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The previous lecture

A

a free use of

Imagination, conceptual power,
theoretical possibility

— release from “reality/practical use of geometry”

@) When reality goes over imagination,

A I1s sometimes useful
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Riemann geometry special relativity theory’

[ reference: fEinstein’s Lectures at Komaba” )
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Appendix

Momentum to a concept of “a space itself” without

surroundings ___ 4 topology, manifold etc.

f@ Non—Euclidean geometry

( Lobachevsky, Bolyai, Gauss )

@ Riemann geometry (é:-* Gauss’ s theorem of curves

( Gauss, Riemann }

Historically, © was less popular.

" ”
» Especially, (=) S notion of “curvature

reference: ‘Bernhard Riemann1826-1866 ~

{ D. Laugwitz , translation by A. Yamamoto
K Springer Verlag Tokyo ,1999



Encounter Between Concepts

e — s i il g,

X Sometimes, a concept or a viewpoint of a certain

field has/can unexpectedly have a practical role

in other fields.

P ——

e M ath and Physics

( ex. A and B in the previous slide,

a role of complex numbers in quantum mechanics

°® In physics

exarﬁple: formal similarity of statistical mechanics and quantum
I
\\field theory, the concept of conservative quantity etc.

e |In math

' similarity of prime numbers and geodesic lines etc)
‘ (T. Sunada)

.
t

c% Sometimes, math meets “practicality .

= e.g. number theory and cryptography (c.f. Katsura)



Today

An introduction to the cross—conceptual
mathematical notion used in

algebra, geometry, and analytics.

Let us look into how it appears especially

In manifold geometry.

« Poincare duality

* Tangent vector and cotangent vector

* de Rham’ s theorem



What is duality?

g

(I Two expressions of a light wave

g )

/\1 1 \ /\ ,4 pattern of ’

‘i ________ﬂ\} wa*“ 1‘/ i/’[/ b electromagnetic wave /
’ Fourier transform ,Fourier development
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spectral resolution
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plane wave
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(yplane funct|o>

expressed by superposition of plane waves

A L plane ' functioﬁ T : This superposition gives
i J function of a, b.




Little generalization of dot product y
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Consider s

g X 2
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: t
Then, bOth,/K/Es and /E/« can

[RY
perfectly recognize themselves by seeing themselves in ¢

mirror. ' e

no degeneracy

vector spaces




D |screte Versmn
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This question is asking , in other words,

4 How much of themselves is undet IZ}L

looking in a mirror? =
(P P ~

From here, let us consider

the similar problem in geometry.



One—-dimensional chain on a curve

e e

Consider the figure below.

(' part of ) X ( TR ) {part g )

boundary

- gim X =2
. 2X=AuvB (AnB=¢)

boundary

e T S S

X Two—dimensional compact manifold



Boundary point is

14

not cancelled.

A : .| continuous B

. Boundary point is cancelled.
mapping

—

[o.1]

a One—dimensional chain finite number of continuous mapping
images gathered

from

Nne—dimensional chain

Z (X > a whose boudary points
definition

that are not cancelled are

all on A



ZXA) * Z(xB)— %,

G 8 # (&)
\ WB&('Z

G e
S

Consider whether the number of points at the intersection of

5& with X is even or odd.

— I Shift slightly, and count
intersections “cross—sectorally”.




What can be understood from animage in a mirror?

-

Q;_Yv_hena‘ G € 8 (X /}) satisfies,
forall X € Z, [X B)
H(dat) = #(a'nn ) rl2

what is the relationship %

aga’,

between

Examination The above condition is true

when “a membrane can be formed

between a and a’ .




When can a membrane be formed ?

continuous mapping

A finite number of continuous mapping

images are gathered from the triangle.

2
N

o<y |

i1

When images whose destination of boundary

sides cancel each other ére excluded,
A v Ok/is satisfied

or they are included in A.
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amembrane etwe}an
f D - A& A

n= i
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one-dimensional line

Number of boundary pointson onedimensional line is always even.

) =t (0 el

)ﬁr D ‘ A, &&/ can be moved slightly not to cross with B. /
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. , tablishment of
Poincare duality (GS SRISmEn

T T S——

Theorem (Poincare) =~ T
 When

ﬁ'a/é} 2= ()(/LU satisfies,
for Al G, (X, B) | i
?F(JMX)E’{F(@//,QU e

it is possible to form a membrane

between a and a’ . |

Number of intersections can tell us

whether a membrane exisjcs or not.



Strategies for proof

...Many strategies are possible.

//_ . .
) Use  inductive method

concerned with complexity of

the manifold X

(2) Use “Morse theory”



Higher dimensional version o

>< content shown below

11 7
wormhole
surface of outer surface A

a cavity B

c{}vw >< = 3
Ix=AvB  (AnB=%)
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Two —dimensional chain

closeup e .
finite continuous

mapping images from

ﬁ_/ﬁ

continuous

a triangle
mapping

e

e wo—dimensional chain of X
ZZ (X, A >> whose boundary is all on A

when cancelled ones are

excluded



Surface of | 2f
the cavity




e

Poincare duality is also true under these conditions.

Generally,

>< ' n—dimensional compact manifold

Dx= Auls AnB=¢
| m= Bt

Z@(Kﬂ) (XE]’_\}/Z

a X #H(anx )
wed 2

theorem When

B e Y

(Poincare)  # (&0 2 e o) moe Z\

Is true for all x,

a membrane (higher dimensional version)

can be formed between a and a’ .
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For a better understanding of Poincare duality},ﬁ

s S~

the notion of an homology group is introduced.

S e e ———

e, B

Ho (%, 432 )= Z. [k A)/

A membrane (higher dimensional ver—
Oy T

1] ’ 5
sion) can be formed between a and a’ . |

| definition
There is b that satisfies
"
,‘.{ ! a Lt 5& A Q b
//‘
\ 7
A e T . ) : e S /

Then, Hw\ \/k‘ /’ : gz ) naturally has

y structure as a vectoral space on a

finite body %Z_Z .
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Example

>/’7

/2? (BT;%)

r,\HD e %) -~ { = r/mj :Z/Z [pt]
HI(TZ/‘Z/;J :(Oz[ﬁj/f][ 71])

i s

Two —dimensional torus
|

Al MK
e(17:42) = f 7z
3 sz [ ]
Ho (T2 72) (1772 ] #z({ %)
it 2, =2 ﬁL=21/ Feo. !
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Threedimensional torus -
ﬁ X [
o ]

o (T7:%) = %, 7]
H, (T2:7) = Zal=) o 2 [ ] 2 2]
() = Za D)o =)o % [[]]
(%) = B [T ]




Al

In fact, generally, n—dimensional torus | ; satisfies

| o HolTHlEl= 0%

: CI\‘MA%é //(Lﬁ(’r“ J%) . (2/)

binomial coefficient

\

6 WW /é—[- /g s i
- H& (T”:%) = & H,{(/TW:ZL)

\

There is a symmetry property.

6 .. :
This is true for every compact manifold

without boundaries.

B Why??



A. It is a conclusion from Poincare duality. 50

Falx %) Ho

Poincare duality means that this is an image

S—

B 2%) — /27

“whose self can be perfectly understood by

———

—

looking ina mirror . It also means that

Then, from the general theory ( linear algebra),

clim e (5 :/Z{):é//%z B, (% 57 )

2Z




5
Tangent vector and cotangent vector

g E

contravariant vector covariant vector

X : manifold &7 X:_

j > functlon can be a ‘
@ )
curve vector space

R———-;xj

(Ol Ao

\ ~—

How these recognize each other,
In other words, how much information can

they get about themselves by looking in the

mirror IS the subject of inquiry.



” non—degene acy

G ST

[, X
tangent vector space Gtangent vector@

self-understanding

vector space
by an image in the mirror

Especially- - - e = G

| linear \
T X =1 R

=y

e

Right—hand member is a structure of vector space.

Therefore, the left is a vector space.



o5

Conversely, (using this vector space structure)

o - {yﬂi ’BeXﬂia%//if

STERER Y,
J/
\/
The direction of v
“lp,—crossing minimal curve
IS expressed. ~.

7} ‘f>( ‘s factor (cotangent vector) intuitively gives
(D)

the correspondence below.

S
e ¢

A

7 minimal curve

— minimal number \/

s /‘



Vector field
R
/q )
iteoch poinge /i_ X ‘s factor V(DC) is assigned, and

the correspondence A [ \/'{1,) is smooth (in a sense)

I:t)'imary differential form

e e

%
For each point1 7/7'“ X 's factor 0< (x) is assigned, and

— 0< (1) is smooth (in a sense).

i

the correspondence C( (



: . 3%
differential
Orlglnal role of vector ﬁeld ,
B Egc _— R i aperator

vector field

V

fun;Zcion 3 (\/7[)1
At

E X use V(lo) on 7[" ﬁ})
and make a numb)

That means...

ol gl el

f1—s f=Vf

diﬁeE@tiation of the function f by the vectorfiew Vv
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Original role of prlmary dnCFerentlatlon ﬂorm
. — N\ — integrate

0(———510) 26/

- ¢
{T(Q—»—«a)x

///
/ primary differen—
/ curve tiation form
o [ab]- >( o £

S ( b) \

C ed §
’
ﬁup minimal numbers that |

¢ @) correspond to divided

minimal curve.

Primary differentiation form is to be

: integrated upon minimal curve. (?)

—




7
Reference  |Legendre transformation

_ linear programming problem
convex programming problem

( C)[ Murota /’

Fenschel, Morrow’ s duality theorem

Coon, Tucker’ s duality theorem »\

vTWOdescriptions In analytic dynamiés

egendre

transformatlorL

\‘

/Zr >( - - Lagrange version 2

T%“X ~_ Hamilton version

. thermal dynamics, statisticalc dynamics

(( — ] 5
) / >< extensive variable ( volume, entropy &
pan—

able ™~ G T\{‘ >§ Y (pressure, temperature _ )

iIntensive variable

» math: symplectic geometry i
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One method thatgivesa first differentialform

—

—— - S

on a plane

: /
2 ; / / / ’
,<’/ / '/ i
/ / /
/ S /
3 d
£ 5 v /
- e R s
/ / : /\X :

Suppose curves are distributéd “continuously”
at some density. (Curves may have a starting

point and a terminal point.)

et e eall thle clsipibunlan D
symbolically.

S OSSR e S ST R A SR o e e S N UL )

¥ Consideration for “direction” is required, but here, let us not.

Please consider the following lecture as a “chat”.
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minimal vector
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For each minimal vector,
let us call the correspondence between vector
and the “number’ of curves in D that vector crosses

O

D o &

~

3 -
distribution of first C[ l/\/t/é first differential form

dimensional figures

|

b

p R
Insid
IR Insidegg




In a space, to give a first differential form ...

i~ N

let us call
“continuous distribution”

of curves in D.

iIn D that minimal vector

crosses Is considered ...

L dlk ﬂ i
| distribution of “C first differential form

two—-dimensional

figures insid




/Z—order differential form ¥l

e Y

— e e o s i it

When ‘\/ d’\“/\ X: i
/

/
l

= krd

generally,

B ot a0

g m ¢

distribution of
/g—dimensional

a

:

—dimensional minimal/

minimal figure

figures numb

—7

Ix—é—dimensional

differential form



Cross—product

distribution of 'é | .
}/]»fﬁ dimensional figures —order differential
form

. i

distribution of / / | |
Y| - //Z/dimensional e /é_ order differential

form »
\v S
/ dimensional differential JMT\
’&’t’ 2 ‘ /\0(
form e o

———

/msl%zﬂ:;1f[:> /:;ﬁ;%T%D (7<JAW)( :

M-(+#') C@t

PRI e RS
e,

dimensional figures ;
\/_//\_ can be defined as shown a@

N )




T

L

@(X first differential form

Corresponds to distribution of

a plane 7(-——

L

/e first differéntial form

Corresponds to distribution of

Ei
a plane j—- £

secondary
&(){4 ﬂ(j differential form

Corresponds to distribution of

. e O
lines
{ 77_6/




Exterior Differentiation 124

When o] e~ = "

——————e

P O{

I

_ 1, —dimensional
/}/1. é /é—order differential |
figures
form j
\— | | e
Then, [ ~order differential form O< |

e

distribution of &[M{

W“ ’é g l —dimensional figures
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B
4.
; ' function ;f’ é/ f*"?é
O—order ciifferential form

7 )(Corresponds to distribution

of half—plane 77/ e

\ first differential \\\
|

form |

Corresponds to distribution

= of line (7”:'(/




Stokes’ theorem

i
2

Suppose that

L )

@

g

O/\ corresponds to r)
g
distribution

ay/ 2D - T

connects both

first dimension

ends of f

left—hand side

ey

A

T

right—hand side

46

Dad)



. . 9
Leibniz s rule

e e e

I(Da D) ~> 54(0(/\%)

Nl ' /

’C@DJOD/) ~5  dA ad
"(\Dn(“@f)”/)f-\“> o on da’ s
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Under these conditions ...

Zi(x A) o T




%l

Let’ s begin with Stokes’ theorem ...

- e S

He (xAR)= Zgx A),

 ——

/

&(ma/ (== For a certainb ...
b =a-a"’
%
6 = \ e
#ﬁbBOQA)'ﬁ (4 adk
« O near A

de Rahm cohomolo :
a3 gy 0{ /&
[/l' ' 0 nea

Under above conditionS A

“cognition of each other” “falls” into

A (X A E' \ <X4"”\£f



de Rahm’ s theorem

—

. 5w

theorem

: ;& (x.A ‘,/E)* 1

Especially,

2

D

R

(xA)—R

~

\\ » MMM/E&

50

P

K
che T \/XA:/)E/}:@{'W Hpra [ /L))
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On the other hand, there is /]Q version of

é(m = ﬁn%

X \} =

]theoremI Poincare duallty

/ -
When

X has a directioﬂn,

H, (XA /E H/Q/ EE/ e 4

a % ey #(4/19(],

|
. _ [
Is not degenerated. /

Especially,

o He (ko AR)=dint (%.5:R)

Poincare duality.




When compared...

e A X= L[

( )&\ has a dlrectlon

i
data a/bout

data about figures

differential form

i

This isomorphism is a function that corresponds to ...

Wﬁﬂ/\%dﬁ

distribution of
,é —dimensional figures

%L —order differential form |

/
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summary

® When duality is considered in geometry,

homology groups
produce results.

) cohomology groups

o They work as a bridge between two worlds.

s— T

categc@vorld of space X X ’“\%ﬁ

R -

Categ@rld of algebra H f/>( |
e

They can work as a method to analyze

=)

geometry algebraically.

Man example of application:

5 fixed—point theorem J
s P



On the other hand,( homology

| cohomology
have become methods used freely
In algebra, analytics, and other

disciplines of modern mathematics.
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