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Physics of Transition Metal Oxides
Lecture 4

Insulating oxides
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We focus on insulators, but first, we have to understand what we mean by the word insulator.
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If the band structure of a material has a gap and
the Fermi level is within this gap (a band is ex-
actly full), we would have an insulator or a semi-
conductor. If there is no gap, we would have a
metal.

The boundary between an insulator and a semiconductor is not as clear.

At absolute zero, the highest completely filled band (the valence band) is separated from the
lowest empty band (the conduction band) by a gap Eg. At T = 0 the material can not conduct
electricity. If T > 0, various mechanisms can cause electrons to be excited into the conduction
band.
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We start with conductivity of metals

Remember the band structure calculation. This told us that

E(k) = E0 − 2tx cos(kxa) − 2ty cos(kyb) − 2tz cos(kzc),

or (for simplicity) in one dimension

E(k) = E0 − 2I cos(k a).

We also derived values for electron velocity and effective mass

v ≡ 1

h̄

dE

dk
=

2Ia

h̄
sin(k a),

m∗ ≡ h̄2

d2E
dk2

=
h̄2

2Ia2

1

cos(ka)
.

We also calculated a classical response to an external field for a conduction electron

h̄
dk

dt
≡ f .
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Let’s assume we have an electron at the conduction band bottom, with k = 0 for t < 0. At
t = 0 an electric field ε is switched on in the x direction. For t ≥ 0 the force on the electron is
f = −eε and thus

h̄
dk

dt
= −eε.

Integrate this with boundary condition k = 0 at t = 0

k(t) = −eε

h̄
t.

and substitute into the equations for v and m∗

v = −2Ia

h̄
sin(

aεet

h̄
)

and

m∗ =
h̄2

2Ia2

1

cos(aεet
h̄ )

.

We can now integrate v to get the position of an electron, x

x =
2I

eε

[

cos(
aεet

h̄
) − 1

]

.
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The electron position and velocity oscillate
around a fixed value (Bloch oscillations) at
an angular frequency of ωB = aεe/h̄! This
means that there can be no current flow and
a material with free electrons should be an
insulator.
For a field of ε = 104 V/cm, we get

ωB =

{

1.5192 × 1011rad/sec fora = 1Å

1.5192 × 1013rad/sec fora = 100Å.
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Why this happens? As an electron accelerates, it
moves up the E(k) curve until it reaches the top
of a band at k = −π/a. At that point the band is
flat, and the derivative of E(k) is also zero, i.e.
v → 0 and m∗ → ∞.
If there is no interband tunneling, the electron
continues in the same band from k = +π/a,
losing energy until it is back at k = 0.
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The previous discussion applies if there is no scattering, or at least the Bloch oscillation period
TB is much smaller than the average scattering time τ , TB � τ , or

ωBτ � 1.

For simple lattices, a ≈ 1Å, and ωB ≈ 1011sec−1. Effectively Bloch oscillations do not matter.
In superlattices, a ≈ 50 − 100 Å, and ωB ≈ 1013 sec−1. In that case Bloch oscillations may
have an effect.

This problem goes away if we have scattering. In a scattering event the electron loses is k

history and the average value of k after scattering is zero. Electrons in a field can thus carry a
current if they scatter before they reach the top of the band.

Now let’s look at conductivity in metals:

As we saw earlier, conductivity is given by

σ =
ne2τ

m∗ .
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We saw that the electron velocity is given by
v = (1/h̄)∇kE(k), i.e. electron velocity follows
the gradient of energy, which is perpendicular to
surfaces of constant energy, such as the Fermi
surface.
If there is no external field, the number of elec-
trons drifting in some directions is matched by an
equal number of electrons drifting in the opposite
direction.
If a field is applied, the electrons with v parallel
to the external field move to slightly higher ve-
locities, i.e. the Fermi surface is displaced by
∼ m∗vd/h̄. The drift velocity is typically vd ∼
10−3 m/s. The Fermi velocity is vF ∼ .01c.

The relevant scattering time τσ is the time needed to randomize an electron’s forward veloc-
ity. A suitable scattering even is shown with an arrow, scattering an electron to a state with
approximately opposite momentum and velocity.
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One important scattering mechanism is phonon scattering, i.e. electrons interacting with lattice
vibrations or distortions because these distortions break the ideal periodicity of the crystal.
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There are two important possibilities:

• Elastic: Both phonon and electron change wavevector and energy. Energy and momentum
are conserved.

• Inelastic: A phonon may be absorbed or emitted by an electron. Electron’s wavevector and
energy change.
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A phonon spectrum also has dispersion curves,
E(q). Phonons act as bosons, similar to pho-
tons. This plot is for a diatomic linear chain of
atoms. In this case we have to branches
• acoustic ω → 0 as q → 0. At low q val-

ues the relation is nearly linear with ω =

vsoundq. The lowest-frequency phonons are
simply sound waves in a crystal.

• optic ω →finite as q → 0.

These modes are illustrated in the lower figure.
Both cases have the same wavelength. In the
optic mode, neighboring atoms are displaced in
opposite directions.
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”Lattice dynamics” ed. Wallis, London 1965

This is a measured dispersion di-
agram for phonon modes in GaAs,
measured at 296K by neutron scat-
tering. Labels are
L - longitudinal
T - transverse
O - optic
A - acoustic

Figure removed due to
copyright restrictions

Singleton01 p.184,188

The Debye model allows us to estimate the number denisty
of phonons as a function of temperature. The Debye tem-
perature corresponds to a cut-off energy kBΘD = h̄ωD =

h̄ckD, where ΘD is the Debye temperature.
At low temperatures, (T/ΘD) = 0.1, 0.2, 0.5, the spectrum
has a similar shape to black body radiation. Nph ∝ T3

At high temperatures, (T/ΘD) = 1, 5, the relation is linear
with a sharp cut-off at ΘD. Nph ∝ T .
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A typical phonon has an energy of h̄ω ∼ kBT . If an
electron absorbs a phonon during scattering, it will
gain this energy. Electrons can also emit phonons of
∼ kBT energy. Note that after scattering an electron
must find a lower-energy level to scatter into. There
are free levels only within about kBT of the Fermi
level.
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At room temperature. For most metals, ΘD is less than or
comparable to room temperature. The phonon wavevector
q ≈ maximum size = half the width of the Brillouin zone
∼ kF. Electron-phonon scattering can thus flip an electron
to the opposite side of the Fermi surface.
τ−1
σ ∝number of phonons with h̄ω ∼ kBT ∝ T .
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If T � ΘD, phonon energy h̄ω ∼ kBT is � kBΘD and
therefore q � Brillouin zone size, i.e. q � kF . An inelastic
scattering event can thus change the electron energy only
by ∼ kBT . Very many scattering events are needed to ab-
sorb the excess forward velocity of an electron.
Pure forward scattering does not change the k (direction)
of an electron. The effectiveness of a scattering event at
randomizing an electrons wavevector is therefore depen-
dent on the scattering angle, θ. The scattering rate has a
factor 1 − cos θ. For small θ,

1−cos θ ≈ 1−(1−θ2

2
) =

θ2

2
≈ q2

2k2
F

≈ ω2

2k2
F v2

sound

∝ T2,

because ω = vsoundq.

We thus have a phonon number proportional to T3 and a factor proportional to T2, giving
τσ ∝ T−5.
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The σ ∝ T−5 is rarely seen. There are several reasons:
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The k-space is periodic. It is possible
for a small q to scatter an electron into
a neighboring Brillouin zone (umklapp
scattering). If viewed in the first zone,
change in k is very small (A to B). If
mapped to a single zone, the change
can be very large (A to C).
The original assumption was that
wavevectors of similar size correspond
to similar velocities. This is true for
a circular Fermi surface. For a com-
plex Fermi surface shape or if inter-
band scattering can occur, this is not
true.

At very low temperatures or dirty metals, phonon scattering becomes negligible. In that case
only impurity or defect scattering remains. In impurity scattering a single event can randomize
the k of an electron.
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Conclusions for metals:
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Rosenberg, ”Low Temperature Solid State Physics”, 1963

Temperature
(scatterer) σ
very low σ ∼ const.
(impurities)
T ∼ ΘD/10 σ ∝ T−5

(phonons)
T ≥ ΘD σ ∝ T−1

(phonons)
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One last note:

Electron-electron scattering is not significant in metals, because initial and final states must be
within kBT of EF and wavevectros must be close to kF . Energy and momentum must also be
conserved. It is important when
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• Fermi surface has a compli-
cated shape, so that conserva-
tion laws can apply for a variety
of scattering processes.

• The density of states is very
large at the energy and the ef-
fective mass is very large. This
increases the number of avail-
able initial and final states. Im-
portant in transition metals and
heavy fermion systems.
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Semiconductors:
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If the band structure of a material has a gap and
the Fermi level is within this gap (a band is ex-
actly full), we would have an insulator or a semi-
conductor. If there is no gap, we would have a
metal.
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Start with traditional semiconductors: Si, Ge, GaAs, CdTe, etc. with the zinc blende structure.
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In both Si and Ge two bands meet at
the top of the valence band at the cen-
ter of the Brillouin zone (Γ point). Only
the heavy holes matter, because their
band is very flat and thus gives a very
much higher density of states than the
light holes.
Thermal excitation can occur between
the highest point of the valence band
and the lowest point of the conduction
band (at 300K anyway, E = kBT ,
kB = 8.6 × 10−5 eV/K, 300K∝
25 meV).

Singleton01 p.50
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An obvious way of characterizing the gap is to measure optical absorption. Photons with energy
hν ∼ Eg ∼ 0 − 2 eV have wavevectors � than a typical Brillouin zone size. A transition from
valence to conduction band is thus essentially vertical in k space.
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The transition probablity is largest when
the density of states (full or empty) is large
in both initial and final states. This hap-
pens if conduction and valence bands are
approximately parallel.
Both Si and Ge are indirect gap semicon-
ductors. The smallest energy separation
is not vertical in k-space.
Absorption is only possible if the extra k

comes from somewhere, such as lattice
phonons.
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Optical absorption of Ge at 300K and 77K. The indi-
rect transition is visible at a lower energy, but inten-
sity is 100× smaller than the direct transition. The
indirect transition is stronger at 300K (more phonons
available).

Figure removed due to
copyright restrictions

The gap is also a function of temperature. Ther-
mal expansion changes the atomic distances, which
causes the overlap integrals to change in the tight-
binding model. This changes the band widths.
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The number of mobile carriers in semiconductors depends on temperature.

The number density of electrons in energy range E to E + dE is

dn = fD(E, T)g(E)dE,

where fD is the Fermi-Dirac distribution function

fD =
1

e
E−µ
kBT + 1

,

g(E) is the density of states, and µ is the chemical potential. The Fermi level (i.e. µ) is within the
gap and thus the occupancy of conduction band levels is � 1. This means that (E−µ) � kBT

and we can approximate the F-D distribution

fDC ≈ 1

e
E−µ
kBT

= e
−E−µ

kBT .

The chance of having a hole in the valence band is 1 − fDV. In valence band (E − µ) is
negative and |E − µ| � kBT

1 − fDV = 1 − (1 + e
E−µ
kBT )−1 ≈ 1 − (1 − e

E−µ
kBT ) = e

−µ−E
kBT
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As we saw earlier, close to a band bottom (or top) the dispersion curve is parabolic and we can
use a single scalar effective mass

gc = Cm
∗3
2

c
√

E − Ec

and

gv = Cm
∗3
2

hh

√
Ev − E,

where C = (1/2π2)(2/h̄2)3/2. We can now calculate the carrier density in the conduction
band

n =

∫ ∞

Ec

fDC gc dE ≈ Cm
∗3
2

c

∫ ∞

Ec

√
E − Ec e

−E−µ
kBT dE

We can substitute y = (E − Ec)/(kBT) and get

n ≈ C(m∗
ckBT)

3
2e

−Ec−µ
kBT

∫ ∞

0
y

1
2e−y dy.

Note that this is a table integral

Γ(p) =

∫ ∞

0
yp−1e−y dy

and the Gamma function recursion rules

Γ(p) = pΓ(p − 1)

Γ

(

1

2

)

=
√

π
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n ≈ C(m∗
ckBT)

3
2e

−Ec−µ
kBT

∫ ∞

0
y

1
2e−y dy.

The integral is simply a constant, giving us the desired density

n = Nce
−Ec−µ

kBT .

In a similar way we calculate the hole density in the valence band

p =
∫ Ev

−∞
(1 − fDV) gv dE ≈ Cm

∗3
2

hh

∫ Ev

−∞

√
Ev − E e

−µ−E
kBT dE.

Similar integration yields

p = Nve
−µ−Ev

kBT .

Nc is the number density of accessible states at the conduction band bottom
Nv is the number density of accessible states at the valence band top.
Numerically

Nc(T) = 2.5

(

m∗
c

m

)3/2 (
T

300K

)3/2

× 1019/cm3

Nv(T) = 2.5

(

m∗
v

m

)3/2 (
T

300K

)3/2

× 1019/cm3
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This shows that the maximum carrier concentration in a nondegenerate semiconductor is around
1019 carriers/cm3 if mc/m and mv/m are around unity. (True in simple semiconductors, not
really for oxides).

Now n and p contain the chemical potential, which we don’t know. Their product, however

np ≈ NcNve
− Eg

kBT = WT3e
− Eg

kBT ,

where Eg = Ec − Ev is the energy gap. The np product is known as the law of mass action.
It means that if we know the concentration of one type of carriers at a certain temperature, we
can calculate the concentration of the other type as well.

If we assume that n = p, we can look what happens to the chemical potential µ.

Nc

Nv
= e

2µ−Ec−Ev
kBT

Note that (Nc/Nv) = (m∗
c/m∗

hh)
3/2. This allows us to write

µ =
1

2
(Ec + Ev) +

3

4
kBT ln

(

m∗
hh

m∗
c

)

.

If m∗
hh = m∗

c , µ starts out in the middle of the gap at T = 0. In most cases m∗
hh is much larger

than m∗
c , pushing µ higher.
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Intrinsic semiconductors:
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The equality of n and p happens in an
intrinsic semiconductor, i.e. when there
are no carriers donated by impurities.
In that case we get the intrinsic carrier
density

ni = n = p = T3/2W1/2e
− Eg

2kBT

This shows that even small changes in the gap will result in orders of magnitude changes in
carrier concentration. Numerically:

ni(T) = 2.5

(

mc

m

)3/4 (mv

m

)3/4 ( T

300K

)3/2

eEg/2kBT × 1019/cm3.
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Conductivity in a semiconductor is due to all carriers (electrons and holes)

σ = neµc + peµhh

where µc is the electron mobility and µhh is the hole mobility. Mobilities depend on scattering
processes,

µc =
eτc

m∗
c

and

µhh =
eτhh

m∗
hh

.

In most semiconductors holes have a much larger effective mass than electrons and therefore
electron mobility is much larger than hole mobility. The main scattering processes are
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Impurities at T � ΘD. The scattering mechanism is similar to Rutheford scattering and the
cross-section is proportional to E−2. In our case E ∼ kBT and thus the scattering cross-
section is proportional to T−2, or the mean free path is proportional to T2. The carrier speed
is proportional to E1/2, i.e. T1/2 and thus

τ ∝ T−1/2

T−2
= T3/2.

Phonons at T ∼ ΘD. The number of phonons is proportional to T , leading to a mean free
path proportional to T−1. Speed is still proportional to T1/2 and thus

τ ∝ T−1

T1/2
= T−3

2.

However, note that the increase of carrier density with temperature is much more important than
scattering and, considering that

σ = neµ,

That has a much larger effect on conductivity.

The important point is that in semiconductors (opposite to metals) conductivity increases with
temperature.
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So where is the line between a semiconductor and an insulator?

There is no sharp division. Basically a good insulator is a very wide gap semiconductor, al-
though we often need to look at impurity levels as well. Most carriers in semiconductors (at
room temperature) come from impurities.

The best insulators among oxides are non-transition metal oxides, such as SiO2, Al2O3, and
MgO. Most transition-metal oxides are somewhere on the boundary between being an insulator
or a semiconductor.

Note that band gaps in transition metal oxides are usually very large, 3..4 eV compared to the
≈ 1 eV of traditional semiconductors. The semiconducting properties of oxides are mostly due
to defects and impurities.
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The first job is to determine the size of the gap.
There are several ways of doing this. Look at the
density of states for rutile-type TiO2. The calculated
band diagram shows the O 2p valence band and the
empty Ti 3d and 4s bands.
The empty states can be probed by EELS Elec-
tron Energy Loss Spectroscopy (specific to each el-
ement, like Ti or O) and XAS X-ray Absorption Spec-
troscopy
These measurements look at electric-dipole allowed
transitions with ∆l = ±1. The Ti L23 spectrum
looks at transitions starting from Ti 2p orbitals. The
end point therefore can be a d or an s orbital. For
the Ti K-edge, we start from the Ti 1s states. The
end point should therefore be a p-orbital.
The d-peaks in the oxygen spectrum indicate a large
degree of hybridization between the Ti and O levels.
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Another way to measure the gap size is to look at
optical absorption spectra.
The optical absorption edge corresponds with a
steep rise in photoconductivity. This shows that free
carriers really are produced in the conduction band
(and not bound excitons).
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Cox92 p.103

Things look more complicated when polarized mea-
surements are made. When E ⊥ c, we can see
weak exciton peaks and a double edge, possibly due
to an indirect transition.
When E ‖ c, we get a single direct edge.
This is a good example for oxides. The models
explain the main features. Detailed edge structure
almost never matches calculated results, often be-
cause the details of crystal structure are not known
(defects, impurities, etc.).
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A listing of optical gap energes for various d0 oxides
Binaries Ternaries
Compound Eg (eV) Compound Eg (eV)
(3d0)
TiO2 (rutile) 3.0 MgTiO3 3.7
TiO2 (anatase) 3.2 SrTIO3 3.2

BaTiO3 3.2
La2Ti2O7 4.0

V2O5 2.2
CrO3 2
(4d0)

SrZrO3 5.4
Nb2O5 3.9 LiNbO3 3.8

KNbO3 3.3
MoO3 3.0
(5d0)
Ta2O5 4.2 LiTaO3 3.8

NaTaO3 3.8
WO3 2.6

The gaps are not sharp, and decrease slightly with temperature.
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In general, gaps decrease with increasing atomic number, TiO2>V2O5>CrO3.

Gap increases with heavier elements, i.e. V < Nb ∼ Ta. Main difference is between 3d and 4d,
smaller difference between 4d and 5d.

There is little difference between binaries and ternaries. Usually the non-transition ion in a
ternary has a much higher energy, i.e. in SrTiO3 the Sr 5s is much higher than Ti 3d.

There are also structural differences. The corundum structure (MgTiO3, LiNbO3) have larger
gaps than perovskites (CaTiO3, NaNbO3), mostly due to a different conduction band width
(smaller band width gives a wider gap). rutile TiO2 has corer- and edge-sharing octahedra
(large overlap), perovskite SrTIO3 has only corner-sharing octahedra (medium overlap), il-
menite MgTiO3 has only partial corner sharing (low overlap).

The later elements in the transition series (that can still give d0 compositions), such as KMnO4

are nearly ionic and better viewed as a collection of individual MnO−
4 clusters. The optical

absorption of a solid is nealry the same as that of a solution.
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