Analysis and Multidiscipline in Geometry

— Duality and Self in a Mirror —

Mikio Furuta

The previous lecture

imagination, conceptual power, theoretical possibility

- release from "reality/practical use of geometry"
- When reality goes over imagination,

 A is sometimes useful

A	(B)
Model of non-Euclidean geometry	Geometry of special relativity theory
Riemann geometry	special relativity theory

reference: "Einstein's Lectures at Komaba"

University of Tokyo Press

Appendix

Momentum to a concept of "a space itself" without surroundings ______ topology, manifold etc.

- Non-Euclidean geometry
 - Lobachevsky, Bolyai, Gauss
- Riemann geometry (Gauss's theorem of curves
 - (Gauss, Riemann
- Historically, was less popular.
- , Especially, 2 's notion of "curvature"

reference: "Bernhard Riemann1826-1866"

D. Laugwitz, translation by A. Yamamoto
Springer Verlag Tokyo, 1999

Encounter Between Concepts

Sometimes, a concept or a viewpoint of a certain field has/can unexpectedly have a practical role in other fields.

M ath and Physics

ex. A and B in the previous slide,

a role of complex numbers in quantum mechanics

In physics

example: formal similarity of statistical mechanics and quantum field theory, the concept of conservative quantity etc.

In math

similarity of prime numbers and geodesic lines etc. (T. Sunada)

Sometimes, math meets "practicality".

e.g. number theory and cryptography (c.f. Katsura)

An introduction to the cross-conceptual mathematical notion used in algebra, geometry, and analytics.

duality

Let us look into how it appears especially in manifold geometry.

- Poincare duality
- Tangent vector and cotangent vector
- de Rham's theorem

wo expressions of a light wave

pattern of electromagnetic wave

Fourier transform ,Fourier development

spectral resolution

(2)

$$ax + by = 1$$
 2 analyses

$$\mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(a,b) \qquad {\binom{3}{9}} \qquad ax+by$$

T-1 (ax+b9)

plane wave

expressed by superposition of plane waves

ab plane function

This superposition gives function of a, b.

Little generalization of dot product

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} & G_{4} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & G_{34} \end{pmatrix}$$
 fix

$$\overrightarrow{\mathcal{A}} = \begin{pmatrix} \cancel{3} \\ \cancel{y} \\ \cancel{z} \\ \cancel{w} \end{pmatrix}$$

Consider with a focus on its effect upon

Consider

with a focus on its effect upon

Let us call this equivalence relation
$$\mathbb{R}^3$$

$$\overrightarrow{R}^3 \Rightarrow \overrightarrow{a}, \overrightarrow{a}' \qquad \text{equivalence relation} \qquad \mathbb{R}^3$$

$$\overrightarrow{R}^3 \Rightarrow \overrightarrow{a}, \overrightarrow{a}' \qquad \Leftrightarrow \qquad \text{For all} \qquad \overrightarrow{R} \in \mathbb{R}^4,$$

$$\overrightarrow{a} \subset \overrightarrow{R} = \overrightarrow{a}' \subset \overrightarrow{R}$$

When

$$\vec{\alpha} \approx \vec{\alpha}$$
 and $\vec{\alpha} \approx \vec{\alpha}'$ are identified,

Let us call this equivalence relation
$$\mathbb{R}^{4}$$

$$\overrightarrow{\mathcal{R}}^{4} \rightarrow \overrightarrow{\mathcal{R}}^{7} \qquad \text{equivalence relation} \qquad \mathbb{R}^{4}$$

$$\overrightarrow{\mathcal{R}}^{4} \rightarrow \overrightarrow{\mathcal{R}}^{7} \qquad \Longrightarrow \qquad \text{For all} \qquad \overrightarrow{\mathcal{R}}^{8} \leftarrow \mathbb{R}^{3}$$

$$\overrightarrow{\mathcal{R}}^{4} \rightarrow \overrightarrow{\mathcal{R}}^{7} \qquad \Longrightarrow \qquad \overrightarrow{\mathcal{R}}^{7} \leftarrow \mathbb{R}^{3}$$

$$\overrightarrow{\mathcal{R}}^{4} \rightarrow \overrightarrow{\mathcal{R}}^{7} \qquad \Longrightarrow \qquad \overrightarrow{\mathcal{R}}^{7} \leftarrow \mathbb{R}^{3}$$

When

$$\overrightarrow{7} \sim \overrightarrow{7}$$
, and $\overrightarrow{7} & \overrightarrow{7}$ are identified,

the set obtained is written /

Then, both $\mathbb{R}^3/\mathbb{R}^3$ and $\mathbb{R}^4/\mathbb{R}^4$ can

perfectly recognize themselves by seeing themselves in a

mirror.

PACT) $R^{3/2}$ $R^{3/2}$ $R^{4/2}$ $R^{4/2}$ Vector spaces

Discrete Version

$$Z^{2} \times Z^{2} \longrightarrow Z/2Z$$

$$(a.b) \qquad (x) \qquad ax+by \mod 2$$

Q.
$$\vec{a} = (a, b)$$
, assume that $\vec{a}' = (a', b')$ all $\vec{a} = (\vec{a}', \vec{b}')$ satisfy $\vec{a} \cdot \vec{a} = (\vec{a} \cdot \vec{a})$ wood $\vec{a} = (\vec{a} \cdot \vec{a})$ wood $\vec{a} \cdot \vec{a} = (\vec{a} \cdot \vec{a})$

Then, what is the relationship between and a??

A.
$$A = a' \mod 2$$

$$b = b' \mod 2$$

This question is asking, in other words,

How much of themselves is understood by

looking in a mirror?

From here, let us consider the similar problem in geometry.

One-dimensional chain on a curve

Consider the figure below.

One-dimensional chain finite number of continuous mapping images gathered from [0,1]

Consider whether the number of points at the intersection of \mathcal{A} with χ is even or odd.

Shift slightly, and count intersections "cross-sectorally".

Q. When $a, a' \in Z_1(X, A)$ satisfies, for all $x \in Z_1(X, B)$, $\#(anx) = \#(a'nx) \mod 2$ what is the relationship between

Examination

The above condition is true when "a membrane can be formed between a and a'.

When can a membrane be formed?

When images whose destination of boundary sides cancel each other are excluded,

 $\mathcal{A} \cup \mathcal{A}'$ is satisfied or they are included in A.

If this is applied to

one-dimensional line

Number of boundary points on one-dimensional line is always even.

$$\therefore \#(anx) \equiv \#(a'nx) \mod 2$$

* D, a, a' can be moved slightly not to cross with B.

Poincare duality

establishment of the opposite

Theorem (Poincare)

When
$$a, a' \in Z_1(x, A)$$
 satisfies, for all $x \in Z_1(x, B)$, $\#(a_n x) \equiv \#(a' n x) \mod 2$

it is possible to form a membrane between a and a'.

Number of intersections can tell us whether a membrane exists or not.

Strategies for proof

... Many strategies are possible.

- Use inductive method concerned with complexity of the manifold X
- (2) Use "Morse theory"

(3)

content shown below

surface of

a cavity 5

$$dim X = 3$$

$$\partial X = A \cup B$$

outer surface

$$(A \cap B = \phi)$$

Two-dimensional chain

finite continuous
mapping images from
a triangle

 $Z_2(X,A) = \begin{cases} T_{\text{wo-dimensional chain of X}} \\ \text{whose boundary is all on A} \\ \text{when cancelled ones are} \end{cases}$

For the above figure, $\#(a \cap x) = 1$

Poincare duality is also true under these conditions.

Generally,

$$X = n$$
-dimensional compact manifold
$$\partial X = A \cup B \qquad A \cap B = \emptyset$$

$$M = k + k$$

theorem When

(Poincare) $\#(anx) = \#(a'nx) \mod 2$ is true for all x, a membrane (higher dimensional version)

can be formed between a and a'.

For a better understanding of Poincare duality,

the notion of an homology group is introduced.

 $\alpha \sim \alpha' \iff$ definition

A membrane (higher dimensional version) can be formed between a and a'.

There is b that satisfies

i.e.
$$ava' = b$$

Then, $H_m(\lambda, A; \frac{\mathbb{Z}_Z}{2\mathbb{Z}})$ naturally has structure as a vectoral space on a finite body $\frac{\mathbb{Z}_Z}{2\mathbb{Z}}$.

Example

Two-dimensional torus

$$\left(\partial_{1}^{-2} = \phi\right)$$

· Ho
$$(T^2, \frac{1}{4}) = \{0, tptj\} = \frac{1}{2Z} [pt]$$

$$H_1\left(T^2; \frac{3}{2}\right) = \left\{0, \left[-\right\}\right\} \left[\uparrow\right] \left[-\right]$$

$$= \frac{\mathbb{Z}}{2\mathbb{Z}} \left[\rightarrow \right] \oplus \frac{\mathbb{Z}}{2\mathbb{Z}} \left[\uparrow \right]$$

$$+ H_2(T^2; \frac{7}{2}) = \{0, [M]\}$$

Ho (丁. 列2)	H1(T2:7/2)	H2(T2; 7/2)
井	2=21	4=22	2=2'
Clim 2/22		2	

Three-dimensional torus

T3

$$H_{0}(T^{3}: \mathscr{I}_{2}) = \mathscr{I}_{2Z} [pt]$$

$$H_{1}(T^{3}: \mathscr{I}_{2}) = \mathscr{I}_{2Z}(\to) \circ \mathscr{I}_{2Z}[h] \circ \mathscr{I}_{2Z}[X]$$

$$H_{2}(T^{3}: \mathscr{I}_{2}) = \mathscr{I}_{2Z}[D] \circ \mathscr{I}_{2Z}[L] \circ \mathscr{I}_{2Z}[L]$$

$$H_{3}(T^{3}: \mathscr{I}_{2}) = \mathscr{I}_{2Z}[D] \circ \mathscr{I}_{2Z}[L]$$

,	Ho	/ H,	H2	1 H3
#	2= 2	8= 23	8=23	2= 2
dim 3/22		3	3	

In fact, generally, n-dimensional torus T satisfies

$$\int . \# |H_{k}(T^{n}; \mathbb{Z}_{2}) = 2^{\binom{n}{2}}$$

$$\cdot d_{1}^{m} \mathbb{Z}_{2} |H_{k}(T^{n}; \mathbb{Z}_{2}) = \binom{n}{k}$$

binomial coefficient

Especially, when
$$k+l=n$$

$$\# H_{\mathcal{E}}\left(T^n; \frac{7}{2}\right) = \# H_{\mathcal{E}}\left(T^n; \frac{7}{2}\right)$$

There is a symmetry property.

This is true for every compact manifold without boundaries.

A. It is a conclusion from Poincare duality.

Poincare duality means that this is an image

"whose self can be perfectly understood by

looking in a mirror". It also means that

it is non-degeneracy

Then, from the general theory (linear algebra),

dim Ita (x,A:72) = dim He (x,B:72)

Tangent vector and cotangent vector

How these recognize each other,

in other words, how much information can they get about themselves by looking in the mirror is the subject of inquiry.

Especially, linear
$$T_{x_0} X = \{ \varphi : T_{x_0} X \longrightarrow R \}$$

Right-hand member is a structure of vector space.

Therefore, the left is a vector space.

Conversely, (using this vector space structure)

$$T_{20} \times = \left\{ d : T_{20} \times \frac{\text{linear}}{V} \right\}$$

The direction of

√o-crossing minimal curve is expressed.

's factor (cotangent vector) intuitively gives the correspondence below.

minimal curve / minimal number

Vector field

For each point
$$\chi$$
, χ 's factor $\chi(\chi)$ is assigned, and

the correspondence $\chi \longmapsto V(\chi)$ is smooth (in a sense)

Primary differential form

For each point
$$\chi$$
, χ 's factor χ is assigned, and

the correspondence $\mathcal{A} \longrightarrow \mathcal{A}(\mathcal{A})$ is smooth (in a sense).

$$\begin{cases} R \xrightarrow{C} X \\ 0 \xrightarrow{1} \Rightarrow X_0 \end{cases} \times \begin{cases} X \xrightarrow{f} R \\ Z_0 \xrightarrow{1} \Rightarrow 0 \end{cases}$$

vector field

function

 $\mapsto (Vf)_{\mathbf{z}}$

At

(x, use V(x) on f-fa)

and make a number.

That means...

$$\begin{cases} \chi + \chi & \longrightarrow \chi & \longrightarrow \chi & \longrightarrow \chi \\ \text{function} & & \longrightarrow \chi & \longrightarrow$$

differentiation of the function f by the vector field V

integrated

What to be

$$\left[\begin{array}{c|c} R \xrightarrow{c} \lambda & \lambda & \lambda & + \Rightarrow R & -\Rightarrow R &$$

curve

c:[a.b] -> X

primary differen-

tiation form

d

C (b)

Sum up minimal numbers that correspond to divided minimal curve.

Primary differentiation form is to be integrated upon minimal curve. (?)

Reference Legendre transformation

linear programming problem convex programming problem

(cf Murota

Fenschel, Morrow's duality theorem Coon, Tucker's duality theorem

Two descriptions in analytic dynamics

T X -- Lagrange version

Hamilton version

. thermal dynamics, statisticalc dynamics

par volume, entropy able (pressure, temperature _

Legendre

math: symplectic geometry

One method that gives a first differential form

Suppose curves are distributed "continuously" at some density. (Curves may have a starting point and a terminal point.)

Let us call this distribution symbolically.

Consideration for "direction" is required, but here, let us not.

Please consider the following lecture as a "chat".

For each minimal vector,

let us call the correspondence between vector and the "number" of curves in D that vector crosses lpha .

In a space,

to give a first differential form ...

let us call

"continuous distribution" of curves in D.

minimal vector

When the "number" of curves in D that minimal vector crosses is considered ...

&-order differential form

When
$$f$$
, $dim X = n$

$$n = k + l$$

generally,

differential form

Cross-product

1	/	h	_	n
V	V		C	

dim X= n

distribution of

Make dimensional figures

& -order differential

form

distribution of

M-k dimensional figures

& order differential

form

R+R dimensional differential

distribution of

M-(k+h')

dimensional figures

can be defined as shown above.

Ex.

first differential form

Corresponds to distribution of a plane $\chi = C$

first differential form

Corresponds to distribution of a plane $\mathcal{J} = \mathcal{C}'$

2

dandy

secondary
differential form

Corresponds to distribution of lines $\begin{cases} 1 \\ 1 \\ 1 \end{cases}$

Exterior Differentiation

		1	10
When o	pu	X=	n

distribution of dual Male distribution of dual figures

dual

& -order differential

form

Then,

Rtl-order differential form

da

distribution of

N-k-|-dimensional figures

can be defined as shown above.

Example

Stokes' theorem

$$\int_{Y} dd = \int_{\partial Y} d$$

Suppose that

distribution

D and $b' \longrightarrow d'$ => Dad' ~> dad' 2 (Dn D') ~> d (dnd') (@D)nD') ~ dd nd' v(Dn(8b1)) ->> dn dd//

Under these conditions ...

Let's begin with Stokes' theorem ...

ana (For a certain b ...

$$\frac{1}{DR}(X,A) = \left| \frac{1}{A} \cdot \frac{1}{$$

de Rahm cohomology

d 3 0 near

Under above conditions

"cognition of each other" "falls" into

de Rahm's theorem

theorem

$$H_{R}(X,A;R) \times H_{DR}(X,A) \rightarrow R$$
is not degeneration.

Especially,

On the other hand, there is version of Poincare duality.

dim X = k+l

theorem Poincare duality

When

has a direction,

HR (X.A:R) × He (X.B:R)->1R a. x H) # (2021)

is not degenerated.

Especially,

dm Ha (x, A:R) = druntle (x, B:R)

When compared...

A = k + l k : has a direction

4

data about figures

data about

differential form

This isomorphism is a function that corresponds to ...

distribution of

-dimensional figures

) (X

When duality is considered in geometry,

homology groups produce results. cohomology groups

They work as a bridge between two worlds.

category: world of space

factor

category: world of algebra

They can work as a method to analyze geometry algebraically.

an example of application:
fixed-point theorem

On the other hand, / homology cohomology

have become methods used freely in algebra, analytics, and other disciplines of modern mathematics.

77

References

- " Math-Live for High School Students

 Nippon-Hyoron-Sha. Co.
- "From Calculus to Topology"

 Mathematical Society of Japan,

 "Suugaku Tsushin" Vol.9, No.3

 November, 2004

http://faculty.ms.u-tokyo. ~ surijoho/sutsu.pdf