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Name Type Cargo & Function Reference
KIF1A N-KIF  Monomer Synaptic vesicle precursor 

Essential for neuronal function and survival 
Aizawa et al.JCB1992        Okada et al.Cell1995
Yonekawa et al.JCB1998   Okada et al.Science1999
Kikkawa et al.Cell2000       Kikkawa et al.Nature2001
Okada et al. Nature 2003   Nitta et. al. Science2004

KIF1Bα N-KIF   Monomer Mitochondria Nangaku et al. Cell1994

KIF1Bβ N-KIF   Monomer Synaptic vesicle precursor
Responsible gene of Charcot-Marie Tooth Type IIA  
Neuropathy

Zhao et al. Cell 2001

KIF2A
KIF2C

M-KIF   Homodimer Expressed abundantｌy in Juvenile neurons
Supression of axon collateral branch extension 
Microtubule Destabilizer

Aizawa et al.  JCB 1992     Noda et al. JCB 1995
Homma et al. Cell 2003
Ogawa et al.  Cell 2004

KIF3A
KIF3B

N-KIF   Heterodimer Form heterotrimer composed of KIF3A, KIF3B, and 
KAP3
Vesicles associated with α-fodrin important for 
neurite extension
Protein complexes to form cilia  > Nodal flow > Left / 
Right determination, Transport of N cadherin and β
catenin to suppress tumorigenesis

Aizawa et al. JCB 1992    Kondo et al.  JCB 1994
Yamazaki et al JCB1995  Yamazaki et al.PNAS 1996
Nonaka et al. Cell 1999    Takeda et al. JCB 1999
Takeda et al. JCB 2000    Tanaka et al. Nature 2005
Teng et al.  NCB 2005      Okada   et al.  Cell 2005
Hirokawa et al. Cell 2006

KIF4 N-KIF   Homodimer Expressed abundantｌy in Juvenile neurons
Regulation of activity dependent neuronal survival 
through binding to PARP

Aizawa et al.  JCB 1992
Sekine et al.   JCB 1994    Midorikawa et al. Cell 2006

KIF5A
KIF5B
KIF5C

N-KIF   Homodimer Mitochondria, Lysosome, Tubulin oligomer
GRIP1- AMPA type - glutamate receptor transport in 
dendrites 
RNA transport in dendrites

Hirokawa et al. Cell 1989   Hirokawa et al. JCB 1991
Aizawa et al. JCB 1992      Nakata et al. JCB 1995
Tanaka et al. Cell1998  Kanai et al. J.Neurosci.2000
Terada et al.  Cell 2000     Setou et al.   Nature2003
Kanai et. Al. Neuron 2004

KIF13A N-KIF   Homodimer Adaptin - AP1 adaptor complex - Mannose 6 
phosphate receptor vesicle 

Nakagawa et al. Cell 2000

KIF17 N-KIF   Homodimer Transport of Mint1 - NMDA type glutamate receptor 
in dendrites
Learning & Memory

Setou et al.  Science 2000    Wong et al. PNAS 2002
Macho et al. Science 2002   
Guillaud et al. J.Neurosci. 2003

KIFC2 C-KIF   Homodimer Transport of multivesicular body like organella in 
dendrites

Saito et al.  Neuron 1997

KIFC3 C-KIF   Homodimer Apical transportor of cholesterol, Annexin III 
enriched vesicles
Golgi complex integration and positioning

Noda et al.  JCB 2001
Xu et al.      JCB 2002
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Kinesin transports RNA: 
Isolation and characterization of an 

RNA-transporting granule

Kanai, Y. et. al   Neuron 43: 513- , 2004



Kinesin transports mRNAs with a large protein complex

Kanai,Y. et al  Neuron 43:513- ,2004



Isolation of a protein-RNA complex using KIF5 tail



The complex has a large S-value of 1000~



Colocalization of identified proteins and KIF5 to 
the Pur α-containing granules in dendrites



KIF5A in Triton-extracted cultured neurons

KIF5A colocalized to the Pur-α-containing granules
in Triton-extracted neuron 



Colocalization of mRNAs for CaMKIIα and Arc to 
the Pur α-containing granules in dendrites



Movement of the complex（GFP-Pur α）



Movement of the complex（GFP-Pur α）



Knockdown of the identified proteins by RNAi



Proteomics analysis 
of the RNA-transporting granules
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Why our hearts are on left?

Left side is determined at the early stage 
of development.
In some genetic diseases, patients have 
their hearts on right.
In Kartagener’s syndrome, immotile cilia in 
airway epithelium and immotile sperm are 
linked to right heart. 



Motile cilia are necessary for 
the L-R axis determination.

Randomization of the L-R axis in 
1) immotile cilia syndrome (human)
2) ciliogenesis mutant mice (KIF3-/-)

Where are the motile cilia?

How does the ciliary movement determine the L-R 
axis?



Asymmetric distribution of caged-
fluorescently labeled protein after continuous
uncaging at the middle of node.



Asymmetric distribution of 20~40 kDa
protein by nodal flow

Leftward nodal 
flow is rapid 
enough to  
generate 
stationary 
asymmetric 
distribution of 
soluble protein in 
the node.



Nodal Flow Hypothesis

1. Clockwise rotation of cilia
2. Rapid leftward flow
3. Left-specific gene expression



Is nodal flow universal?
Mouse:

egg cylinder
nodal pit on the ventral surface

Higher vertebrates:
embryonic disc
No nodal pit

Lower vertebrates:
ventral surface is embedded



A
Hn

nodal

Monocilia on 
the ventral 
surface of the 
notochordal 
plate of rabbit 
embryo.

Probe for nodal:
courtesy of Dr Hamada
(Osaka Univ)



Leftward flow in the notochordal 
plate of the rabbit embryo

Right

Left

20x Time Lapse

20 um



Asymmetric distribution of caged-
fluorescent dextran



Monocilia 
on the 
inner 
surface of 
Kupffer’s 
vesicle of 
medaka
embryo.

Medaka embryo: 
courtesy of Dr. 
Shima
(Univ.Tokyo)



Medaka embryo: 
courtesy of Dr. Shima
(Univ.Tokyo)
Hatching enzyme: 
courtesy of Dr. 
Yasumasu (Sophia)

Leftward flow in Kupffer’s vesicle of 
medaka embryo



Leftward Flow in the Ventral Node
Conserved:

Primary monocilia
Clockwise rotation
Leftward flow

Not conserved:
Shape, size and position 
of the ciliated organ
Velocity of the flow

50μm

Mouse

Rabbit

Medaka

3.5 μm/s 7.4 μm/s

1.3 μm/s



The Nodal Flow Hypothesis

1. Leftward Nodal Flow
2. Left-specific expression of master genes
3. Left/right asymmetric morphogenesis

Tautology!

Doesn’t answer why left is left.



Central Question:
What directs the flow to the left?

How are the 
information of the A-P 
axis, D-V axis and the 
chirality integrated to 
determine the 
directionality of the 
nodal flow?

A-P axis D-V axis chirality

L-R axis

Leftward Nodal Flow



What produces the leftward flow?

Rotation of the primary cilia in the node.
Conventional “9+2” cilia

Regulation by the central pair 
microtubules enables the 
planar beating.

Primary “9+0” cilia in the node.

No central pair microtubules 
unable to beat
Clockwise rotation



What produces the leftward flow?

Rotation of 9+0 cilia
Rotation can only produce vortices.
In inv mutant mice, and in the wild type 
embryos at the earlier stages, the flow is 
vortical and the leftward flow is not evident.

Some mechanism(s) exist for 
the conversion into the 
laminar leftward flow.



Rotation of Monocilia

Recording frame rate:
500 frames / sec



Posteriorly Tilted Rotation of 
Monocilia

Recording frame rate:
500 frames / sec



Posteriorly Tilted Rotation of 
Monocilia

1000 frames / sec



Posteriorly Tilted Rotation of 
Monocilia

Side view

1000 frames / sec



Posteriorly tilted rotation of cilia



Posteriorly tilted rotation of cilia



Axis of Rotation is Tilted ~40°
to the Posterior.



Hydrodynamic Mechanism of the 
Generation of the Leftward Flow



Cilia integrate the information of 
the axes and the chirality
Chiral Structure

Ventral projection

DV axis

Posterior tilting

AP axis

Clockwise rotation

Leftward Flow

V
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What determines the posterior 
tilting of the nodal cilia?



2

Posterior projection of nodal cilia
Mouse                             Rabbit                        Medaka

Red: Cilia projecting from posterior quadrant of the apical surface.
Green: Cilia projecting from other quadrants. 
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Posterior Positioning of Basal Body

Green: γ−tubulin, Red: apical cell surface

A                                               P
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Potential link to planar cell polarity

Posterior positioning 
of basal body and the 
dome-like shape of 
the apical surface 
might determine the 
posterior tilting of 
nodal cilia.
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Chiral Structure

Ventral projection

DV axis

Posterior tilting

AP axis

Clockwise rotation

Leftward Flow

PCP?

Hydrodynamic
Mechanism
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Slow leftward flow with meandering 
streamline in inv mutant mice.



7

Slow nodal flow and abnormal rotation 
of nodal cilia in inv/inv mouse
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Wider distribution of the direction of 
the rotation axis in inv mutant.

Red: inv/inv, Black: inv/+
~20% of cilia were anteriorly tilted in inv/inv mice.
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Abnormal rotation of nodal cilia in 
some inv/inv mutants

CCW rotation                              immotile

Red: inv/inv, Black: inv/+
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Mechanism of abnormal flow in 
inv mutant mice.
Chiral Structure

Ventral projection

DV axis

Posterior tilting

AP axis

Clockwise rotation

Abnormal Flow

V

X
X



11

Cilia integrates the information of 
the axes and the chirality
Chiral Structure

Ventral projection

DV axis

Posterior tilting

AP axis

Clockwise rotation

Leftward Flow

V
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FGF-induced vesicular release of 
Sonic hedgehog and retinoic acid 
in leftward nodal flow is critical for 

left right determination  
Nature 435:172-177, 2005

Yosuke Tanaka, Yasushi Okada & 
Nobutaka Hirokawa

Dept Cell Biol & Anat, Grad Sch Med, 
Univ Tokyo



14

Symmetry breaking is essential for 
developing your internal organs

(William Larsen's Human Embryology website)
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The sensing mechanism of nodal 
flow is very much controversial



17

We identified morphogen-carrying 
vesicular parcels flowing to the left

NVPs flowing leftward
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FGF receptors in ventral node
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Active FGF signals in 
ventral nodal region
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Ca elevation in 
left definitive endoderm



21
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RA and SHH elevated Ca on the 
left side in the presence of SU5402
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SU5402 did not apparently impair the 
fluid flow on 1-3 somite stage
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Nodal Vesicular Parcels (NVPs) 
flows from the right to the left

0     2    4
6
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NVPs are 
associated with 
microvilli on its 
release 

e & f, SU5402-treated
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Unidirectionality of NVP flow is 
ensured by its fragmentation
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NVP flow can be modulated by 
pharmacological perturbations
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A non-ciliated node has more NVPs
than a node with immotile cilia
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SHH and RA localize on NVPs

SHH                                           RA
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ImmunoEM labeled against 
SHH on NVPs
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FGF-induced NVP flow transports 
SHH and RA to the left



33

Summary
We detected a direct evidence of leftward morphogen transport in 
mouse ventral node on 1-3 somite stage as a molecular basis of 
forming concentration gradients along the left-right axis.

Membrane-sheathed extracellularly secreted objects, the NVPs, 
were identified to be vehicles of SHH and RA, which flow to the left 
and trigger Ca elevation on the left periphery of the node.

Dynamically protruding microvilli are involved in active release of 
NVPs, and nodal cilia appear to facilitate their fragmentation on the 
left, in addition to generating the fluid flow.

FGF signaling in the nodal region facilitates NVP release and Ca
elevation, but is not indispensable for generating the fluid flow.  Thus 
fluid flow itself is not sufficient for Ca elevation.

SHH or RA is sufficient to evoke the NVP release and Ca elevation 
even in the presence of FGFR inhibitor, suggesting a “shuttle bus 
model” on its releasing machinery that may sense the contents.
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