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_Geometry
@Science of figuresa plane or a space
« Euclid axiomatic method )
J/ * Descartes analytic geometry }

@Questioning the “real nature” of

structures of a plane or a space «themselves

(. non—-Eucl| idean geometry

\ » (Gauss, Riemann

@ Concept of | “a plain space’

released from structures
( - manifold

* phase space, topology

\%
@ Dynamic image of space

/\/\_/\/\/\,M—\/W



an example of 3

@Dynam ic Space |mage

/' Cut, paste and change

“spaces themselves” and create a new space

e When “an initial value” is set to

W
the space structure, we can observe
the space moving on Its own.

(the solution to Poincare conjecture by

Perelman)

®Elasticized to X -dimension and broken down

to “sums” and “products” , the space

shows algebraic structure In Its framework.

(algebraic topology)

* Sometimes, a structure that plain space |

\ natural |y possesses shows its profound nature.



Today. ..

e Sphere geometry and non-Euclidean geometry

o Minkowski space

¢ Manifold and phase space

(. Special theory of relativity )



Q : 4

([) Study of figures on a plane or a space 1

- —— Euclidean eometry [proof]

. There is only one line that

’ connects two different points.

2) The line can be extended to

any length (infinitely).

/7
[3) |f a center and a radius are
given, a circle can be drawn.
} fzfjé;Q:f

(4) Right angles are congruent.
o \\\\
. p proposition concerning
) e |
parallel lines

; qu
\\\\\\\\\\ There is onlyoneline that is

parallel” to {and ™"S through P
PRSI, SRS
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O Study of figures on a plane or a space 2

o

- -~ analytic geometry ﬂgebraic calculati;)}l

J

\

= , # s gircle

13 b
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4;{—%;—# C=0

-.- |line

. A point on a plane Is expressed by using
a coordinate (x,vV).

L

—

In a space, (X,V, z).




Spherical Geometry

e ———

—-. can be developed by using Euclidean

geometry or analytical geometry.

Sphere with a radius »

What is the area of

a spheric triangle?
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Q. Is spherical geometry “non-Euclidean geometry”?

Y

. 12T ”
What if “line” “length” and “angle” are
considered as below?

]

. line := big circle

this e
a pIEn_e/t[E:passes originAﬂ a spheD\

’ (minim;/lleng'th

g angle }(ﬁ\b £~—— minim triangle

e

e




Problem 1

Twodifferent lines should be crossed at only
one point.

However, they cross at two pointsl

7(+]+Z =

s

Solution The pair f p "Pi should be

[ S ——

defined again as “a single point”!

g ]

— M\/e plane ( «(/7 _,Pj

Pesphere



Problem Two &

S

“A finite line” is wanted to be elongated
iInfinitely.

However, it goes round and comes back.

Spherical geometry was well-known in

the late 18th century (at the latest).

(map drawing method, sphere astronomy etc.)

However |t was never conS|dered

e e — i -

s ——————

to be “non- Euclldean geometry

This must be because of

problem two above.



(1
non—Euclidean geometry

L hevsk '
1 oth century( obachevsky, Bolyai

Gauss )
- P 5%,
/'
s e ~ ;
\ -

o ik g i \\ Suppose that there are more

- il e
SR \\ fthan two (infinite) lines that do

{

| not intersect with {, and pass
| P.

In that world, sine theorem and cosine
theorem were proved, too, and development of an orig—

Inal geometry was recognized.
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Gauss' s Insight

» Does this world

fo
fo

ow Euclidean geometry?
or...

ow non—Euclidean geometry?

., Ihis cannot be solved by thinking.

« An experiment has to be conducted

to judge which Is correct.

r\

Gauss actually attempted to do thi37

by surveying a huge triangle

\\ ‘connecting three mountains.
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| ooking back again on spherical geometry...

(1) If we forget “the possibility of infinite
elongation of a line”, it can be consid—
ered as just a parallel system to non—
Euclidean geometry discovered by

Gauss and others.

e
(Z) Sphere geometry has its sphere:}

_ _ tHe Earth,
right in front of our eyes. ( |
G the celestial globe

However. there were no such things as
IR RSt S . T S

“right in front of our eyes” in the non-Euclidean

MWW<->ﬂ/ y‘«“\w%www

geometry that Gauss discovered.

-~ the gift of

sophisticated abstract thinking



/¢
... Later, the “model” for

o ——

———————

s

non—Euclidean geometry was found.

( Klein, Poincare - - —)

To explain the “model”,

let us review spherical geometry.

point — pair fP '_P/vﬂ

C line = plane that pass origin /\ sphela
—

|

Mdlstance -/\/ (A?l)‘(’ /47) '('(GZ)
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An example of non—Euclidean geometry models

==Temng

25 =
R 2 =]
hyperboloid of two sheets

/ ,/
y

e’ = tepsr 1P —P) |

SRR N

| “line” ™ aplane that passes the origin /\ hyperboloid ?
\r\—ﬁ~ﬂ e g . T : i e e e N e /
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How to determine a distance

S
different fromnz ‘s

normal distance

L

minimal distance :\/ @q)"_r /4(])1——@3)
" ( 3) (;fj;) are on hyperboloid, insider is positive.
. 244 ¢
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When projected to the plane Z=1

-~

by a line that passes the origin ...

18] 7
line

{

a plane that hyperbo—

passes the origin loid

projection

Jl

line () jxij% l}

e

2
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In case of spherical geometry

gm—

e

Every two points on a sphere are “coordinative

/
nd they exchange their locations by some rotatiorfs.

)

An example of spherical rotations

—

7 = | Cos {] ~Sky (f f
o \ 51'49 (056/\2

A 4
(1 ) The equation Z%{’j + Z".;—} is maintained.

(/7,) “Line” is transferred to a “line”.

minimal dis ancez g: < *
\(3) | dist = @)(f+ (é(y) + @Z) is maintained.
O Sin [} + Cos'f = |
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In non—Euclidean geometry “models”,

|
Any two points on hyperboloids are “coordinative”, and (

they exchange their positioﬁs.

<

an example of “rotation”

——

v\ 7<

7 |t (ost\ T Cosl\'( 7

\ Z / S'fh'AT 5:'"(1: \Z

) The equation 9@&72’. ZL-.: ——] Is maintained.

(2) “Line” is transferred to “line”.

(3) minimal distafnce& — @X)L’(' @7)2__— @md.

B e

) sl e s anl 'y = |

T -7 < -C
( 30“\‘&'(-" T Casl\'[::.e t€
2 / 2
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Consistency of non—Euclidean geometry

)

e

¢ Before Lobachevsky, Bolyai, and Gauss,
challenges were made to consider a logical conclusion
on the assumption that parallel postulate is not true.

(In the late 18th century, by Sacchari, Lambert etc. )

, However, the aim of these challenges was to derive

contradiction.

¢ Lobachevsky, Bolyai, and Gauss had not proved that

“contradiction cannot be derived”, but there was

a conclusive insight that a new geometry was being

established.

By the existence of analytic geometry model,

consistency of non—Euclidean geometry boils down

to that of Euclidean geometry.




| ater S——

Let us look atwo (independent)

cases below :

b
/ @ IR is forgotten, and

\ the focus is on hyperboloid or sphere

Ao) "+ L ay - @5 és

Is introduced and focused on.

s

Let’ s look at further descriptions of each.



@ Let us forget surroundings, and

focus on | spaces’ (sphere hyperbo—

loid) themselves.

( Gauss, Riemann  — - - )

There are various kinds of

non—Euclidean models.

e am——

;"' - : ‘\ 4? dlstance
'l
4 . {A20% BY)
o
: ‘(/
. - »_“Iine" st /

A model is just a model.

If there is an intrinsic geometry,‘

thoughts can be developed more freely.
P




The classic image of geometry 23

Various geometrical subjects/phenomenon

are in (non)—Euclidean spaces.

o

We can move,

separate, or combine them.

\
\

\ (Non)—Euclidean spaces are

\'_ ~ their background. ] development
\/'Fhmw image r
As a background to support geometrical

subjects/phenomenon, (non)—-Euclidean
spaces themselves have

various possibilities.

v...h -

" aces S
1 “Phemselvesy can be /
q
\ moved, separated, or combined. }




: ‘ : 2
Let us reconsider “space itself .

——

Consider (P —P]

(11 . 7
as a point .

P is a point. )
(obediently)

it




(real) Projective plane 20"

| Coniider f P —P} \}

as a single

(11 . 13/
point . |
s e R
@ict\ e

equal

/

N

| b
On the border of the

|

hemisphere,

identify two

opposite points //

and
\__-"N\
',/—‘\

//géild them togethe r

4

gan't be stné\t S RS e Rt




A similar example @,)

{r ([71!) (Z-ﬂ. 71_,)

y

For each (?«.7}

conS|der the set

| ‘ /

| : : (x 4) (x-r{ 4) &

. ¢ (X‘H’l j'f-“l) V}

| |nteger
as a single point.

Identify each opposite

sides of a square

/»/—__"

/ andfold them together. /ﬁ
:

e e e
) /
/
/
,
J
/"
Y
Y 4
/
Pl

<ntU|t|ve

( cannot be strlct‘)
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A similar example (2) Grassmann variety (]

—

the set of all possibilities of \

all “two-dimensional sub-vector spaces”

> Is called Qrz (/E?’} ' ‘l

vIn erZ(HZQJ . “point” is a single /

“two-dimensional sub-vector space”.

—

/note_ C’lh,, ( IR%) is known as a “four manifold”|

\ /




“Folding” in the description of torus

If a square is located in a space

: =,
/ﬁ ! as at left, “folding” can be realized
o

by elongating and contracting it

as Shown below.

=

N\a \
'\ \
Y %
\
\\ o i
\ o
Q.
‘ -
1 e}
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When a square is located in space, (/Rs) :
“folding” is physically possible by elongating and

contracting it like rubber.

However,
4 fOI’ COﬂSideriné ()(f”. 7ij7 as a Slngle “point”’

space (/,Qg)

Is not needed.

¢ Grassman variety did not have surroundings

originally.

——

Need for abstract and free concepts of

topologic space

manifold

e
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What is manifold?

—— h— B |

*
n—manifold) A topologic space, and

./\—-—-\_/' .

{ a space whose points are

\ homeomorphic to around the origin of /R h

explalned the n—dimensional

Euclidean space.

An example of non—1—manifold

homeomorphic |

L’_,,to_surround of(R s origin r
|

(

S origin

homeomorphlc to

|
|
|
K/__’_r_.A_»;/—l e A e e e R e i 2 el

/ * Hausdorff paracompact topologic

i VAL

\  space



Examples of 2—manifold

—_—

|

Klein bottle

projected
/ /Y =2 m
| o5 1 plane
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Topologic space
When

the set >< Is a topologic space, for each

X ‘s subset A ~intuitively, the set of all the

points on A andA ‘s border

named ;r Is attached, and

the correspondence

A e / satisfies the axiom} below.

0 4 =4
® AuB =A vg
P iAol
\@ A4

(\f Various equivalent axioms. Such as median classea

A\

%
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Topologic spaces are dealt with not only in
geometry, but also in many fields such as algebra,
number theory and analysis, and they are very

Important.

In modern mathematics, the concept of

topologic spaces is essential.

Just as the concept of vector

spaces Is important.

The final page ofl -

// e g < S W\\,\

Seis
e

e

/A Forget the surroundings and

( focus on the spaceWes!
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/ / @ B* Griroduced with\ f

Y a)+ (4f) L({AZ) J

i

b

T

\-—'-’—.,.“, G

Looking back ...

r\r:w/ma’I;stancej

. - D ¥
r (distanc}: . @X ) '{_ (47/ ~t (42)

| Abbreviate this to...

[As™ = dx*+ df '+ d=7)

[r{ ck distan T= @g)
Abbreviate this to
@(S—“— A3+ o(jgﬂ(gw]“

e In [R3 , it might be negative.




quantltatlon
Does 55

| mock dlsm seem like an unreality

extraneous to a real distance?

However, according to

Einstein’ s special theory of relativity,

For {\ time L (unit: second )

Z ‘space coordinatesx,](z. )(3 (unit: Iight—second)

e —————

(/;(Dh T 0(1:, ‘('0()(,? "da

— A

\

1S phyS|caIIy meanmgful

| (T dn ol —olh"
l

calculates elapse of proper time of

an object.
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That means...

7({

At 1=0. start from the origin and proceed

toward various directions.

A hyperboloid like the one shown above is obtained

if “ a time and a location of the moving

object after each second in proper time

passes  is plotted. < A5=0 )

in the graph above.



3)
If Az is written, too,
-3 2 . Ll
:(/l’f' ’XL'('XB g * T =% —(
t light—velocity

A physical, genuine distance

in this “ three-dimensional space”

/ —

(under a theory of special relativity)

S

is nothing but the distance of non—Euclidean geometry.

In this sense, we can say that
non—Euclidean geometry exists as

spherical geometry.

The end of
o



Summary s

/__—f

' Depart from model,

examine a space itself, and

consider many possibilities freely

@ * Sometimes, the products of these examples of

b free thinking are unexpectedly
effective in understanding the
reality beyond the bounds of

Imagination.

n the next and succeeding lectures,

et’ s take a closer look 4t those

products of free thinking
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‘Dynamical Definitions” of the

Theory ofS pecialRelativity and Time

Suppose that
S . . . -
In time-space, various kinds of particles are

flying around. They are splitting or bumping into each

other .
When the jistance between them becomes greater than

a certain range, no ‘power  is exerted.

L et us assume that “a law of conservation” was

discovered as an analysis of the video recording actions

of these particles.

Time-space is supposed to be affine.
Existence of “particles of a same kind” is used

53y u\sed in the following discussion.



Law of Conservation

-
@ Every moving particle has

Pi
Lz
\ Ps

| a vector / " along the locus of
f time space.

LZJ When they impact and break up,
the sums of these vectors are conserved.

Q. Is the law of conservation shown above meaningful?

—————

In other words, is it falsifiable by experiments?

“ A prediction” can be made usin
>/e s p g

w2 the law of conservation gbove.
You just have to check if this prediction

Is true or not.



ifthe blue locus i1s known,thered locus can be

predicted as follows.

\\
X

A N\

Black lines are auxiliary lines.



o Suppose that this law of consevation is true.

Then, this vector, w
i p, | hasa “dynamic meaning”

P2 | defined by this law.
by /

¥

41

Suppose that ‘a particle of a certain kind”

IS moving toward various
directions. Using this
particle, define proper

time as shown below.

’ definition Define the measurement of proper time

,F’ that the length of the vector is equal to elapse of proper

l Lime =WIT: = 2e et BN

T e T

\

I?f\ 0\/@/4[@ Z(Jhs'(zw-(_ Is unstable.

¥x something like an electron, for example
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Release particles from a point in time-space to many
0
directions, and plot (time, location) at the elapse of

proper time =1. ( As shown in the illustration above)

Under the assumption of adequate direction,
it can be proved mathematically that a curve above

Is a quadric surface.

When
— 9 = . e o —s =
//reference g \/-—), Ve = W o satisfy V/c & (V{-" "'Vgn )

terminal points of these vectors are on a

/

single quadratic curve.
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When this quadric surface is a hyperboloid,

( under the assumption of adequate isotropy and

proper coordinates) the equation can be

a regular number
K (llght velocity)

written as
K“W"i‘ - - a

(‘fo = unit time )

ooking back on the definition of proper value,
the equation above is equal to: I
/,__// 2
+ - gt W\ = ﬂj
I / F S

( My . proper value for a par})cle
(static mass)

The former is essential for a geometry of special relativity
theory, and the latter is essential for the dynamics of special

relativity theory.
F

Thus, under “the dynamic definition” of proper time, both

are equal.

e —

[ -

?" It is proved by special relativity theory that when the definition of proper

time measures various physical phenomena, it shows its genuine character,



quantitation 41

anclusion /
3 Mo/c/:/k dis@e P AL F a’:)(: W

\

of time space is in a relationship neither too close
to nor too remote from phenomena in time space

such as “the law of conservation”

» In geometry in pure mathematics, in a space
where Mk distance was not clearly defined,

sometimes,

/
/

/ .
quantitation  a mock distance is introduced.
N

o We may say that this mock distance is showing

us something primordialab asubject space then.

out
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