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Physics of Transition Metal Oxides
Lecture 3

Conduction electrons in oxides
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In the last lecture, we finished with an overview of the tight-binding band description of solids.
This model applies to oxides, because we can handle materials where localized states are
important.

An important parameter of the tight-binding model is the the overlap integaral

ti = −
∫

φ∗(r)(V − V0)φ(r + ai)d
3r

Small overlap
Narrow bands

Large effective mass
Hard to hop to next site

Low conductivity

Large overlap
Wide bands

Small effective mass
Easy to hop to next site

High conductivity
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As overlap increases between orbitals at neigh-
boring sites, the bands get wider.

Singleton01, p.35

The tight-binding model gave us a general form for the dispersion relation:

E(k) = Eφ −B − 2tx cos(kxa) − 2ty cos(kyb) − 2tz cos(kzc),

or in one dimension

E(k) = E0 − 2t cos(ka).

Note that a series expansion of the cosine function gives us

cos(ka) ≈ 1 − (ka)2

2
.

For small ka, we thus have

E(k) ≈ E0 − 2t+ ta2k2,

i.e. close to the bottom of a band we have an approximately parabolic behavior.
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Let us look again at the RuO2 band diagram. This time we are
more interested what happens at small k, i.e. close to the Γ point.
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Comparing free-electron model and tight-binding model:

• both bands are qualitatively similar

• both bands have minima and maxima at the center or edge of the Brillouin zone.

• same k-space periodicity

• tops and bottoms of the bands are approximately parabolic, proportional to (k − k0)
2.
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Some comments regarding the tight-binding model

The Bloch wavefunction looked like this:

ψk(r) =
∑

T

eik·Tφ(r − T),

where ψ(r) is an atomic wavefunction. The wavefunctions are indexed with k, but this k is a
crystal momentum, not the electron momentum p = h̄k, because ψ is not an eigenfunction of
the momentum operator p = (h̄/i)∇. Looking at a single component in the

∑

T

h̄

i
∇ψk,T(r) =

h̄

i
∇

(

eik·rφk(r)
)

= h̄kψk,T + eik·r
h̄

i
∇φk(r) 6= pψk,T.
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In optics we have a group velocity of a wavepacket v = dω/dk. Bloch functions (for a free
electron at least) describe an electron as a superposition of plane waves. The concept of a
group velocity is therefore applicable to electrons as well

v =
1

h̄
∇kE,

where ∇k = (∂E/∂kx, ∂E/∂ky, ∂E/∂kz) is a 3-dimensional derivative in k-space.

This brings us to the notion of an effective mass

Take a band electron and apply a force. The force will do work in time δt

δE = f v δt

In k-space the energy change is

δE =
dE

dk
δk = h̄v δk.

Putting these together gives us

h̄
dk

dt
= f .
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In three dimensions this becomes

h̄
dk

dt
= f ,

where k and f are vectors. It shows that h̄dk
dt is equal to the external force acting on an electron.

From the last page,

δE =
dE

dk
δk = h̄v δk.

This allows us to calculate the rate of change of an electron’s velocity

dv

dt
=

1

h̄

d2E

dkdt
=

1

h̄

d2E

dk2
dk

dt
.

Combining this with the force from above,

dv

dt
=

1

h̄

d2E

dk2
f

h̄

Rearranging gives us

h̄2

d2E
dk2

= m∗dv
dt

= f .
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m∗dv
dt

= f ,

where m∗ is the effective mass, defined by

m∗ =
h̄2

d2E
dk2

.

Since we have second derivatives of energy, it is clear that in 3-dimensional spacem∗ is actually
a 3 × 3 tensor. Effective mass allows us to think of an electron in simple mechanical terms of
’force = (mass × acceleration)’.

The effective mass is energy-dependent. If bands are nearly empty or nearly full, we can use a
parabolic approximation for the dispersion curve close to a band bottom or top.

E(k) ≈ E0 +
h̄2

2m∗(k − k0)
2,

which reduces a tight-binding description of a band electron to a form that is similar to the
free-electron case. The mass m∗ can be either positive or negative.

10

Effective mass conclusions:

• Light electrons form wide bands with a low density of states

• Heavy electrons form narrow bands with a high density of states
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1:Cu(4s1) s-electron conduction band,
2:Sc(3d1) d-electron conduction band
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After a brief theory section, back to oxides:

Heavy electrons in narrow bands can be easily scattered by lattice defects or impurities. Elec-
trons may also get trapped at such places, resulting in a metal-to-insulator transition.

We can also correlate the effective mass with conductivity, borrowing from the free-electron
model

σ =
ne2τ

m∗ ,

where n is the number of free carriers with charge e per unit volume, and τ is the relaxation
time, the interval between scattering events.

The Drude model also gives a prediction for the dielectric function

ε(ω) = ε(∞)



1 −
Ω2
p

ω2 + iω/τ



 ,

where ε(∞) is the high-frequency dielectric constant related to core electronic polarizability and
Ωp is the plasma frequency

Ω2
p =

ne2

ε(∞)ε0m∗.
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The Fermi level:

Again, we look at the example of RuO2, a metallic material.
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Cox92 p.74

It is often easier to visualize the shape of the Fermi surface as a 3-D plot, rather than the
sections that are usually drawn in band diagrams.

Also remember that practically all interesting (at least for materials science) physics goes on in
the vicinity of the Fermi level (or surface).
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How the energy levels fill up:
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The Fermi level comes, of course, from the
Fermi-Dirac statistics

f (E) =
1

exp[(E − µ)/kBT ] + 1
,

where the chemical potential µ is very nearly the
Fermi energy,

µ ≈ EF = kBTF ,

and can be expressed as a Fermi temperature,
typically around 105K.
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If we look (in one dimension) how a free-electron
band fills up to the fermi level

EF =
h̄ k2F
2m
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The density of states is

D(E) =
1

2π2

(

2m

h̄2

)3/2√
E = D(EF )

√

E

EF
.
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The density of states at the
Fermi level is

D(EF ) =
3n

2kBTF
=
mkF

h̄2π2
.
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In some cases we don’t care about the shape of the Fermi surface but only about the density of
states at the Fermi level.

One example is electronic specific heat, defined as a change in internal energy U brought about
by a change in temperature

C =

(

dU

dT

)

V
.

This would be normally measured as the amount of heat needed to change the temperature of
a sample by an amount dT

dQ = C dT.

The electronic contribution to specific heat of a material is only important at low temperatures
(at high temperatures, lattice vibrations, phonon contribution dominates).

The specific heat has a general (approximate) form Cel = γT , where the Sommerfeld constant,
γ, is

γ =
π2

3
k2BD(EF ),

where T is the absolute temperature and kB is the Boltzmann constant, D(EF ) is the density
of states at the Fermi level.
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The electronic specific heat thus depends only on the density of states at the Fermi level, not
the shape of the Fermi surface.

γ =
π2

3
k2BD(EF ),

For a free-electron system, the density of states at the Fermi level was

D(EF ) =
3n

2kB TF
.

We now replace the electron density with NA In a free-electron case the Sommerfeld factor is

γ0 =
π2R

2TF
,

where R = NAkB is the gas constant. In a more general case we would use the effective mass
in the density-of-states expression, D(EF ) =

m∗kF
h̄2π2 . This allows us to write the Sommerfeld

constant as

γ =
m∗

m
γ0.
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This shows (again) the importance of the effective mass. In terms of specific heat, this can be
seen nicely by comparing the data of ’normal’ materials with heavy fermion systems, such as
CeCu2Si2 or UBe13 or UPt3.
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Uranium and cerium have a suitable 5f or 4f config-
uration to produce a very sharp hybridized band at the
Fermi level.

Typical metals have a γ of around 1-7, various oxides are in the range 5-15, heavy fermion
systems show 200-500
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Another parameter that depends only on the density of states at the Fermi level is the Pauli
paramagnetic susceptibility.
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Blundell01 p.143

Each electronic level is occupied by two electrons
with opposite spin direction. Putting a system like
this in a magnetic field will change the energies of
the electrons, depending on their spin directions,
creating two subbands, separated by 2µBB. The
number of electrons with spin up (or down) is in
unit volume

n↑ =
1

2
D(EF )µBB,

n↓ =
1

2
D(EF )µBB.

This gives a magnetization

M = µB(n↑ − n↓) = D(EF )µ2
BB.
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The magnetic susceptibility is

χP =
M

H
≈ µ0M

B
= µ0µ

2
BD(EF )

For localized spins susceptibility is

χ =
nµ0µB
kBT

We saw here that some parameters depend only on the density of states (electronic specific
heat, Pauli paramagnetism). Others depend on the shape of the Fermi surface. These include
conductivity and plasma frequency.

We looked at comparisons of the tight-binding model and the free-electron model. Convenient
free-electron equations can often be used if the effective mass of the carriers is modified suit-
ably.

We now continue by looking at how band models cover the gap between localized states and
free metallic electrons.
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Stoner enhancement

Some materials are ferromagnetic due to band ferromagnetism, also known as itinerant ferro-
magnetism.
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Blundell01 p.146

Again, we look at what happens close to the
Fermi level, assuming a metallic system. We
take electrons with energies from EF − δE to
EF in the spin-down band, and flip their spins,
placing them in the spin-up band with energies
from EF to EF + δE. The number of elec-
trons moved is D(EF )δE/2 and they increase
in energy by δE. The total energy change is
D(EF )δE/2 × δE.

The total kinetic energy change is

∆EKE =
1

2
D(EF )(δE)2.

The process clearly costs energy and shouldn’t happen (and normally doesn’t).
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In rare cases the total energy of a crystal could drop, due to molecular field effects, i.e. each
electron sees the collective field generated by all the neighbors.

If it does happen, the number of up and down spins are

n↑ =
1

2
(n+D(EF )δE),

n↓ =
1

2
(n−D(EF )δE).

= + =

λM

This gives a magnetization M = µB(n↑ − n↓), assuming that each electron contributes 1 µB.
The molecular field energy is

∆EPE = −
∫ M

0
µ0(λM

′) dM ′ =
1

2
µ0λM

2 = −1

2
µ0µ

2
Bλ(n↑ − n↓)

2
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If we now write U = µ0µ
2
Bλ,

∆EPE = −1

2
U(D(EF )δE)2.

The total change of energy is

∆E = ∆EKE + ∆EPE =
1

2
D(EF )(δE)2[1 − U D(EF )].

Spontaneous magnetization is possible if ∆E < 0, which implies that

U D(EF ) ≥ 1,

which is the Stoner criterion. The U describes exchange between two parallel-spin electrons
(to Coulomb interactions). Spontaneous magnetization can occur if Coulomb interactions are
strong and the density of states at the Fermi level is high.
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Even if the Stoner criterion is not fulfilled and spontaneous magnetization does not occur, sus-
ceptibility may still be changed.

The total energy change for a system in an external field can be calculated if we note that an
energy shift by δE results in a magnetization of M = µB(N↑ −N↓) = 2µBD(EF )δE,

∆E =
1

2
D(EF )(δE)2(1 − U D(EF )) −M B

=
M2

2µ2
BD(EF )

(1 − U D(EF )) −M B.

This is minimized when
M

µ2
BD(EF )

(1 − U D(EF )) −B = 0.

Magnetic susceptibility is thus

χ =
M

H
≈ µ0M

B
=

µ0µ
2
BD(EF )

1 − U D(EF )
=

χP
1 − U D(EF )

.

χ is thus larger than χP by a factor (1−U D(EF ))−1. This is known as Stoner enhancement.
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Stoner enhancement is a significant effect in magnetic oxides, because often the d bands are
narrow, giving a high density of statesD(EF ) at the Fermi level. The overlap between d orbitals
can be much larger in 3d oxides than between s or p orbitals in other non-transition elements,
increasing the value of U .

Band magnetism is found in ferromagnetic elements, such as Fe, Co, and Ni. Also found in
oxides, such as CrO2.
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Ferromagnetism is not always the most stable form of magnetic ordering. Various antiferromag-
netic configurations are commonly found in oxides, such as MnO, CoO, FeO, Cr2O3, α-Fe2O3,
LaFeO3, LaCrO3, LaMnO3.

Figure removed due to
copyright restrictions

Blundell01 p.97 26

Band structure and spin density waves
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Look again at a basic 3d band diagram. Assume a d1 con-
figuration, i.e. a single electron in the d-band. This would
put the Fermi level inside the d-band, resulting in a conduc-
tor.
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Cox92 p.67,77

If we now have a short wavelength spin wave, i.e. antifer-
romagnetic arrangement on neighboring sites, this would
effectively double the unit cell size from a to 2a.
Remember from earlier discussion: the number of bands
equals the number of electronic levels in the unit cell (in a
purely atomic view).
The effect is that now the d band will split into two (two
sites). The lower band can hold two electrons per pair of
metal atoms. The lower band will thus be completely full,
and we have a narrow-gap insulator.
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Peierls instability
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Singleton01 p.81

The Peierls theorem states that true one-dimensional met-
als can not exist.
In a one-dimensional lattice the system will always distort
so that a gap opens at the Fermi level. This saves elec-
tronic energy by lowering the energy of electrons close to
the Fermi level. In 1D, the electronic energy win is always
larger than the elastic energy loss.
Such instability occurs in NbSe3, a platinum chain com-
pound K2[Pt(CN)4]Br0.33H2O, and also in blue molybde-
num bronze, K0.3MoO3.
This distortin is a charge density wave, very similar to a
spin density wave described earlier.
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Similar distortions do not have a big effect in 3-dimenisonal systems. Here are two examples of
typical Fermi surface shapes:
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Cox92 p.81

Even if there is a periodic spin or charge distortion in the lattice (shown by dashed lines in
k-space), only a small number of electrons would be affected. It is not possible to destroy the
Fermi surface in all directions. A material would thus remain a metal even if a distortion occurs.
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Distortions, such as spin waves can be commensurate, i.e. the period of the distortion is an
integral multiple of the lattice constant. For a spin wave, this would give an antiferromagnetic
configuration of spins
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Blundell01 p.160

Waves can also be incommensurate. This happens in Chromium metal, for example. Chromium
has a BCC structure. A spin-density wave forms at TN = 310 K. The wave vector is q ≈
0.96(2π/a), close to a pure antiferromagnet. There is an increase in the electrical resistivity of
Chromium just below TN as the opening energy gaps destroy part of the Fermi surface.
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Intermediate models between band theory and ionic or cluster theory: The Hubbard model:

In ’pure’ band theory repulsion between electrons is handled by assuming the presence of an
average effective potential. This works well for conduction electrons in metals.

Oxides often have rather narrow bands and the concentration of conduction electrons can be
much lower than metals. Electron correlations become much more important.

The idea of Mott and Hubbard models is to ignore electron repulsion unless two electrons are
at the same atom.

The important parameters are:

• The overlap integrals of the tight-binding model. These determine the electronic bandwidth
W .

• Electron repulsion, parametrized by the Hubbard U .
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We can see what the meanings of these two parameters are by looking at the case of NiO. The
valence state of Ni in NiO is 2+, giving a 3d8 electronic configuration. The partly-filled d band
would indicate that NiO should be a conductor. In fact, NiO is an insulator with a gap of 4 eV.
The gap arises due to correlations between the d electrons.

In NiO, the Ni sites redistribute electrons

Ni2+ + Ni2+ = Ni+ + Ni3+,

or in terms of electronic configuration

d8 + d8 = d9 + d7.

When analyzing the band structure, we first need to know how far on the energy scale are the
d9 and d7 electronic configurations. This energy difference is the Hubbard U .

We must also remember that in a solid, the electronic bands have a certain width W . In insula-
tors U is much larger than W .
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The two Hubbard bands would correspond to the
3d9 and 3d7 configurations. U itself is defined in
the atomic limit, i.e. for a free ion in a gas phase!
As ions are brought closer to each other, overlap
between orbitals increases and we start to see
an increase of badwidth.
For large U and small W we get a gap and an
insulator.
For small U or large W we can get a conductor.
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Cox92 p.83,85

The gas phase ionization energies are shown
here for creating a dn+1, dn−1 pair.
We see a peak close to a half-filled band, be-
cause in that case moving an electron away from
a d5 ion to another d5 ion would require a spin
flip, which costs extra energy.
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One of the biggest problems is estimat-
ing the real magnitude of U in a crystal.
As we talked last week, we need to in-
clude the Madelung potential, polariza-
tion, possibly other corrections. Ionic
calculations plus bandwidth estimates
appear to give a very traditional band
diagram for NiO, with O 2p lower in en-
ergy than the 3d levels.
Remeber the warnings regarding ionic
models and quantitative results!
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Hüfner96 p.185

The Hubbard model replaces the complex d
orbitals with a single electronic level, split into
two subbands as discussed earlier. We can
now have a situation where the lower sub-
band is full and the upper sub-band is empty,
giving a Mott insulator, i.e. overlap between
neighboring sites is so small that conductivity
drops abruptly to zero (Mott transition).

This model does not include hybridization ef-
fects between the metal and oxygen orbitals.
This is very important in oxides!
In fact, in many cases electrons are not re-
moved simply from the d-band of the metal,
but mostly from the oxygen, i.e. there is signif-
icant charge transfer between the metal and
the oxygen.
This charge transfer energy is characterized
by ∆.
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Hüfner96 p.180

Let’s look at a simple case of LiNbO3. Here we have
the Nb5+ configuration. The electronic levels of Nb
are [Kr]4d45s1, i.e. the electronic state of Nb5+ is
4d0. Ion bombardment creates defects in the lattice,
giving rise to Nb4+ ions with an electronic state of
4d1.
Photoelectron emission spectra show clearly the lo-
cation of a narrow d-band within 1 eV of EF and the
broader O2p band ≈ 6 eV below the Fermi level.
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Hüfner96 p.195,200

Careful analysis of the NiO photoelectron spec-
trum shows that the O2p levels and a charge-
transfer d8L−1 state are in fact between the
’Hubbard’ d7 and d9 levels. The gap is thus de-
fined by the empty d9 state and a charge-transfer
d8L−1 level, which shows that NiO is, in fact, a
charge-transfer insulator, not a Mott insulator.
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Rao98 p.296

Insulating oxides are broadly divided
into two groups:
• (a) Charge-transfer insulators, i.e.

the gap is defined by an empty d-
state and the oxygen 2p band.

• (b) Mott-Hubbard insulator, i.e. the
gap is defined by split levels within
the d-band. Oxygen 2p is lower in
energy.

The parameters are:

• The on-site Coulomg repulsion Udd = E(dn+1) + E(dn−1) − 2E(dn)

• The charge transfer energy ∆ between the ligand (oxygen) 2p and metal 3d levels. ∆ is
the energy related to the dn → dn+1L1 transition, where L1 represents a hole in the ligand
levels).
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• Zaanen, Sawatzky, Allen compared these energies with the hybridization strength between
the metal and the ligand (the transfer integrals from the tight-binding model).
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A: Udd � ∆, gap defined by a dnpm →
dn+1pm−1 transition. Band gap is defined
mostly by ∆.
B: ∆ � Udd, the lowest energy excitation is
from a dni d

n
j state to a dn+1

i dn−1
j state. Band

gap defined mostly by Udd.
C: ∆ > Udd, but the O 2p band overlaps with
the lower d-band, giving a half-filled band and
metallic conductivity.
D: ∆ � Udd, but U is very small, comparable
to the band width W , The two d-bands over-
lap, leading to metallic conductivity.

Rao98 p.294
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Another region is called a covalent insulator. In
this case the upper d-band and the oxygen 2p

bands overlap and would give a metal. The en-
ergy levels are slightly shifted due to the over-
lap between metal and oxygen orbitals, creating
a narrow hybridization gap.
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