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1. Gryptograph
cryptograph
Special code made to communicate secretly,

which can be interpreted only by the partiesinvolved.

Or to make changes in sentences transmitted in a
special way.

Here, the latter is dealt with.

Plain text Sentence to be transmitted
Cryptograph Changed sentence

Cipher A tool to decode cryptograph
back into plain text



uo)

@a

3 pue

=

Jaded uj

A wood stick in same size
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Twist a long and thin paper around a stick, and write
letters on it along the stick



CaesarCipher

Each letter is replaced by a letter some fixed
number of positions further down the alphabet.

Ex. shift of 1

plain HUKANKOUGI
cryptograph IVLBOLPVHJ
cipher shift of 1

Symmetric—KeyCryptography

A cryptography whose cipher is shared by sender and
receiver.



1976 W. Diffie, M.Hellman

ey, Public-key cryptography

4 B

Key is widely

distributed.
" ”
%"&?ér :
communication
commun a|on

()

H.




The Principle of Public-Key Cryptography

Even the quickest computer takes an inordinate amount of
time to solve its algorithm, decoding is practically impossible.

Organic law

(1) By a difficult prime-factor-decomposed computation

(2) By a difficult discrete logarithm problem

RSA cryptography using (1)is to be introduced.



2. Theorems of Nurmber Theory

(Fermat's little theorem)

if P is a prime number and a is any integer
that does not have P as a factor,

a?~! = 1(mod p)

Let us assume that {L 2, ,p— 1}

v is a member of [, = Z /pZ not including 0

Since @ is not divisible by D ,

therefore, 1.2. ... .p—1 = @l-@a2- --- -ap—1
- @ 1.1.2 p—1
I-2- - -p—1isF, and notD

a* =1



p="71 prime
a = 1687 is not divisible by P.

16877 = 1 (mod 71)

q = 97 prime
a = 1687 is not divisible by ¢.

1687°6 = 1 (mod 97)




Generalize Fermat’s Little Theorem Slightly, and Use it in a Code.

P,q 2 prime numbers
Z [pqZ ~ commutative ring

If a isan integer coprime to pq , then
aP~1)(@=1) = 1(mod pq)

Suppose p = 71,q = 97,pq = 6887
Then
(p—1)(¢g—1) =6720

a = 1687 cannot be divided by P; ¢
16875720 = 1 (mod 6887)




3. public encryption
1978
Presented by R.Rivest, A.Shamir, L.N.Adleman

® public key cryptography using the fact that it is difficult to
factonize product of 2 large prime numbers.

User A (Receiver) User B (Sender)
<
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Selects 2 large primes, D, {
and compute n = pq
Chooses aninteger € from Z/(p—1)(q — 1)Z
such that an integer d exists when

ed=1 (mod (p—1)(¢g—1))

publickey n,e€
—_—

secret key P, q, d
~—




secret keyp, q, d
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public key 1, ¢S
O
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User B (Sender)

Send a plain sentence M which is coprime ton, .

encryption Me

Third person cannot calculated since prime
factorization of n is extremely difficult.

9,

User A (Receiver)

3
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reconstruct M from (M¢)? = M (mod n)




From generalization of Fermat’s little theorem,
M®P=D@=1) =1 (mod n)
Since ed =1 (mod (p—1)(¢ — 1)), thereisan integer s

ed=(p—1)(g—1)s+1
Therefore,

Me? (mod n) = MP-Da—-1s+1 (;mod n)
= (M®=D@=1)s Af (mod n)
= M (mod n)






4 Theoiry

Analog to Digital

Compact Disc
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Where Digital 1s, Error Exists

Error-correction code

Error-detection code



(0,0,0,1,1,1,0,0,0)
(0,1,0)

(0,0,0,1,1,1,0,0,0 ﬁ(o,l,o 1 1 1,0,0,0)




Information Transmission -
ormatio ansmissio @ decoder destination

source channel




F; : n -dimensional vector space in I .
(1,22, -, Zn) are called alphabets.

F, O C
C'is called code.

Members of C are used as alphabets.
1 :word length of C'.

F; \ C : redundancy
This is used for error-correction.

-

The larger (' is, the more information can be transmitted.

"
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Ability of error-correction is generally higher if F;‘ \ C islarger.

== More efficient code that fulfills both of these conflicting
conditions is desired.



Distance of I¥; is Defined to Check Errors.
() Distance

A distance between 2 points P = (x1, x5, x3) and

= (Y1,¥2,¥3) in 3-dimensional Euclidean space R3
d(P,Q) = \/(1171 —y1)? + (x2 — y2)? + (x3 — y3)?

that fulfills 3 conditions below.

(i) d(z,y) > 0. or d(z,y) =0< x =y.

(i) d(z,y) = d(y, o)

(iii) [triangle inequaity]d(ﬂ?j y) + d(y, Z) > d({E, Z) |

These 3 conditions are essential for distance.
In other words, If these 3 conditions are fulfilled, it can be
called a distance.



distance of IF‘:; S r = (.’,171?-“,:5“),,’9 = (ylj-“,yn)

Definition

(Hamming distance)

d(z,y) =81 <i<n|x; #yi}
Here, 1.5 is a number of members in group S .

That this fulfills the axiom of distance space can be easily verified.

©) For example, in IFS , 4 components are different in
L = (1:0313091) and Yy = (1 150 150) » SO d(mry) =4.

In other words, if * =(1,0,1,0,1) issent and ¥ = (1,1,0,1,0)
is received, error with Hamming distance of d(z,y) =4
has occurred.



Definition

When 2 € I and r is a natural number.
B,(2) = {z € F | d(zz) <)

is a sphere with a radius ” from the center 2

definition

minimal distance d
When (' is a subset of ]Fg , its minimal distance d is

defined as :

d = min{d(z,y) | z,y € C, = # y}

Here, min stands for minimum value.

When F§ > C = {(0,0), (1, 1)}

minimal distance d = 2
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To make it easier to understand,

Suppose a sphere with radius € with a member of (' in the center,
there is no intersection.

_d=2e+1

When received code enters into one of those spheres, the closest member of C
in the center of that sphere is decoded as a sent code.

! maximum-likelihood decoding

©) Stochastically, ¢ errors can be corrected.

‘ﬁ’Whend IS an even number,(d — 2)/2 errors can be
corrected.
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Construct a subset C' of which a Hamming
distance between 2 arbitrary points in C
most far.

IS

Hamming code, BCH code, RS code, Golay code, ==--
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