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Physics of Transition Metal Oxides
Lecture 7

Metallic oxides
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Activation energy of conduction

In a system where carriers are more or less localized at defect sites, we would expect to see an
activation energy, i.e. an energy barrier that a crrier has to cross to become mobile (ionization
energy). Mobile carriers have to cross a barrier when jumping from one lattice site to another
(mobility barrier). Conductivity follows the Arrhenius equation

σ = Ae
− Eσ

kBT .
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The activation energy Eσ = Eµ + Ea, where Eµ is the
mobility activation energy and Ea is the carrier ionization
energy barrier.
This plot shows how a carbon resistor (Allen-Bradley
270Ω) behaves.

We now move from seiconductors to metallic systems. In a metal we would not have an acti-
vation energy for carrier movement. We look at how the activation energies are affected by the
concentration of dopants in a crystal.
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Here we have a plot showing the conductivity of Ge doped
with Sb. The doping level is 1015 cm−3 (donors). The
sample is partially compensated with ≈ 1013 cm−3 of
acceptors.
At high temperature all carriers are ionized and the
temperature dependence is due to a change in mobility
(phonon scattering, µ ∝ T−3/2). For Ge this happens
above 30 K.

In this plot, we see two slopes with a jump at 4 K. In this temperature range the main resistivity
change is due to the ionization of carriers. The jump at 4 K is due to the presence of a small
amount of compensating acceptor states.

At very low temperatures, we start to see a quantum-mechanical tunneling or hopping mecha-
nism. A classical electron would be trapped on a particular site at r1 in a crystal. A potential
barrier separates it from other sites. The quantum-mechanical wavefunction of the electron
extends much further and there is a finite probability of jumping (tunneling) to another site.
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The probability of jumping, P12, depends on how far the next impurity site is

P12 ∝ e
−2

|r1−r2|
a0

The probability also depends on the energy difference at the two sites (E1−E2). This difference
has to come from phonons.

P12 ∝ e
−2

|r1−r2|
a0

−E1−E2
kBT

The electrical conductivity is proportional to P12. This is a nearest neighbor hopping mechanism
and it predicts an exponential temperature dependence for resistivity at low temperatures. It is
only possible if E1 − E2 � kBT .
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Semiconductor-to-metal transitions:

Semiconductors become completely metallic when heavily doped.
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Here we look what happens to heavily doped SrVO3, i.e. La1−xSrxVO3 as a function of doping
level x. As we see, the activation energy drops as the doping level increases. At x = 0.2 the
activation energy becomes zero and we get a metal.
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Transition to metallic state in doped oxides
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Even when there is no transition, as in Li-doped NiO, the activation energy still drops with doping.
This could be due to increased dielectric constant due to the extra polarizability of the impurity
states. Higher ε weakens carrier binding to the impurities.

In various heavily-doped oxides, the Arrhenius activation energy plot does not work. In this case
the distance between impurity sites is small and the electron energy difference at two different
sites is more important. Effectively an electron can hop a longer distance if the energy difference
E1 − E2 is negative for the same value of P12. This is variable range hopping and it is more
accurate to use

σ = Ae
−

(

T0
T

)1/4

,

where A and T0 are constants.
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This can be seen in Nb18−nW8+nO69
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The carrier concentration goes up with n. At highest n there is no temperature dependence, i.e.
we have a metallic state. The T1/4 exponent is a sign of a variable range hopping mechanism
of conduction.
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Variable range hopping is a general feature of disordered
systems. Impurities in an oxide lattice is one case. More
generally this is seen in amorphous materials.

Transitions to the metallic state can be seen in various measurements. The Seebeck coefficients
of metals are generally lower than those of semiconductors. A drop of thermopower usually hap-
pens close to the transition.
In other spectroscopic measurements a Fermi level crossing appears in photoelectron measure-
ments, a plasma peak appears in EELS, etc.
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The transition is also visible by eye in oxide bronzes, such as NaxWO3 (generally doped d0

oxides). At low x the color is blue (absorption in infrared). At higher x the color changes to red
and then bronze as the metallic state is reached.
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As a practical example, here we have the resistance be-
havior of a Ruthenium oxide resistor. The oxide contains a
large number of disordered defects.

As a general rule, a transition to metallic state occurs when the carrier concentration is in the
range of 0.2 to 0.3 carriers per transition metal atom. At the transition the conductivity is 102 −
103(Ωcm)−1. Exceptions are SrTiO3 and KTaO3 due to their high dielectric constants.
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Let’s look at the semiconductor-to-metal transition in a
density of states picture.
When the doping level is low (a), we get a sharp impurity
(this figure is for a donor) peak in the gap.
If the concentration of impurities increases, the carriers
trapped at these site start to overlap, forming a narrow
impurity band (b). Since each defect donates a single
electron, this band should be exactly half-filled.
Localized electrons also suffer from strong electron-
electron interactions, resulting in a Hubbard split of the
impurity band. The Hubbard U in this case is the Coulomb
repulsion between two electrons in the same defect orbital.
Typically the Hubbard gap is comparable to Ed and the
upper Hubbard impurity band thus partly overlaps with the
bottom of the conduction band. (c)
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At even higher concentrations (d), the impurity bands broaden and overlap. Conductivity does
not appear due to Anderson localization.
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If we look at disordered impurities in a crystal, each
with a slightly different energy, they form a narrow
band. The impurities that are in the middle of the
band (there are many of those) are likely to have a
neighbor with a similar energy. In that case overlap
can happen and carriers can move. The impurities
with an energy close to a band edge are very un-
likely to have a neighbor with a similar energy. Car-
riers at those sites belong to the ’band’ but they are
completely localized and can not contribute to metal-
lic conduction.

We can thus have case where the Fermi level is inside a band, but not get metallic conductivity.
The localized/mobile boundary is sharp, and is known as a mobility edge. The localized carriers
can only move by hopping.
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That is why case (d) does not give a metal and we can ex-
pect a T1/4 temperature behavior close to the transition to
metallic state.
At the highest doping levels, the bands are so broad that
delocalization occurs at the Fermi level and we get a metal
(e).
The various steps listed here are not of equal importance.
For example, the Nb-W oxide system shows a variable
range hopping behavior over a broad composition range.
In partly compensated semiconductors the Fermi level may
shift into the lower Hubbard band. In this case we may be
looking at the mobility edge within this band instead (com-
pensation matters).
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The conductivity change can be very sharp close
to the transition, as shown here for phosphorous-
doped Si. Mott predicted that the transition would
occur universally at

n
1/3
c a0 = 0.26 ± 0.05,

where nc is the critical carrier concentration and a0

is the radius of the impurity orbital. In oxides this
model works well in high dielectric constant oxides
like SrTiO3 or KTaO3 because the impurity orbital
size is given by

a0 = aH
εr

m∗/m0

and thus the orbitals in those materials are large and
the hydrogen model works well.

For SrTiO3 we have (at RT) m∗ = 12 and εr = 220, giving a0 = 1 nm. The estimated
nc ∼ 5 × 1018 cm−3. Measured value is about 3 × 1018.
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This plot shows just how well the Mott prediction
works in various materials.
Mott also analyzed the transition, starting from the
metallic side. A metal should lose conductivity when
the scattering due to disorder reduces the mean-free
path to a value which is comparable to the lattice
constant. Mott thus predicted a minimum metallic
conductivity of

σmin = 0.026
e2

h̄a
.

For a = 0.3 nm, this gives 300 (Ω cm)−1. The
experimental numerical values are around 1000
(Ω cm)−1.

15

Metallic oxides:

Metals are characterized by a resistivity that increases with temperature. Simple metals are
materials where the free-electron theory gives a good description of the band structure and
transport properties.

There are very few simple metals among oxides (ReO3, NaxWO3). This is due to electrn-
electron interactions or correlations that are inevitable when bands are narrow (as d-bands are).
Carriers may also interact with the lattice. This occasionally induces a transition to an insulating
state at low temperature or a transition to a superconducting state.
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Here we have the band diagram of
ReO3
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A simple cubic lattice with a single
formula unit per unit cell.
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The valence band consists mostly of O 2s and 2p levels. Slight
admixture of Re 5d as well.
The conduction band is mostly Re 5d. The Re 5d band has
crystal-field splitting into a t2g band and an eg band.
The band width is determined by the mixing of Re 5d and O 2p

levels, not by Re orbital overlap.
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The orbital orientation is such that there is practically
no mixing of O 2p and Re 5d orbitals at the Γ point.
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Three d levels are degenerate at the Γ point. Bond-
ing depends on the direction of k, which is why the
three bands split in some of the other regions in k-
space. One branch is nearly flat in the ΓX direction.

The shape of the Fermi surface of metallic oxides can be measured in some cases, such as
ReO3 because the mean-free path of electrons is long enough (resistivity is 107(Ωcm)−1 at
low temperature. The calculated shape can be checked by measuring the de Haas-van Alphen
effect (oscillation of sample magnetization in a strong magnetic field). In most other oxides, even
conducting, the mean-free path is comparable to a lattice constant.
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The band structure of NaxWO3 with x > 0.4 is similar to ReO3. The sodium occupies ran-
domly some of the large interstitial sites in the lattice. The conduction band is also due to W-O
hybridized bands. The Na orbitals have much higher energy.
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The density of states at EF has
been measured using photoelec-
tron spectroscopy (2) and specific
heat (•). The dashed line shows a
free-electron model calculation with
m∗ = m0.
Specific heat is

C = αT3 + γT,

where the T3 term comes from
phonons and the multiplier γ of
the linear term is proportional to
N(EF )

Cel = (π2/3)k2
BTN(EF ).

The measurements confirm that
each sodium gives a single carrier.
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The measured results give a linear N(EF ), while the free-electron prediction is

N(EF ) ∝ m∗x1/3.

This illustrates some of the difficulties in analyzing oxide data. What is not clear for the tungsten
bronzes is whether the electronic structure can be analyzed by a rigid-band model. In this case
the doping would only shift the Fermi level without actually changing the shape of the bands. In
NaxWO3 we would need to consider

• The disordered occupancy of interstitial sites by Na+ ions

• Polaron formation

• Coulomb interactions

All these influences may be present in the metallic regime as well, distorting the density of
states. There is also a slight increase in the W-W distance as doping level increases (due to
the introduction of electrons into antibonding orbitals). This would decrease orbital overlap and
make the bands narrower (effective masses larger). The linear N(EF ) dependence is probably
a sum of many influences. 20

Transport properties
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ReO3 has an exceptionally high conductivity (for an oxide)
of 107(Ωcm)−1. At room temperature it is still 10 times
more conducting than the best tungsten bronzes. The dis-
order caused by Na doping clearly has an effect.
The resistivity behavior shown here is for NaxWO3. The
resistivity can be separated into two terms

1/σ = ρ = ρdis + ρlat,

where ρdis is the residual resistivity at low temperature due
to scattering by static disorder and ρlat is the contribution
of lattice vibrations.

The diorder scattering term is very large at 4 K. For x = 0.5 it contributes about one half of the
room-temperature resistivity. Disorder is reduced as the Na sites are filled up with x increasing
from 0.5 to 0.9. This results in a 10-fold drop of resistivity. The bump at x = 0.75 is due to
partial Na ordering as shown by neutron diffraction.
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For a free-electron system we would have a Hall coefficient

RH = − 1

ne

The measured results shows a close to linear dpendence,
but slightly higher than what would be calculated from the
composition of the sample. This deviation is due to the de-
viation of the electronic structure from a pure free-electron
case.
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The measured Seebeck effect gives approximately linear
temperature dependencies, as expected for a metal

αd = (π2/3)(k2/e)T/EF

As the doping level inreases the Fermi level shifts and also
changes the thermopower. The Fermi level shifts calcu-
lated from the Seebeck measurements don’t quite fit free-
electron predictions either.
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Optical properties

A good metal should behave like a plasma, i.e. a neutral gas of light electrons and heavy ions.
A free electron in such a model would feel an external oscillating electric field (a light wave) and
the equation of motion for an electron would be

m0
d2x

dt2
+ m0γ

dx

dt
= −eE(t) = −eE0e

−iωt.

The first term is the acceleration of the electron, the second term is a frictional damping force
of the medium. Obviously, the electron also oscillates, and we can substitute for the electron
x = x0e

−iωt

x(t) =
eE(t)

m0(ω2 + iγω)
.

The polarization of the gas is −Nex, where N is the volume density of electrons. The electric
displacement is thus

D = εrε0E
= ε0E + P

= ε0E − Ne2E
m0(ω2 + iγω)
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This gives us the relative dielectric constant

εr(ω) = 1 − Ne2

ε0m0

1

(ω2 + iγω)
= 1 −

ω2
p

(ω2 + iγω)
,

where

ωp =

√

√

√

√

Ne2

ε0m0

is the plasma frequency.

When damping (scattering) is small, we have γ = 0 and

εr(ω) = 1 −
ω2

p

ω2
.

The complex refractive index ñ =
√

εr and thus ñ is imaginary when ω < ωp and zero when
ω = ωp. Reflectivity is given by

R =

∣

∣

∣

∣

ñ − 1

ñ + 1

∣

∣

∣

∣

2

.
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Substituting ñ into this shows that reflectivity is unity for
ω ≤ ωp and decreases for ω > ωp. For metals the plasma
frequency is typically in the ultraviolet region.
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This is the reflectivity of silver, showing why metals make
good mirrors. The color of some metals, like copper, are
due to interband transitions, not due to free-electron re-
flectivity changes.
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In oxides (and semiconductors in general) we have a slightly more complicated behavior be-
cause there are other sources of polarization in addition to free electrons.

D = εrε0E
= ε0E + Pother + Pfreecarrier

= εoptε0E − Ne2E
m∗(ω2 + iγω)

Herte Pother is due to bound electrons, while m∗ accounts for the band structure and N is the
carrier concentration. In this case we get

ω2
p =

Ne2

εoptε0m∗ ,
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where εopt is the optical dielectric constant obtained
from εopt = n2, measured well below the interband ab-
sorption edge, where a semiconductor would be com-
pletely transparent. For typical semiconductors this
edge is in the infrared region.
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In oxides, the plasma edge can be in the visible range
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This example is for ReO3. The spectrum shape is compli-
cated by various intra- and interband transitions.
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The band structure of ReO3 is not quite free-electron like
and we see quite large oscillations of the dielectric constant
above the plasma frequency due to interband transitions.
The dip just below the edge occurs at

ω2 =
εopt

εopt − 1
ω2

p

can be used to find an optical effective mass of 0.86m0 for
the ωp = 2.3 eV of ReO3.
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The lowest energy interband transition is at 4.2 eV and is due to valence band-conduction band
transitions (similar to a band-gap transition of d0 oxides). The energy is larger than the gap
because the bottom of the conduction band is already full.
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The plasma frequency can also be measured by EELS,
i.e. measuring the loss of energy when electrons are
reflected from the surface, assuming that the surface
properties are characteristic of the bulk. In this case

ω2
sp =

ne2

ε0(εopt + 1)m∗

The measure m∗ values for NaxWO3 are shown here
(•). These coincide with the optical plasma edge
measurements (4), but not with photoelectron spec-
troscopy results (◦).

This difference is not really surprising, considering all the other data, which shows that although
the oxides are metallic, they are far from a free-electron system.

28

Figure removed due to
copyright restrictions

Cox92 p.215

A direct way to measure N(EF ) is photoelectron
spectroscopy. A few cautionary words here about
this technique. The plot shows an XPS spectrum of
ReO3 and the total density of states. The relative oc-
cupancies of the conduction band and valence band
are quite different in the two plots. This is due to a
different ionization cross-section for electrons in dif-
ferent orbitals.

In this case the cross-section of Re 5d orbitals is much larger than for the O 2p orbitals and
therefore the spectrum is a good approximation of the Re 5d partial density of states, not really
the total density of states.
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