists a relationship between living in a polluted environment and getting lung disease; at comparatively high altitudes the relationship is stronger and at comparatively low altitudes it is weaker.
The Structure of the Experiment

Paragraph 1: the degree of hypostatization — small (= the control condition)

Paragraph 2: the degree of hypostatization — large (= the experimental condition)

Prediction

- paragraph 1: Americans = Chinese
- paragraph 2: Americans > Chinese

Result = Prediction
Bloom's Results

Paragraph 1

Paragraph 2

(Bloom, 1981)
Interpretation of the Experimental Results

Do experiments in hypostatization proving Bloom’s hypothesis?

The problem = a methodological flaw

The difference in \(\left\{ \begin{array}{l} \text{the experimental condition} \\
\text{the control condition} \end{array} \right\} \neq \text{the degree of hypostatization} \)
Answer = C (A polluted, relatively high altitude location, and eating very little fatty foods)
There exists a relationship between living in a polluted environment and getting lung disease; at comparatively high altitudes the relationship is stronger and at comparatively low altitudes, it is weaker.

“Relationship” = the slope of function +

“The relationship is strong” = function’s slope is steep

intercept is high
Lung disease

high: high altitude locations
low: low altitude locations

pollution

The Functional Relationship of
Paragraph 2
The Functional Relationship of Paragraph 2-(1)

Lung disease

pollution

high altitude locations

low altitude locations

Answer: C
The Functional Relationship of Paragraph 2-(2)

Answer: C
The Functional Relationship of Paragraph 2-(3)

Answer: A (?) B

Answer: A (?) B

Answer: depends on the degree of pollution
A methodological flaw

Paragraph 1 (the control condition): Answer = C
Paragraph 2 (the experimental condition): Answer = D (?)

Question: Why does the flaw influence the outcome?

○ Chinese subjects
× American subjects
Replication

◆ American subjects
 = Cornell University
 Students of “Cultural Psychology”

◆ Japanese subjects
 = the University of Tokyo (Komaba Campus)
 Students of “Psychology” (2 classes)
Results of the Replication

(Bloom, 1981)

Replication: basically successful
Results of Japanese Students: Humanities and Sciences

(Takano, *Cognition*, 1989)
An extraneous variable = Knowledge of function

◆ Humanities students: little knowledge of function

Paragraph 2 — interpreted with a common functional relation

.: they chose “C”
⇒ a high percentage gave the correct answer
Hypothesis

An extraneous variable = Knowledge of function

◆ Science students: good knowledge of function

 Paragraph 2 — gave thought to various functional relations

 ∴ Many of the subjects chose “D”

 ⇒ a low percentage gave the correct answer
Corroboration

1) American subjects in the replication = humanities

2) American subjects in Bloom’s experiment = humanities
 (students in psycholinguistics)

3) Chinese subjects in Bloom’s experiment = humanities + sciences

4) The percentage of correct answers to paragraph 1:
 sciences > humanities
Results of Japanese Students: Humanities and Sciences

(Takano, *Cognition*, 1989)
If the hypothesis is correct for American students as well, the percentage of correct answers to paragraph 2:

- **humanities** — high
- **sciences** — low
The Verification Experiment

Subjects = undergraduates at Cornell University

Humanities = students of “Cultural Psychology” (already mentioned)

Sciences = students in the Department of Physics (have studied calculus)
Experimental Results in America

Takano’s hypothesis – supported

(The results of Japanese students)

(Takano, Cognition, 1989)
“Eating a lot of fatty foods” is harmful to one’s health

∴ alternative A, B, C ≠ correct

∴ the correct answer = alternative D

("Crazy question.")
“Fatty foods” can be harmful to one’s health
- Everyone knows this
- it affects all subjects equally

- The differences between
 - Americans
 - Chinese, Japanese
 - humanities
 - sciences

 cannot be explained
The difference between Americans and Chinese, Japanese, as found in Bloom's Paragraph 2, was observed among Japanese as well as among Americans.

Therefore, the difference in performance cannot be attributed to the difference in native language.
Conclusions

1) Experiments in hypostatization

\[
\begin{align*}
\text{Difference in language} \\
\text{Difference in familiarity with functions}
\end{align*}
\]
were confounded

2) Experiments in hypostatization

\[\times\] Proving Bloom’s hypothesis

3) Bloom’s other experiments

\[\rightarrow\] uninterpretable

\[\because\] the lack of control conditions

4) The Japanese language

\[\times\] lower ability in abstract scientific thinking
The influence of language on thought (verified)

- Minor influence
 ex.: Basic color terms help improve memory for ambiguous colors by a few percent.

- Major influence
 ex.: People who speak different languages cannot understand each other.
 ex.: Speakers of a certain language have lower thinking ability.
Serendipity

= Accidental discoveries in science
Koichi Tanaka (The Nobel Prize in Chemistry, 2002)
: Ionization of protein molecules

“... I tested both specimens, but neither of them, with high molecular weight, ionized individually. Then I mixed the specimens by accident. Thinking that it was a waste to just throw it away, I measured the mixture and found that it was ionized.”

(The Asahi Shimbun October 11, 2002)
Hideki Shirakawa (The Nobel Prize in Chemistry, 2000) : The discovery of conductive polymers

Dr. Kazuo Akagi of University of Tsukuba, who collaborated on research with Dr. Shirakawa, says, “a thousand times too much catalyst was added by mistake, and the result of this error took the form of a film.” Dr. Shirakawa observed that the film had metallic luster, and that was the starting point for this research. (The Asahi Shimbun October 11, 2000)