	What we covered in the last lecture:
	1. A chemical approach to oxides, assigning oxidation states
	2. Thermodynamic stability
Physics of Transition Metal Oxides	3. Crystal structures
Lecture 2	4. A brief classification based on the oxidation state discussion
The electronic structure of oxides	(a) d^0 insulators
	(b) Other closed-shell insulators
	(c) d^n impurities
	(d) Magnetic insulators
1	(e) etc. 2
Models of electronic structure:	Metallic oxides:
Models of electronic structure: In order to understand how oxides behave, why some are insulators, other semiconductors, metals or superconductors, we need to have a model for their electronic structure.	Metallic oxides: Metallic systems are usually described using band theory, which looks at wavefunctions of electrons in a periodic lattice. In this model we have some electrons that are (more or less) localized and others that are free to move in the lattice.
Models of electronic structure: In order to understand how oxides behave, why some are insulators, other semiconductors, metals or superconductors, we need to have a model for their electronic structure. No single model covers all cases.	Metallic oxides: Metallic systems are usually described using band theory, which looks at wavefunctions of electrons in a periodic lattice. In this model we have some electrons that are (more or less) localized and others that are free to move in the lattice.
 Models of electronic structure: In order to understand how oxides behave, why some are insulators, other semiconductors, metals or superconductors, we need to have a model for their electronic structure. No single model covers all cases. In the previous lecture we looked at assigning oxidation states to individual atoms in a lattice. We saw that this is not always a simple process. The whole idea of having integral charges for each atom is a characteristic of an <i>ionic model</i>. 	Metallic oxides: Metallic systems are usually described using band theory, which looks at wavefunctions of electrons in a periodic lattice. In this model we have some electrons that are (more or less) localized and others that are free to move in the lattice. Various extensions are also possible to bring the localized ionic models and delocalized band models closer to each other by adding electron-electron interactions, interactions of band electrons with lattice vibrations, influences of defects and lattice disorder, etc. These could be called intermediate models.
 Models of electronic structure: In order to understand how oxides behave, why some are insulators, other semiconductors, metals or superconductors, we need to have a model for their electronic structure. No single model covers all cases. In the previous lecture we looked at assigning oxidation states to individual atoms in a lattice. We saw that this is not always a simple process. The whole idea of having integral charges for each atom is a characteristic of an <i>ionic model</i>. An extension of the ionic model is the <i>cluster model</i> which looks at the properties of a small group of atoms around a site. 	Metallic oxides: Metallic systems are usually described using band theory, which looks at wavefunctions of electrons in a periodic lattice. In this model we have some electrons that are (more or less) localized and others that are free to move in the lattice. Various extensions are also possible to bring the localized ionic models and delocalized band models closer to each other by adding electron-electron interactions, interactions of band electrons with lattice vibrations, influences of defects and lattice disorder, etc. These could be called intermediate models.
 Models of electronic structure: In order to understand how oxides behave, why some are insulators, other semiconductors, metals or superconductors, we need to have a model for their electronic structure. No single model covers all cases. In the previous lecture we looked at assigning oxidation states to individual atoms in a lattice. We saw that this is not always a simple process. The whole idea of having integral charges for each atom is a characteristic of an <i>ionic model</i>. An extension of the ionic model is the <i>cluster model</i> which looks at the properties of a small group of atoms around a site. These models work well for non-metallic crystals. 	Metallic oxides: Metallic systems are usually described using band theory, which looks at wavefunctions of electrons in a periodic lattice. In this model we have some electrons that are (more or less) localized and others that are free to move in the lattice. Various extensions are also possible to bring the localized ionic models and delocalized band models closer to each other by adding electron-electron interactions, interactions of band electrons with lattice vibrations, influences of defects and lattice disorder, etc. These could be called intermediate models.
 Models of electronic structure: In order to understand how oxides behave, why some are insulators, other semiconductors, metals or superconductors, we need to have a model for their electronic structure. No single model covers all cases. In the previous lecture we looked at assigning oxidation states to individual atoms in a lattice. We saw that this is not always a simple process. The whole idea of having integral charges for each atom is a characteristic of an <i>ionic model</i>. An extension of the ionic model is the <i>cluster model</i> which looks at the properties of a small group of atoms around a site. These models work well for non-metallic crystals. 	Metallic oxides: Metallic systems are usually described using band theory, which looks at wavefunctions of electrons in a periodic lattice. In this model we have some electrons that are (more or less) localized and others that are free to move in the lattice. Various extensions are also possible to bring the localized ionic models and delocalized band models closer to each other by adding electron-electron interactions, interactions of band electrons with lattice vibrations, influences of defects and lattice disorder, etc. These could be called intermediate models.
 Models of electronic structure: In order to understand how oxides behave, why some are insulators, other semiconductors, metals or superconductors, we need to have a model for their electronic structure. No single model covers all cases. In the previous lecture we looked at assigning oxidation states to individual atoms in a lattice. We saw that this is not always a simple process. The whole idea of having integral charges for each atom is a characteristic of an <i>ionic model</i>. An extension of the ionic model is the <i>cluster model</i> which looks at the properties of a small group of atoms around a site. These models work well for non-metallic crystals. 	Metallic oxides: Metallic systems are usually described using band theory, which looks at wavefunctions of electrons in a periodic lattice. In this model we have some electrons that are (more or less) localized and others that are free to move in the lattice. Various extensions are also possible to bring the localized ionic models and delocalized band models closer to each other by adding electron-electron interactions, interactions of band electrons with lattice vibrations, influences of defects and lattice disorder, etc. These could be called intermediate models.

Tetrahedral sites:		Filling electronic levels:
Figure removed day to copyright restrictions	In a tetrahedral symmetry the situation is quite different. The orbitals that point along the x and y axes now avoid the neighboring oxygens and therefore have <i>lower</i> energy. This means that the e_g levels are now lower in energy than the t_{2g} levels. Blundell01, p.47	 Why is all this important? We have to look at how the levels fill up. This was already briefly discussed last time. The key here is to follow Hund's rules (these apply only to a ground state and assume that there is only a single incomplete shell): 1. The electronic wavefunction should <i>maximize S</i> (the total spin). This reduces Coulomb repulsion between electrons by separating them as much as possible. Remember that two electrons with parallel spins cannot share an orbital. 2. <i>Maximize L</i> 3. This rule deals with spin-orbit coupling. This is not always the main contributor (crystal field may be larger). So this is less important for transition metals.
	9	10
Low spin and high spin:		Magnetic moment:
If all d orbitals were degenerate (as in example for Fe ²⁺ shows why crystal fit states in some d electron configuration	a free ion), we would always have a <i>high spin</i> state. This field theory is useful in predicting the presence of <i>low spin</i> as	As mentioned above, Hund's third rule, which says that the total angular momentum J is $J = L - S $ for less than half-filled shells and $J = L + S$ if a shell is more than half filled.
		If crystal-field effects are large, this is not always the case. The magnetic moment is given by
		$\mu_{eff,1} = \mu_B g_J \sqrt{J(J+1)},$
	Figure reserved due to every state of the second state of the seco	where g_J is the Landé g factor, given by
		$g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}.$
As explained last time, this also expla partly-filled <i>d</i> orbital configurations.	ains why we may have insulators with a narrow gap for	We can compare experimental magnetic moments p_{exp} and the calculated value $p_1 = \mu_{eff,1}/\mu_B$. As shown in the following table the real values are closer to $\mu_{eff,2} = 2\mu_B\sqrt{S(S+1)}$, i.e. L=0, always, and $J = S$, $g_J = 2$. The table shows $p_2 = \mu_{eff,2}/\mu_B$ values.

					Jahn-Teller distortions:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	shell HS LS $3d^1$ t_{2g}^1 - $3d^2$ t_{2g}^2 - $3d^3$ t_{2g}^3 - $3d^4$ $t_{2g}^3e_g^1$ t_{2g}^4 $3d^5$ $t_{2g}^3e_g^2$ t_{2g}^5 $3d^6$ $t_{2g}^4e_g^2$ $t_{2g}^6e_g^3$ $3d^6$ $t_{2g}^4e_g^2$ $t_{2g}^6e_g^3$ $3d^8$ $t_{2g}^6e_g^3$ - $3d^{10}$ $t_{2g}^6e_g^4$ - tic moment p_{exp} is off -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} p & p_2 \\ 0 & 1.73 \\ 1 & 2.83 \\ 5 & 3.87 \\ 2 & 4.90 \\ 2 & 5.92 \\ 6 & 4.90 \\ 0 & 3.87 \\ 2 & 2.83 \\ 3 & 1.73 \\ 0 \\ \end{array}$ s shows that in a	Figure removed due to copyright restrictions	The Jahn-Teller theorem says that a non- linear molecule in an electronic state with or- bital degeneracy will distort so as to remove this degeneracy. This works because the added elastic energy is compensated by the reduced electronic en- ergy. For example, Mn^{3+} does this due to the $3d^4$ configuration. It would not reduce the to- tal energy of a Mn^{4+} ion ($3d^3$ configuration).
number of cases the cryst	tal field splitting is mo	re important tha	n spin-orbit cou	upling. This effect	Blundell01, p.50	
is known as orbital queric	a mig					
				10		
				13		14
Jahn-Teller distortions:				13	Jahn-Teller distortions:	14
Jahn-Teller distortions:	Assume that the lat along a normal mod	tice distortion is le direction woul	quantified by o	2. The distortion	Jahn-Teller distortions: $E(Q) = \pm$	$AQ + \frac{1}{2}M\omega^2 Q^2.$
Jahn-Teller distortions:	Assume that the lat along a normal mod	tice distortion is le direction woul $E(Q) = \frac{1}{2} d$	quantified by d d be $M\omega^2 Q^2$,	2. The distortion	Jahn-Teller distortions: E(Q) = d The minimum is at a point where the deriva	$AQ + \frac{1}{2}M\omega^2Q^2.$ tive of <i>E</i> is zero, i.e. $\partial E/\partial Q = 0$. This gives
Jahn-Teller distortions:	Assume that the lat along a normal mod where <i>M</i> is the mas The elastic energy	tice distortion is le direction woul $E(Q) = \frac{1}{2}I$ s of the ion and is at minimum	quantified by d d be $M\omega^2Q^2$, ω is the normal at $Q = 0$ (no	Q. The distortion mode frequency. distortion). The	Jahn-Teller distortions: $E(Q) = \pm$ The minimum is at a point where the derival Q and a minimum energy	$AQ + \frac{1}{2}M\omega^2 Q^2.$ tive of <i>E</i> is zero, i.e. $\partial E/\partial Q = 0$. This gives $D = \frac{A}{M\omega^2}$
Jahn-Teller distortions:	Assume that the latt along a normal mod where M is the mas The elastic energy orbital energy does filled.	tice distortion is le direction woul $E(Q) = \frac{1}{2}I$ s of the ion and is at minimum not change if a	quantified by d d be $M\omega^2 Q^2$, ω is the normal at $Q = 0$ (no n orbital is emp	Q. The distortion mode frequency. distortion). The oty or completely	Jahn-Teller distortions: $E(Q) = \pm$ The minimum is at a point where the deriva Q and a minimum energy $E_{min} =$	$AQ + \frac{1}{2}M\omega^2 Q^2.$ tive of <i>E</i> is zero, i.e. $\partial E/\partial Q = 0$. This gives $D = \frac{A}{M\omega^2}$ $= -A^2/2M\omega^2.$
Jahn-Teller distortions:	Assume that the latt along a normal mod where <i>M</i> is the mas The elastic energy orbital energy does filled. Calculating the orbit is always small, and energy vs. <i>Q</i> . As term from the Taylor lowering of a level. This allows us to wri	tice distortion is le direction woul $E(Q) = \frac{1}{2}d$ s of the ion and is at minimum not change if a tal energy shift i l we can use a T a rough approx series, AQ or – ite the sum of el $E(Q) = \pm AQ$ –	quantified by of d be $M\omega^2 Q^2$, ω is the normal at $Q = 0$ (no n orbital is emp s complicated, \bar{a} ylor series ex imation we onl -AQ, correspont ectronic and else $+\frac{1}{2}M\omega^2 Q^2$.	2. The distortion mode frequency. distortion). The oty or completely but the distrotion pansion of orbital y keep the linear ading to raising or astic energy as	Jahn-Teller distortions: $E(Q) = \pm E(Q) = \pm E(Q) = \pm E(Q)$ The minimum is at a point where the derivative Q and a minimum energy $E_{min} = \pm E_{min}$ which is negative. If only this specific orbitations by distorting. The strongest effect is usually filling of the e_g orbitals.	$AQ + \frac{1}{2}M\omega^2 Q^2.$ tive of <i>E</i> is zero, i.e. $\partial E/\partial Q = 0$. This gives $p = \frac{A}{M\omega^2}$ $= -A^2/2M\omega^2,$ It is filled, the system can make a net energy saving seen in d^4 and d^9 configurations due to the partial

Jahn-Teller distortions:		Charge transfer:		
Interestingly this effect is not seen in low-spin d^7 configur material is metallic. Jahn-Teller distortion is characteristic in metallic lattices. The Jahn-Teller distortions mostly involve e_g electrons. weaker, showing that e_g electrons are normally much mo bonding with neighbors. Jahn-Teller distortions can be <i>static</i> or <i>dynamic</i> . In the dyn tion can flip from one axis to another. Distortion can also h in materials that have a mixture of valence states, e.g. a r In some materials, such as DyVO ₃ , the Jahn-Teller distor	ations, such as Ni ³⁺ in LaNiO ₃ . This of localized electrons and is not found The effect of t_{2g} electrons is much re important from the point of view of namic case the direction of the distor- nop from site to site. This can happen nixture of Mn ³⁺ and Mn ⁴⁺ . tion can be <i>cooperative</i> .	 The crystal field discussion only applies to a single crystal site, i.e. we calculate the energies of electrons within a single atom. as a function of local bonding interactions. Another important effect is <i>charge transfer</i>, i.e. excitations of electrons from one atom to another. We approach the charge transfer type description starting from the ionic picture presented earlier. A simple example would be MgO. In the ionic picture, the highest energy filled orbital is the oxygen 2p. The experimental band gap is 7.5 eV. The first empty level is magnesium 3s. 		
The Madelung constant		The Madelung constant		
Figure removed due to copyright restrictions	This figure shows the components that need to be calculated to es- timate the band gap of a material such as MgO. First of all, a free O ²⁻ ion does not exist. We need to put the ions into a crystal where they are subject to long-range electrostatic potentials. The <i>Madelung potential</i> is usually given as $V(0) = -\alpha_M \frac{e^2}{R},$ where α_M is the <i>Madelung constant</i> for a particular lattice, $\pm e$ are the point charges in a lattice, and <i>R</i> is the nearest neighbor distance.	For a simple ionic case, consider NaCl with Cl ⁻ at origin: Number and type representative distance from of ions position origin $6Na^+$ R(1,0,0) R $\sqrt{1}$ $12Cl^-$ R(1,1,0) R $\sqrt{2}$ $8Na^+$ R(1,1,1) R $\sqrt{3}$ $6Cl^-$ R(2,0,0) R $\sqrt{4}$ $24Na^+$ R(2,1,0) R $\sqrt{5}$ $24Cl^-$ R(2,1,1) R $\sqrt{6}$ $12Cl^-$ R(2,2,0) R $\sqrt{8}$ $24Na^+$ R(2,2,1) R $\sqrt{9}$ $6Na^+$ R(3,0,0) R $\sqrt{9}$ $24Cl^-$ R(3,1,0) R $\sqrt{10}$ $24Na^+$ R(3,1,1) R $\sqrt{11}$ $8Cl^-$ R(2,2,2) R $\sqrt{12}$ This gives a series $e^2 \begin{bmatrix} 6 & 12 & 8 & 6 & 24 & 24 & 12 & 1 \end{bmatrix}$		
It is clear that the Madelung constant is of major importa the long range of electrostatic interactions.	nce. Calculating it is not trivial due to 19	$V(0) = -\frac{1}{R} \left[\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{6}} - \frac{1}{\sqrt{8}} + \cdots \right]$ = $-\frac{e^2}{R} [6.000 - 8.486 + 4.619 - 3.000 + 10.733 - 9.798 - 4.243 + \cdots].$ 20		

The Madelung constant		Orbital overlap		
This series converges very slowly to a finite value	of $\alpha_M =$ 1.7476 for NaCl.			
Figure removed due to copyright restrictions	After considering the Madelung potential, we at least have the correct sign for the band gap, but it is much too large.	Figure removed due to copyright restrictions I, e Figure removed due to copyright restrictions Figure removed due to copyright restrictions Finally, we have the broader energy levels due to over neighboring ions. This broadening cannot be based on the ionic model. T either derived from experim structure calculations.		
Cox92, p.48 The next step is to consider polarization of the i where a light electronic shell is connected to a he dielectric constants, elastic constants, and vibrat important here. In general the polarization effect filled levels, i.e. the filled oxygen levels rise and the	ions. This can be done using a <i>shell model</i> eavy core with a spring constant. This brings ional data to the model. The details are not its reduce the binding energy of electrons in the empty levels fall.	This discussion shows the difficulty of calcul relatively good example. In case of TiO_2 , f charges mean that the final band gap of 3eV 50 eV or larger. Ionic models can thus give o	lating band gaps using the ionic model. MgO is a or example, we have O^{2-} and Ti^{4+} . The larger / has to be obtained by subtracting terms that are only qualitative estimates.	
Impurity levels:		Cluster model:		
Figure removed due to copyright restrictions	Pigure removed due to copyright restrictions		uracy than ionic models without doing a full band- er interactions between a metal atom and ligands a molecular orbital calculation on a small cluster. <i>pendent electron</i> model. Electrons move in a po- andled in some average way. A popular technique of (LCAO) approximation. The basis is formed by is a form: $= \sum c_i \phi_i,$	
Cox92, p.52		where coefficients c_i and the orbital energy a	<i>i</i> are found by solving	
two scales:	nects of polarization. Polarization happens on	$\mathcal{H}c = \epsilon \mathcal{S}c.$		
• <i>purely electronic</i> . This is a fast process and frequencies.	determines the dielectric properties at optical	\mathcal{H} is the Hamiltonian and \mathcal{S} describes the overlap of atomic orbitals. If there are N atomic orbitals, there will also be N molecular orbitals. Many of them have equal energies, i.e. levels may be degenerate if the cluster has high symmetry.		
atomic. Much slower. Determines the static d	lielectric constant.			

	1	Configuration interaction	n models:		
Figure removed due to copyright restrictions Figure removed due to copyright restrictions		Figure removed due copyright restriction	10 18	Try to avoid calculating molecular orbitals. In- stead, construct wavefunctions by mixing differ- ent configurations of atomic orbitals. For NiO, for example, the first approximation is $\Psi(d^8)$. Inter- action between Ni and O is included by adding configurations $\Psi(d^9\underline{L})$ and $\Psi(d^{10}\underline{L}^2)$, where \underline{L} represents a hole in the ligand (oxygen) orbitals. Overlap interactions between a metal and oxy- gens is done by combining many-electron states, rather than orbitals, as in MO theory. The NiO ground state would then be	
	Cox92, p.55			$\Psi_0 = \alpha \Psi(d^8) + \beta^2$	$\Psi(d^{9}\underline{L}) + \gamma \Psi(d^{10}\underline{L}^{2}).$
This is a molecular orbital diagram of an octah Especially interesting are the levels with t_{2g} or lobes pointing along the metal-oxygen bond. To the M-O direction.	edral metal cluster MO_6^{n-} . $r e_g$ symmetry. The e_g set is a σ -type orbital with The t_{2g} set is π -type, with orbitals perpendicular 25			Cox92, p.62	26
Configuration interaction model:		Band theory:			
Finding the energies and mixing coefficients α , β , γ , etc. is done in a similar way as in MO calculation. Unknown parameters are the overlap integrals S_{mn} , unperturbed energies H_{nn} and the off-diagonal Hamiltonian elements H_{mn} . The overlap integrals may be omitted, off-diagonal		Band theory looks at free electrons in a periodic lattice.			
data.	ns, and diagonal elements fitted to experimental	Works well for simple	metals like alkalies.		
The main advantage is that excited states are					
toemission spectra. In general, CI technique is electron repulsion and polarization effects ca	a also calculated and it is easier to analyze pho- more useful for interpreting spectroscopic data. n be included by using experimental values for	 Not applicable to trans trons. 	sition metals becau	se d electrons can not	be described as free elec-
toemission spectra. In general, CI technique is electron repulsion and polarization effects ca unperturbed energies.	e also calculated and it is easier to analyze pho- s more useful for interpreting spectroscopic data. n be included by using experimental values for	 Not applicable to trans trons. The solution is to use a ta achieved by building the p wavefunctions. 	sition metals becau tight binding mode periodic wavefunctio	se d electrons can not el where localization is ons in the lattice from i	be described as free elec- also considered. This is individual localized atomic
toemission spectra. In general, CI technique is electron repulsion and polarization effects ca unperturbed energies.	e also calculated and it is easier to analyze pho- s more useful for interpreting spectroscopic data. n be included by using experimental values for	 Not applicable to trans trons. The solution is to use a tachieved by building the p wavefunctions. 	sition metals becau tight binding mode periodic wavefunctio	el where localization is ons in the lattice from i	be described as free elec- also considered. This is individual localized atomic

The wavefunction

We start with the atomic wavefunctions $\phi_i(\mathbf{r})$, defined by

 $\mathcal{H}_{\mathsf{at}}\phi_j(\mathbf{r}) = E_j\phi_j(\mathbf{r}),$

where \mathcal{H}_{at} is the Hamiltonian of a single atom.

There are several assumptions:

- close to each lattice point, the crystal Hamiltonian $\mathcal H$ can be approximated by $\mathcal H_{at}$
- the bound states are well localized, which means that if r is larger than the lattice constant, $\phi_i(\mathbf{r})$ should be very small
- $\phi_j(\mathbf{r})$ is a good approximation to a stationary state of a crystal, as is $\phi_j(\mathbf{r} + \mathbf{T})$, where \mathbf{T} has the symmetry of the crystal.

We now have Bloch functions with a wave vector ${\bf k}$ that still display the atomic character of the levels.

The problem with this function is that the 'band' energies would simply be the *atomic energy levels*, E_n , regardless of the value of k.

Here we have to make the first approximations:

We have to recognize that $\psi_j(\mathbf{r})$ is not exactly zero as we move away from an atom (although it should be small).

We retain the basic form of the wavefunction and write it as

$$\psi_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{T}} e^{i\mathbf{k}\cdot\mathbf{T}}\phi(\mathbf{r}-\mathbf{T})$$

Note the change from ϕ_j to ϕ . The significance is that ϕ is not necessarily an *exact* atomic stationary-state wave function. Instead, it is a linear combination of (a small number) of atomic wave functions

$$\phi(\mathbf{r}) = \sum_{n} b_n \phi_n(\mathbf{r}).$$

A complete set of atomic levels should also include the ionized levels. We discard them here. That is the first major deviation from the free-electron model.

Due to the way that the crystal wavefunction is constructed, this method is also known as *linear* combination of atomic orbitals, or LCAO. 31

The Bloch functions

We can now build Bloch functions $\psi_{j,{\bf k}}$ of electrons in the crystal from linear combinations of the atomic wavefunctions

$$\psi_{j,\mathbf{k}} = \sum_{\mathbf{T}} a_{\mathbf{k},\mathbf{T}} \phi_j(\mathbf{r} + \mathbf{T})$$

Where the sum over ${\bf T}$ runs over an infinite crystal. The possible values of ${\bf k},$ however, are limited to the Brillouin zone.

This function satisfies the requirements for a Bloch function, i.e.

$$\psi(\mathbf{r} + \mathbf{T}) = e^{i\mathbf{k}\cdot\mathbf{T}}\psi(\mathbf{r})$$

as we can see here

29

 ψ

$$(\mathbf{r} + \mathbf{T}) = \sum_{\mathbf{T}'} e^{i\mathbf{k}\cdot\mathbf{T}'} \phi_j(\mathbf{r} + \mathbf{T} - \mathbf{T}')$$

$$= e^{i\mathbf{k}\cdot\mathbf{T}} \left[\sum_{\mathbf{T}'} e^{i\mathbf{k}\cdot(\mathbf{T}'-\mathbf{T})} \phi_j(\mathbf{r} - (\mathbf{T}'-\mathbf{T})) \right]$$

$$= e^{i\mathbf{k}\cdot\mathbf{T}} \left[\sum_{\mathbf{T}} s^{i\mathbf{k}\cdot\overline{\mathbf{T}}} \phi_j(\mathbf{r} - \overline{\mathbf{T}}) \right]$$

$$= e^{i\mathbf{k}\cdot\mathbf{T}} \psi(\mathbf{r}).$$
30

We look at a simple example with atoms arranged along Cartesian unit vectors: $\mathbf{a}_1 = a\mathbf{e}_1, \mathbf{a}_2 = b\mathbf{e}_2, \mathbf{a}_3 = c\mathbf{e}_3$. The potentials involved in this calculation are:

• The actual crystal potential $V(\mathbf{r})$

- The potential associated with an isolated atom, $\mathit{V}_0(\mathbf{r})$

The crystal Hamiltonian is thus

$$\mathcal{H} = \mathcal{H}_{at} + \{V(\mathbf{r}) - V_0(\mathbf{r})\},\$$

with
$$\mathcal{H}\psi_{\mathbf{k}}(\mathbf{r}) = E(\mathbf{k})\psi_{\mathbf{k}}(\mathbf{r}).$$

Mensee and with this Heaviltanian and Dhash for these	The based structure is desired for	and the second term	
ve now operate with this Hamiltonian on our Bloch functions	I ne band structure is derived fro	om the second term	
$\mathcal{H}_{at}\sum_{\mathbf{T}} e^{i\mathbf{k}\cdot\mathbf{T}}\phi(\mathbf{r}-\mathbf{T}) + \{V(\mathbf{r}) - V_0(\mathbf{R})\}\sum_{\mathbf{T}} e^{i\mathbf{k}\cdot\mathbf{T}}\phi(\mathbf{r}-\mathbf{T}) = E(\mathbf{k})\sum_{\mathbf{T}} e^{i\mathbf{k}\cdot\mathbf{T}}\phi(\mathbf{r}-\mathbf{T}).$	$\int \phi^*(\mathbf{r}) \{V(\mathbf{r}) - V_0(\mathbf{r})\} \sum_{\mathbf{T}} e^{i\mathbf{k}\cdot\mathbf{T}} \phi(\mathbf{r}-\mathbf{T}) d^3\mathbf{r}$		
We wish to calculate $E(\mathbf{k})$. We therefore multiply by $\phi^*(\mathbf{r})$ from the left and integrate over all \mathbf{r} :	The value of this integral is nonzero only when ${f T}=0$ (on-site) or close to the reference site,		
$\int \phi^*(\mathbf{r}) \mathcal{H}_{at} \sum_{\mathbf{r}} e^{i \mathbf{k} \cdot \mathbf{T}} \phi(\mathbf{r}-\mathbf{T}) d^3 \mathbf{r} +$	i.e. for our simple model $T = \pm ae_1, \pm be_2, \pm ce_3$. We can now split the integral into four parts:		
$\int \phi^*(\mathbf{r}) \{ V(\mathbf{r}) - V_0(\mathbf{r}) \} \sum e^{i \mathbf{k} \cdot \mathbf{T}} \phi(\mathbf{r} - \mathbf{T}) d^3 \mathbf{r}$	$\int \phi^*(\mathbf{r})(V-V_0)\phi(\mathbf{r})d^3\mathbf{r} +$		
$= \int \phi^*(\mathbf{r}) E(\mathbf{k}) \sum_{\mathbf{r}}^{\mathbf{T}} e^{i\mathbf{k}\cdot\mathbf{T}} \phi(\mathbf{r}-\mathbf{T}) d^3\mathbf{r}$	$(e^{ik_xa} + e^{-ik_xa}) \int \phi^*(\mathbf{r})(V - V_0)\phi(\mathbf{r} + \mathbf{a}_1)d^3\mathbf{r} + (ik_xb) \int \phi^*(\mathbf{r})(V - V_0)\phi(\mathbf{r})(\mathbf{r})(V - V_0)\phi(\mathbf{r})(\mathbf{r})(\mathbf{r})(V - V_0)\phi(\mathbf{r})(\mathbf{r})(V - V_0)\phi(\mathbf{r})$		
$\int f(x) dx$	$(e^{-ik_z c})$	$-\frac{ik_{2}c}{2}\int \frac{\psi(1)(v-v_{0})\psi(1+a_{2})a_{1}}{v-a_{2}}$	
We now need to remember that our wavefunctions form an orthonormal basis,	(e *** +	$e^{-\frac{1}{2}}\int \phi(\mathbf{r})(v-v_0)\phi(\mathbf{r}+\mathbf{a}_3)a^{\mathbf{r}}\mathbf{r}$	
$\int \psi_m^*({f r})\psi_n({f r})d{f r}=\delta_{mn}$			
Using this, we can see that the first term gives E_{ϕ} ; the integral with $\mathbf{T} = 0$ is far grater than all others due to the object range of $\phi(\mathbf{r})$. The third term gives $E(\mathbf{r})$ for the same reasons			
others due to the short range of $\phi(r)$. The third term gives $E(\mathbf{k})$ for the same reasons.			
33		34	
Or, written in a more concise way			
$E(\mathbf{k}) = E_{\phi} - B - 2t_x \cos(k_x a) - 2t_y \cos(k_y b) - 2t_z \cos(k_z c),$	Figure removed due to	The parameters t_x , t_y , and t_z are <i>transfer integrals</i> . These	
with	copyngiz restructions	one lattice site to another one.	
$B = -\int \phi^*(\mathbf{r})(V - V_0)\phi(\mathbf{r})d^3\mathbf{r}$			
$t_x = -\int \phi^*(\mathbf{r})(V - V_0)\phi(\mathbf{r} + \mathbf{a}_1)d^3\mathbf{r}$			
$t_{\rm W} = -\int \phi^*(\mathbf{r})(V - V_0)\phi(\mathbf{r} + \mathbf{a}_0)d^3\mathbf{r}$	• The original N atoms with	<i>i</i> doubly degenerate energy levels have become $i 2N$ -fold	
$\int \varphi(\mathbf{r})(\mathbf{r} - \mathbf{r}) \varphi(\mathbf{r})(\mathbf{r} - \mathbf{r}) d\mathbf{r}$	degenerate bands.	,,	
$t_z = -\int \phi (\mathbf{r})(v - v_0)\phi(\mathbf{r} + \mathbf{a}_3)a^{\dagger}\mathbf{r}$			
	The transfer integrals give a bottom of a band have an e Small transfer integrals mea	a direct measure of the width of a band. Carriers close to the ffective mass which is inversely proportional to the band width. n that the bands are narrow, effective masses high, i.e. carriers	
	are localized.		
	 The shape of the bands in I distances are larger in one in that direction. 	k-space depends on the real-space crystal structure. If atomic direction, then the bandwidth is narrower for carrier movement	
35	The bands also carry the or	iginal atomic signatures. 36	

Figure removed due to copyright restrictions	 I he energies of the bands can also be discussed from the point of view of chemical bonds between atoms. A bond would correspond to a particular linear combination of atomic orbitals with a specific symmetry. Bonds can be non-bonding, i.e. there is no energy change related to a particular orbital configuration bonding, i.e. the energy of the combined orbital is lower, electron density at midpoint be- 	Papageneiller	The energy shifts of bitals also depends locity of a carrier). structure diagram of ure applies to the o earlier.	of bonding or antibonding or- s on the \mathbf{k} (direction and ve- This can be seen in a band- or <i>dispersion</i> curve. This fig- ne-dimensional lattice shown
Cox92, p.65	tween two ions is lower • antibonding, i.e. the combined orbit has higher energy, or larger electron density. The effect of bonding/antibonding orbitals can be seen, for example in the case of Ge (and various binaries).	Cox92, p.67	Figure removed due to copyright restrictions	In three dimensions we usually look at certain high-symmetry directions in the crystal and plot the band dis- persions in a diagram labeled with high symmetry point labels. This ex- ample is for rutile-type RuO_2 , cal- culated with the augmented plane wave method. Each unit cell con- tains two formula units. We thus have 10 bands of Ru 4 <i>d</i> character and 12 O 2 <i>p</i> levels. 38
Figure removed due to copyright restrictions Figure removed due to copyright restrictions Figure removed due to copyright restrictions The I the Figure removed due to copyright restrictions The I the Figure removed due to copyright restrictions	often useful to plot the total <i>density of</i> s, which is obtained from the band dia- by integrating over k. The value in the s actually $N(E)dE$, i.e. the number of s per unit volume (or cell) in an energy Val E to $E + dE$. Ru <i>d</i> band is partially filled, which is why fermi level is within the <i>d</i> band (RuO ₂ is llic). lower plots show <i>partial densities of</i> <i>s</i> , contribution to the total DOS by oxy- 2p orbitals and ruthenium 4 <i>d</i> levels. Ru levels can also be separated into t_{2g} e_g levels, showing that the signature of ic orbitals is still visible.	Figure reserved due to objective non-solution	Figure removed due to expyright restrictions	The band structure can be di- rectly measured by photoelec- tron spectroscopy. For compari- son, we see the RuO_2 DOS and corresponding UPS and XPS spectra. For UPS, the light source is 21 eV and ionization cross-sections for O $2p$ and Ru 4d orbitals are similar. In XPS the Ru 4d electrons are much more easily ionized and the d spectrum dominates.

References:

Blundell01 S. Blundell, "Magnetism in Condensed Matter", Oxford University Press, Oxford, 2001.

Cox92 P. A. Cox, "Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties", Clarendon press, Oxford, 1992.

Singleton01 J. Singleton, "Band Theory and Electronic Properties of Solids", Oxford University Press, Oxford, 2001.

41