Global Focus on Knowledge Lecture Series

Finance and Math The 9th Lecture

Practical Problems of Finance and Integral Computations of Higher Dimensions

How to Compute Integration

Math

Application

New Mathematiques

Math Only for Finance Surely Does Not Exist

There is a need to make math that yields application.

Mathematical Finance
Financial Engineering

Numerical Calculation / Analysis

Practically important.

It is difficult even today when calculators are well developed!

Traditional methods have their limits.

Computational Finance

Revision (Preparation?) of Integration

Integration of a function $f(x), 0 \leqq x \leqq 0,(f(x) \geqq 0,0 \leqq x \leqq 1)$

$$
\int_{0}^{1} f(x) d x
$$

Area of a figure on $x y$ plane, surrounded by x-axis, y-axis, a graph of $y=f(x)$, a line $x=1$

Rectangular approximation

$$
I_{n}^{(1)}(f)=\frac{1}{n} f(0)+\frac{1}{n} f\left(\frac{1}{n}\right)+\frac{1}{n} f\left(\frac{2}{n}\right)+\cdots+\frac{1}{n} f\left(\frac{n-1}{n}\right)
$$

Mathematically, integration means the limit of $I_{n}^{(1)}$

Trapezoidal approximation

$$
\begin{gathered}
I_{n}^{(1)}(f)=\frac{1}{2 n} f(0)+\frac{1}{n} f\left(\frac{1}{n}\right)+\frac{1}{n} f\left(\frac{2}{n}\right)+\cdots+\frac{1}{n} f\left(\frac{n-1}{n}\right)+\frac{1}{2 n} f(1) \\
\int_{0}^{1} 1 d x=1, \quad \int_{0}^{1} x d x=\frac{1}{2} \\
\int_{0}^{1} x^{m} d x=\frac{1}{m+1}, \quad \int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi .
\end{gathered}
$$

Rectangular approximation of integration

Trapezoidal approximation of integration

$4 /\left(1+x^{*} 2\right)$

Rectangular approximation

Trapezoidal approximation

	rectangle left	trapezoid
100	3.151576	3.141576
200	3.146588	3.141588
300	3.144924	3.141591
400	3.144092	3.141592
500	3.143592	3.141592
600	3.143259	3.141592
700	3.143021	3.141592
800	3.142842	3.141592
900	3.142704	3.141592
1000	3.142592	3.141592

	rectangle left	trapezoid	
1000	3.142592	3.141592	
2000	3.142093	3.141593	
3000	3.141926	3.141593	
4000	3.141843	3.141593	
5000	3.141793	3.141593	
6000	3.141759	3.141593	
7000	3.141736	3.141593	
8000	3.141718	3.141593	
9000	3.141704	3.141593	
10000	3.141693	3.141593	

Integration of Multivariable Function (Multiple Integration) Multiple Integration of 2 -variables Function $f(x, y), 0 \leqq x, y \leqq 1$

$$
\begin{gathered}
\int_{0 \leq x, y \leqq 1} f(x, y) d x d y=\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x \\
=\frac{1}{n^{2}}\left\{f(0,0)+f\left(0, \frac{1}{n}\right)+f\left(0, \frac{2}{n}\right)+\cdots+f\left(0, \frac{n-1}{n}\right)\right. \\
\quad+f\left(\frac{1}{n}, 0\right)+f\left(\frac{1}{n}, \frac{1}{n}\right)+f\left(\frac{1}{n}, \frac{2}{n}\right)+\cdots+f\left(\frac{1}{n}, \frac{n-1}{n}\right) \\
\quad+f\left(\frac{2}{n}, 0\right)+f\left(\frac{2}{n}, \frac{1}{n}\right)+f\left(\frac{2}{n}, \frac{2}{n}\right)+\cdots+f\left(\frac{2}{n}, \frac{n-1}{n}\right) \\
\left.+f\left(\frac{n-1}{n}, 0\right)+f\left(\frac{n-1}{n}, \frac{1}{n}\right)+f\left(\frac{n-1}{n}, \frac{2}{n}\right)+\cdots+f\left(\frac{n-1}{n}, \frac{n-1}{n}\right)\right\}
\end{gathered}
$$

$I_{n}^{(2)}$ has n^{2} terms.

$$
\begin{aligned}
& \text { If } \quad f(x, y)=g(x)+h(y) \\
& \qquad I_{n}^{(2)}(f)=I_{n}^{(1)}(g)+I_{n}^{(1)}(h)
\end{aligned}
$$

Left side is a term of n^{2}, right side is a term of $2 n$
Amount of calculation is overwhelmingly small.
In the same way, integration of 3 -variables function $f\left(x_{1}, x_{2}, x_{3}\right), 0 \leqq x_{1}, x_{2}, x_{3} \leqq 1$ is

$$
\int_{0 \leqq x_{1}, x_{2}, x_{3} \leqq 1} f\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}=\int_{0}^{1}\left(\int_{0}^{1}\left(\int_{0}^{1} f\left(x_{1}, x_{2}, x_{3}\right) d x_{3}\right) d x_{2}\right) d x_{1}
$$

Approximation

$$
I_{n}^{(3)}=\frac{1}{n^{3}}\left\{f(0,0,0)+\cdots+f\left(\frac{n-1}{n}, \frac{n-1}{n}, \frac{n-1}{n}\right)\right\}\left(\text { term of } n^{3} \quad\right)
$$

The more variables, the more amount of calculation, so approximation of integration becomes more difficult.

Integration of 360-variables Function
The worth of MBS (Mortgage Backed Security)
Securities based on housing loan
Debt guarantee from the government: No risk of non-performing loan
A borrower of the loan has the right to repay ahead of schedule.
Risk of a prompt return: One might switch to a loan with less interest.

Stochastic process model for interest
Model for a degree of responses toward interest change

The longest repayment period is 30 years. $=360$ months

Yield Rate of Long-term Government Securities

Transition of Interest

Mathematical Problem

Calculation of multiple integration of 360-variables function

$$
\begin{array}{r}
f\left(x_{1}, x_{2}, \ldots, x_{360}\right), 0 \leqq x_{1}, x_{2}, \ldots, x_{360} \leqq 1 \\
\int \cdots \int_{0 \leqq x_{1}, x_{2}, \ldots, x_{360} \leqq 1} f\left(x_{1}, x_{2}, \ldots, x_{360}\right) d x_{1} d x_{2} \cdots d x_{360}
\end{array}
$$

Quadrature method is to be used.
Divide areas each variables move in into 10 sections and calculate.
10^{360} computations are needed.
10^{30} computations in a second : 10^{330} seconds $>10^{320}$ years

Method Using Random Numbers

To make it easier, let us consider integration of 2 -variables function $f(x, y), 0 \leqq x, y \leqq 1$ (The idea here can be applied to integration of 360 -variables function.)
\diamond Monte Carlo Method
Uniform random numbers X (real numbers between 0 and 1)
Uniform random numbers: Realization value of chance variable whose probability to be $0 \leqq X \leqq a(0 \leqq a \leqq 1)$ is a
$X_{1}, X_{2}, X_{3}, \ldots$ are independent uniform random numbers. Law of great numbers

$$
\begin{aligned}
M_{n}= & \frac{1}{n}\left\{f\left(X_{1}, X_{2}\right)+f\left(X_{3}, X_{4}\right)+\cdots+f\left(X_{2 n-1}, X_{2 n}\right)\right\} \\
& \rightarrow I=\iint_{0 \leqq x, y \leqq 1} f(x, y) d x d y, \quad n \rightarrow \infty
\end{aligned}
$$

Actual appearance of uniform random numbers:
pseudorandom numbers \longmapsto Makoto Matsumoto (the U. of Hiroshima)

Loosely speaking, the error is $\left|I-M_{n}\right| \sim n^{-1 / 2}$ (Accurately, $n^{-1 / 2} \log \log n$)

Error around 10^{-3} : About $n=10^{6}$ calculations are needed.
Error around 10^{-5} : About 10^{10} calculations are needed.

A great decrease in amount of calculations.
Isn't there a point sequence with less bias?
\diamond Halton Sequence notation using binary or ternary system

decimal system	binary system	ternary system
1	1	1
2	10	2
3	11	10
4	100	11
5	101	12
6	110	20
7	111	21
8	1000	22
9	1001	100
10	1010	101

Calculation of a Number n Using Binary Notation

n divided by $2=c_{n 1}$, remainder $a_{n 1} \quad c_{n 1}$ divided by $2=c_{n 2}$, remainder $a_{n 2}$
$c_{n 2}$ divided by $2=c_{n 3}$, remainder $a_{n 3}$
Set following sequence $a_{n 1}, c_{n 1}, a_{n 2}, c_{n 2}, a_{n 3}, c_{n 3}, \ldots$ in the same way

$$
\begin{aligned}
& a_{n 1}, a_{n 2}, a_{n 3}, \cdots \text { are } 0 \text { or } 1, \text { and } \\
& \quad n=a_{n 1} 2^{0}+a_{n 2} 2^{1}+a_{n 3} 2^{2}+\cdots
\end{aligned}
$$

When n is written in binary notation, $a_{n 1}$ is first digit, and $a_{n 2}$ is tenth digit

$$
\phi_{2}(n)=\frac{a_{n 1}}{2}+\frac{a_{n 2}}{2^{2}}+\frac{a_{n 3}}{2^{3}}+\cdots
$$

Determined as above, a function ϕ_{2} that correspond natural number n to a fraction (binary number) $\phi_{2}(n)$, and $0<\phi_{2}(n)<1$

decimal system	binary system	$\phi_{2}(n)$
0	0	0
1	1	$1 / 2$
2	10	$0+1 / 4$
3	11	$1 / 2+1 / 4$
4	100	$0+0+1 / 8$
5	101	$1 / 2+0+1 / 8$
6	110	$0+1 / 4+1 / 8$
7	111	$1 / 2+1 / 4+1 / 8$
8	1000	$0+0+0+1 / 16$
9	1001	$1 / 2+0+0+1 / 16$
10	1010	$0+1 / 4+0+1 / 16$

Generally, when p is a prime number, and n is developed to p-adic number,

$$
n=b_{n 1} p^{0}+b_{n 2} p^{1}+b_{n 2} p^{1}+\cdots
$$

Only $1 b_{n 1}, b_{n 2}, b_{n 3}, \ldots=0,1,2, \ldots, p-1$, that satisfies above is determined.

When

$$
\phi_{p}(n)=\frac{b_{n 1}}{p}+\frac{b_{n 2}}{p^{2}}+\frac{b_{n 3}}{p^{3}}+\cdots
$$

a function ϕ_{p} that corresponds a fraction satisfying $0<\phi_{p}(n)<1$ to a natural number n is determined.

Table of $\left(\phi_{2}(n), \phi_{3}(n)\right)$ When $1 \leqq n \leqq 9$

n	$\phi_{2}(n)$	$\phi_{3}(n)$
1	$1 / 2$	$1 / 3$
2	$1 / 4$	$2 / 3$
3	$3 / 4$	$1 / 9$
4	$1 / 8$	$4 / 9$
5	$5 / 8$	$7 / 9$
6	$3 / 8$	$2 / 9$
7	$7 / 8$	$5 / 9$
8	$1 / 16$	$8 / 9$
9	$9 / 16$	$1 / 27$
10	$5 / 16$	$10 / 27$

For a vector sequence $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{\infty}$ inside a square $[0,1]^{2}$, a figure B in the square, and natural number $N \geqq 1$,

$$
\begin{gathered}
D_{N}\left(B ;\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{\infty}\right) \\
=\mid\left(\left(x_{n}, y_{n}\right) \text { in figure } B, \text { number of } 1 \leqq n \leqq N\right)-N \times(\text { area of } B) \mid
\end{gathered}
$$

is determined. (Discrepancy)

Theorem 1 Suppose p, q are different prime numbers. Then, there is a constant $C>0$ that satisfies follows.

For any rectangle B whose sides are parallel to a square

$$
D_{N}\left(B ;\left\{\left(\phi_{p}(n), \phi_{q}(n)\right)\right\}_{n=1}^{\infty}\right) \leqq C(\log N)^{2}, \quad N \geqq 1
$$

Random Number 400

Random Number 1000

For a vector sequence $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}_{n=1}^{\infty}$ inside a cube $[0,1]^{3}$, a solid B in the cube, and natural number $N \geqq 1$,

$$
\begin{gathered}
D_{N}\left(B ;\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}_{n=1}^{\infty}\right) \\
=\mid\left(\left(x_{n}, y_{n}, z_{n}\right)_{\text {in solid }} B, \text { number of } 1 \leqq n \leqq N\right)-N \times(\text { vol. of } B) \mid
\end{gathered}
$$

is determined. (Discrepancy)

Theorem 2 Suppose p, q, r are different prime numbers. Then, there is a constant $C>0$ that satisfies follows.

For any rectangle B whose sides are parallel to a square

$$
D_{N}\left(B ;\left\{\left(\phi_{p}(n), \phi_{q}(n), \phi_{r}(n)\right)\right\}_{n=1}^{\infty}\right) \leqq C(\log N)^{3}, \quad N \geqq 1
$$

When $d \geqq 1$
For a point sequence $\left\{z_{n}\right\}_{n=1}^{\infty}, B \in \mathcal{B}\left([0,1]^{d}\right)$ and $N \geqq 1$

$$
\begin{gathered}
D_{N}\left(B ;\left\{z_{n}\right\}_{n=1}^{\infty}\right) \\
\left.=\left\lvert\,\left(\text { number of } n=1,2, \ldots, N \text { satistying } z_{n} \in B\right)-N \times\left(B \begin{array}{c}
\text { 's Lebesgue } \\
\text { measure }
\end{array}\right)\right. \right\rvert\,
\end{gathered}
$$

is determined. (Discrepancy)

Theorem 3 Suppose p_{1}, \ldots, p_{d} are different prime numbers. Then, there is a constant $C>0$ that satisfies follows.

For any $\quad 0 \leqq a_{k} \leqq 1, k=1, \ldots, d$,
$D_{N}\left(\left[0, a_{1}\right) \times \cdots \times\left[0, a_{d}\right) ;\left\{\left(\phi_{p_{1}}(n), \cdots \phi_{p_{d}}(n)\right)\right\}_{n=1}^{\infty}\right) \leqq C(\log N)^{d}, \quad N \geqq 1$
A sequence that is evaluated as the theorem above is called low discrepancy sequence.
$\left\{z_{n}\right\}_{n=1}^{\infty}$ is a low discrepancy sequence.
$f:[0,1]^{d} \rightarrow \mathbf{R}$ a good function that satisfies a certain condition.

$$
\begin{gathered}
M_{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(z_{k}\right) \\
I=\int \cdots \int_{[0,1]^{d}} f(x) d x \\
\left|I-M_{n}\right| \leqq C^{\prime} \frac{(\log n)^{d}}{n}
\end{gathered}
$$

Error is almost in order of n^{-1}.
Halton sequence is logically OK, but actual efficiency is low in higher dimension.
Sobol et al. discovered the method using properties of polynomial expression of finite body successfully.

