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1. Algorithm



Algorithm

Finite and mechanical calculation method

Algorithm «— Muhammad AL-Khwarizmi
(c.780-c.850; Arabia)

cf. program

int v;
for(v = 1; v <= n; v++){ vfirst[v]
for(int a = m; a > 0; a—-){
int vl = head[2*a - 1];
adjlistl[al = vfirst[vi];
viirst([vl] = a;

}

cf. existence theorem

0; }

There are infinitely many
prime numbers.

(Proof by contradiction)



Unconstructive Existence Proof (by contradiction)

There are infinitely many prime numbers. ( a slide by Dr. Katsura)

2. integer Z

Prime number
a natural number that is divisible only by 1 and itself

2,3,5,7,11,13,17,19,23, - - -

There are infinitely many prime numbers

\_/ proof by contradiction.

If number of primes is finite,
they are written P1,P2,° s Pm

and suppose n=mpips- Pm + 1
1. can be divided by a prime

and cannot be divided by P15 """ s Pm nce

repugné

How primes are generated cannot be presumed from this proof.




Constructive Existence Proof (a Very Easy One)

theorem: The number of even primes is infinite.

proof (by the inductive method):

1) m = 2 isaneven number.

2 ) Ifaninteger 7% isanevennumber, 7L -+ 2 isaneven number

This proves that the infinite number of even primes
can be made.




An Example of an Algorithm in Math

Highest common factor Euclidean algorithm



8. Euclidean Algorithm ( a slide by Dr. Katsura)

Vhen a abe 2 integers and not 0
and @ = gb+ 1 (g, 7 :integer) « Property, fact
gcd(a, b) = ged(b, ) ( static )
—— b4 = 2%x204+14
20 = 1x14+6 <— calculation
14 = 2x64+2 :
N (dynamic)

The highest common factor of 54 and 20 is 2.




An Example of an Algorithm in Math

highest common factor high-speed logn

(Euclidean algorithm)
primality test Sieve of Eratosthenes low-speed /n
2, 3,48,5,; 0,8, 9, 10, 11, 12, s
construction problem ( by a ruler and a compass)
“regular pentagon : possible regular heptagon : impossible

bisection of an angle : possible  trisection of an angle : impossible

finite basic operations possible/ impossible high/ low speed




The Logic of Algorithms (1)

algorithm = finite and mechanical calculation

What is a calculation? What can a computer do?

computability (1930s )

equivalence of various calculation models:

recursive

Turing machine computability — .
function

— Proposition of Church-Turing

A computability



HaIting problem (an example of non-computability )

The program e andits input value ¢ isgiven, and

one must judge whether it can be finished in a finite time.

yes ( The program stops in a finite time. )

Halt(e, x) =

no (The program never stops. )

theorem:

There is no algorithm to calculate “Halt”.



Proof There is No Algorithm for Halt.

yes (It stopsin a finite time. )
NO (It never stops. )

Halt(e, x) =

0 (Halt(e, e) = no)

f(e) = undefined Halt(e, e) = yes)

There is an algorithm for Halt. = f hasan algorithm.

When
I is input to f calculating program...
Halt(f, f) =no € f(f) =0
tradi
<~ f stopsforf. < Halt(f, f) = yes conciiaonl
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( Computablity, Solvability)

possible/ impossible

U

high/ low speed

(computational complexity)
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Calculation of Algorithm Dealing With Finiteness

sorting problem

input .7, 15, 25, 27, 9, 10, 13, 19, 22, 2, 17, 3, 5, 14

)

output -2, 3, 5, 7, 9, 10, 18, 14, 15, 17, 19, 22, 25, 27

algorithm 1 . test all sequences n!

2

algorithm 2 . repeat looking for minimum 10,

algorithm 3 : separate, sort and integrate ¢, log n

complexity of problem complexity of algorithm
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Increases of Computation Time

nput computation time
size n ‘nz o n!
10 | 1 x 1079 sec 1 X108 sec 1 x 1077 sec 3.6 x 10~% sec
202 x 1079 sec 4% 1078 sec 1 x 104 sec 7.7 yr
303 x 109 secl 9 x 1038 sec | 1.1 x 101 secl 8.4 x 1014 yr
40 |4 x 1079 sec 1.6 x 10~7 sec 1.8 min 2.6 x 1030
50 | 5 x 1079 sec 2.5 x 107 sec 31 hrs | 9.6 x 1046
100 || 1 x 1078 sec 1 x 1076 sec 4.0 x 1012 r | 3.0 x 10140
10001 x 10— 7 sec 1% 10— 4 SBC |

Suppose the computer calculates 101Y| times per second.

polynomial time/ exponential time




The Logic of Algorithms (2)

computational complexity high/ low speed

polynomial time/ exponential time

1970 s NP perfectibility  (Cook, Levin)

= framework of algorithm construction
(target and limit)



Class P vs Class NP

Problem:

Is there a route shorter than 15km between Hongo and Komaba?

Hongo

P = Polynomial

NP = Nondeterministic Polynomial
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#E (Find)
VS

FEER (Check)

(13.7 km)

GOO map
(C) 2005 NTT Resonant Inc.
(C) 2000-2005 ZENRIN DataCom CO.,LTD. ; (C) 2001-2005 ZENRIN CO., LTD.
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Problem: Is There a Route Shorter than o ?

between 2 points

traveling salesman

easy to check

easy to check

easy to find

P

difficult to find

NP
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NP Perfectibility

traveling salesman problem

same-shaped graph?

shortest path problem

linear programming problem

program . P =N P ?

Clay math institute Millennium Problem (1/7) (¥100 million)

http://www.claymath.org/
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The topic is changing from here ....

Development of Calculator

abacus —»

< Tiger calculator
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The Birth of the Computer

electronic calculator:

1946 ENIAC (J. wW. Mauchly, J.P.Eckert)

at the University of Tokyo:

1958 PC-1 (parametron type)

(Hidetoshi Takahashi, Eiichi Goto, Eiichi Wada)



The Progress of Computer (Hardware)

Moore’slaw : 2-fold/ 1.5 yrs

2-fold /1.5yrs = 100-fold/10yrs = a billion-fold / 40 yrs

Size of a problem that can be solved in a second

# of calculation / sec. calculating time T(n)
¢ n n? 2 n!
1010 1010 105 22 i
40yrs | l ! | |
101% 1018 109 60 20
n that satisfies T(n)=C
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When Calculating Power is c-fold...

® polynomial time n2 — n — 1 - ﬁ

e exponentialtime 92Tt — n—n -+ logc

lesson 1 : Slow algorithms do not receive

the benefit of the hardware’s progress

lesson 2 : Difficult problems cannot be solved

even if the hardware progresses.
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Traveling Salesman Problem (the Progress of Algorithms)

1987 .. 532 cities
(M. Padberg—G. Rinaldi)
19 = 532

1998 : 13,5009 cities

Py (D. Applegate, et al.)
} ny = 13509 (25-fold)

http://www.tsp.gatech.edu/history/pictorial /
26



Summary up to here

Progress in environments of optimization computation

. the logic of calculation_(computability, computation amount)

. hardware

. algorithm
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2. Calculation of Optimization



Calculation by Formula

f(z) = 3z% — 423 — 1222 1+ 3 \L_-l T

= f(z) = 122% — 1202 — 242 \ /f
— 12z(z + 1)(z — 2) ‘

= fl(x) =0 & =0, —1, 2

== f(0) =3, f(—=1)=-2, f(2)=—29

f(z) = 324 — 42°% — 1222 + 3+ 0.012

= f/(z) = 1222 — 1222 — 242 + 0.01 Do what?

= 12x(x + 1)(xz — 2) + 0.01

‘ ion! \
= fl2) =0 & =07, —17, 27 Calculation!

= f(0?7) = 3?, f(—1?) = —2?, F(27) = —29? 29




Local Search f@)

initial
approximation
SO: value ¥
minimize
S1: f(x)ar @™ ‘sneighborhood = ®
S2: f(x*) < f(x®) ,thenstop (2™ is the local best answer )

S3: ¥ — ,® Renew and go S1
back to



Development of Optimization (Metric Variable)

1947
1960

1970
1979
1984
1995

logic: linear.”/ convex.” non-linear

linear planning

Dantzig

non-linear planning, Newton method

convex analysis, dual theorem

ellipsoid method
interior method
semidefinite program

Powell, Fletcher
Rockafellar
Khachiyan

Karmarkar

Alizadeh, Nesterov, Nemirovski

environment: enhancement of calculation power



Newton Method (Basic Calculation Algorithm)

Taylor series (quadratic approximation):

f@) = f(a) + f(@)(x — a) + ,f"(a) (& — @) + -
~ C 4+ B(x—a) + A (z—a)?

minimization:

B f'(a)
T T T4 T YT
/
£
5 ey = @ I'(xg)
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Calculation by Newton Method

/
f (wki) R\\ 10}
R A R AN
fx) = 3z% — 423 — 1222 + 3 _
=% & — & wkg_mkz_zwk
L g 3331{:2 = 233]{: — 2

k T,

0 3.00000

1 2.36842 = expansion to polynomial

- 2.07716 function by Taylor series

3 2.00452

A3



Local Search —in discrete optimization —

f(x)
initial
approximation
SO: value x™
minimize
S1: f(x) at x™* ‘s neighborhood = p®
S2: f(z*) < f(x®) ,thenstop (™ is the local best
. answer
S3: ¥ — 1® Renewandgo S1 )
back to

...Definition of neighborhood is the problem.
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“Neighborhood” in Traveling Salesman Problem

Derians

Or-opt

T




Traveling Salesman Problem

532 cities, M. Padberg—G. Rinaldi (1987)

http://www.tsp.gatech.edu/history/pictorial/

demonstration by N. Tsuchimura

(Department of Mathematical Engineering)

—
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At last, the Relationship Between the Theory of
Computational Complexity and Optimization ...

1947
1970

1980
1984
1995
2000

[continuous]

linear programming

[discrete]

convex analysis

polynomiality, NP perfectibility

dual theorem e

submodular function e

ellipsoid method

interior
method ®®

semidefinite program @@

approximation algorithm g

discrete convex analysis @ @

Computational complexity (algorithm)




Summary of “the Math of Optimization”

dual theorem

inear programming Legendre transformation

convex analy5|s submodular

7. . localoptimization /~ _\

continuous ( discrete
_ v local search T
data
model algorithm
(AIC) computational theory
optimum computer

design

38
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