	This lecture course will be materials oriented
Physics of Transition Metal Oxides Lecture 1 Introduction	 We look at various model compounds, their structure, properties, and behavior. As a general group of compounds, we focus on transition metal oxides Oxides: very wide group of compounds various crystal structures many interesting properties very actively studied many open solid state physics questions
1	2
	Transition metals
 1. Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) 	Transition metals The transition elements are shown in Green
 1. Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right.
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements.
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He Li Be $2^{2^{N^2}}$ 2^{N^2} 2^{N^2} 2^{N^2} 2^{N^2} 2^{N^2} 2^{N^2} 2^{N^2} N^2
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides Semiconducting oxides 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He Li Be Na Mg Li Panelon and the state of the state
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides Semiconducting oxides Metallic oxides 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He Li Be Na Mg Laife Laife Laife Laife We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He Li Be Value Laife Li Value Value Laife
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides Semiconducting oxides Metallic oxides Superconductors 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He Li Be Phile He Na Mg Phile Phile He Na Mg Phile Phile Phile Phile K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides Semiconducting oxides Metallic oxides Superconductors Magnetic oxides 	Transition metalsThe transition elements are shown in GreenThe d orbitals of are progressively filled as we move from left to right.We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements.HHeLiBeHeNaMgMgVCrMnFeCoScTiVCrKCaScTiVCrMbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXeCsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides Semiconducting oxides Metallic oxides Superconductors Magnetic oxides Defects in oxides 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H Li Be Na Mg Philiphi Philiphi Phili
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides Semiconducting oxides Metallic oxides Superconductors Magnetic oxides Defects in oxides Oxide crystal growth (bulk and thin films) 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He Li Be Propriet and the formation of the formatio of the formation of the formation of the formation o
 Introduction to oxides Chemical aspects (oxidation states, thermodynamic stability) Structures (binaries, perovskites, spinels, etc.) Classification of oxides and some of the more interesting properties Electronic structure of oxides Insulating oxides Semiconducting oxides Metallic oxides Superconductors Magnetic oxides Defects in oxides Oxide crystal growth (bulk and thin films) Oxide surfaces 	Transition metals The transition elements are shown in Green The d orbitals of are progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. H He Li Be Progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. He Li Be Progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. He Li Be Progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. He Li Be Progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. He Li Be Progressively filled as we move from left to right. We shall mostly look at the 3d elements (TiCu), but also the 4d and 5d elements. He K Ca Sc Ti V Cr Mn Fe Col Ni Cu Zn Ga Ge As

What types of compounds do we look at:	Oxidation states
The most simple case: Binary oxides, like TiO ₂ , Fe ₃ O ₄ , NiO, OsO ₄ , Fe _{0.9} O, ReO ₃ , etc. The number of compounds is already large and we have here insulators, magnetic oxides, semiconductors, metals. Ternary oxides, like Fe ₂ CoO ₄ , LaNiO ₃ , PbTiO ₃ , SrTiO ₃ Dielectric materials, etc. Complex oxides, like YBa ₂ Cu ₃ O ₇ , Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀ . These examples are high-temperature superconductors.	 What we look at is (a somewhat arbitrary) way of assigning charges to each atom in the lattice: Sr²⁺Ti⁴⁺O₃²⁻ <i>Stoichiometry</i>, or the precise elemental composition of a material, expressed as a chemical formula: TiO₂, Na_{0.7}WO₃, etc. In principle, this can be obtained from chemical analysis. Problems: Is the material a single-phase compound and not a mixture, like Fe₂O₃ + Fe₃O₄? This can be usually analyzed by x-ray diffraction. Another possibility is to do microprobe analysis in an electron microscope. Do we have intrinsic nonstoichiometry, such as in <i>tungsten oxide bronzes</i> that have a general formula A_xWO₃, where A = Li, Na, Ca, Sr, U, Cd, Hf.
5	6
Lattice structures of bronzes The name 'bronze' points to apparent similarity of Na_xWO_3 to metallic bronze.	The only stable $x = 0$ compound of similar structure is ReO ₃ , a metallic binary oxide. This lattice can be viewed in several ways: Re-based A cubic Re array with oxygens in the middle of each 'bond' O-based cubic array of oxygen octahedra with Re in the center of each octahedron
$\label{eq:constraint} \begin{array}{ c c c c c } \hline \hline Bronze & Composition & Symmetry & Unit Cell Dimensions \\ \hline Li_xWO_3 & 0.31 < x < 0.57 & Cubic & a \approx 3.7 Å \\ Na_xWO_3 & 0.26 < x < 0.93 & Cubic & a \approx 3.8 Å \\ Na_xWO_3 & x = 0.10 & Tetragonal & a = 5.25, c = 3.90 Å \\ Cu_xWO_3 & 0.26 < x < 0.77 & Orthorhombic at x = 0.26 & a = 3.88, b = 3.73, c = 7.74 Å \\ Triclinic at x = 0.77 & a = 5.85, b = 6.65, c = 4.88 Å \\ \alpha = 135.7^\circ, \beta = 91.7^\circ, \gamma = 93.6^\circ \\ La_xTiO_3 & 0.67 < x < 1.0 & Cubic & a \approx 3.9 Å \\ Sr_xNbO_3 & 0.7 < x < 0.95 & Cubic & a \approx 4.0 Å \\ Ref:Cox92, p.8 \end{array}$	8

Probl	ems (continued):			Π				
3. C a h e:	bxygen stoichiometry is a particular lly not analyzed directly. Oxygen car andling. This became very clear wh xample, the famous 1-2-3 compound	problem for many oxides. Oxygen content is a n be easily lost or gained during synthesis and hen High-T _c superconductors were discovered. , or YBa ₂ Cu ₃ O ₇ :	su- ater For		Figure removed due to copyright restrictions	YBCO is tetragonal above 700°C and orthorhom- bic below 700°C. In the tetragonal phase, the oxy- gen sites are occupied randomly and the crystal is a semiconductor. In the orthorhombic phase, the oxy- gens are ordered in chains along the b axis. We will come back to these issues at a later time when discussing superconductors in greater detail. Poole95, p.185		
				F	For now, look at a composition like YBa ₂ Ci sense can have various oxidation states, a Y ³⁺ E +3	$a_{3}O_{7}$. Coppe as in CuO or Ba_{2}^{2+} Cu ₃ +4 +7	er is the only element which in a chemical Cu_2O . What we get here is: O_7^{2-} , -14	
Ref:P	oole95, p.181		9	i.	i.e. on average Cu is +2.33!		10	
Ref:Poole95, p.181 g For a chemist, the <i>oxidation state</i> is a formal ionic charge. For a crystal this simple picture would apply in a purely ionic case, where each atom can gain or lose an integral number of electrons. We would usually start by giving oxygen a fixed charge of -2. The metals should compensate that, i.e. Ti is +4 in TiO ₂ . In complex oxides we usually have some idea how to distribute charge between metals. We always have Li ⁺ , Sr ²⁺ , La ³⁺ , etc. In LiNbO ₃ , niobium therefore has to be in the Nb ⁵⁺ state, in LaFeO ₃ , iron is Fe ³⁺ . Things get trickier in compounds like FeTiO ₃ , because we could have either Fe ³⁺ Ti ³⁺ O ₃ or Fe ²⁺ Ti ⁴⁺ O ₃ .			Figure removed due to copyright restrictions		 Oxidation states and electron configurations in the 3d, 4d, and 5d series. Each diagonal line corresponds to a dⁿ series. B Well-known binary oxides exist T Only found in ternaries (B)(T) Poorly characterized phases Remarkably, there are no known oxides with 4d⁷, 4d⁹, 5d⁷ or 5d⁹ configurations, setting apart the platinum-group elements Ru, Rh, Pd, Os, Ir, and Pt. The highest (or lowest) states may be unstable. In BaFeO₄, for example, not all Fe is in 6+ state due to commonly occurring oxygen deficiency. The highest oxidation states are always found in the middle of each se- 			
			11	C	Cox92, p.12		ries.	

Come nemeining increase Deventides and supervisites	Come remaining increases without under an
Some remaining issues: Peroxides and superoxides	Some remaining issues: mixed valency
So far, we have always assigned 2- to oxygen. There are also other possibilities, such as peroxides (O_2^{-}) , as in SrO ₂ and superoxides (O_2^{-}) . Such oddities occur for example in K ₃ CrO ₈ , where it would be quite unlikely to actually have a Cr ¹³⁺ configuration. Instead we have Cr ⁵⁺ and $O_2^{2^-}$. Another interesting case is found in High-T _c superconducting oxides. As we already saw, when going from YBa ₂ Cu ₃ O _{6.5} to YBa ₂ Cu ₃ O ₇ , some copper appears to be oxidized from Cu ²⁺ to Cu ³⁺ , which is not realistic. Instead, some of the charge is taken from the oxygens, leaving O ⁻ .	 Mixed valency traditionally has two slightly different meanings for chemists and physicists. For chemists, iron in Fe₃O₄ would have an average oxidation state of Fe^{2.67+}. Structural characterization and conductivity consideartions would usually lead to an assignment of one Fe³⁺ and two Fe²⁺ ions. A phase transition occurs at 120K. Below this temperature carriers are localized and we would talk about integral Fe²⁺ and Fe³⁺. In physics, mixed valence refers to a case where the measured (or measurable) valence of a particular crystal site is a fractional number. This can be seen by looking at isomer shifts in NMR or Mössbauer spectra, and various other techniques. A fractional valence state is usually associated with electron hopping between several sites. This hopping may be thermally activated. The important points are the timescales of the hopping process and the measurement process.
13	14
Electron hopping between two sites	Electronic configurations of the 3d elements (Fe):
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\underbrace{\underbrace{1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2}_{He}}_{Fe}$ Fe is most commonly found in 2+ or 3+ states. This means that the first to go are the 4s and then the 3d electrons. A sensitive way of detecting (local) valence state changes is to probe the existence or loss of s electrons. This can be done by looking at how the electronic shell interacts with the nucleus of
$\begin{array}{ccc} NMR \ spectroscopy & Zeeman \ precession \ rate & \approx 10^8 \ Hz \\ Hyperfine \ interactions & \approx 10^4 \ Hz \\ NQR \ spectroscopy & Quadrupolar \ precession \ rate & 10^3 - 10^5 \ Hz \\ Electrical \ conductivity & Average \ valence \\ Magnetic \ suceptibility \\ Specific \ heat \end{array}$	This brings us to a brief detour to <i>Mössbauer spectroscopy</i> and <i>chemical shifts</i> .
XPS, UPS, and optical measurements are essentially instantaneous, we would see the pres- ence of two distinct valence states.	16

Interaction between the nucleus and the elect	tron shell	Nuclear energy levels:				
A Hamiltonian for an atom can be written as $\mathcal{H} = \mathcal{H}_0 + E_0 + \mathcal{I}_0$ where \mathcal{H} holds all the terms that do not involve hyperfin E_0 is the electric monopole or Coulomb interaction M_1 is the magnetic dipole interaction and E_0 is the electric guadrupole interaction	$M_1 + E_2 + \cdots,$ ne interactions, on,	E = 10	al A Material B <u>State</u> <u>Excited state</u> $\Delta E = 10^{-8} \text{ eV}$ 0 - 100 keV			
Other higher terms usually don't matter.		Ground	state Ground state			
The Coulomb interaction causes a slight shift in depends on the electronic configuration of an ata pounds. That is where the name <i>chemical shift</i> c	The Coulomb interaction causes a slight shift in the energy levels. The magnitude of the shift depends on the electronic configuration of an ataom and is therefore different in different compounds. That is where the name <i>chemical shift</i> comes from. Also known as <i>isomer shift</i> .		measure the nuclear energy level shifts with very high precision			
		The shift of the excited state e	energy depends on the electronic density at the nucleus:			
		$\delta = \text{const.} \times \left\{ \psi_s(0)_A ^2 - \psi_s(0)_B ^2 \right\}.$				
	17		18			
The wavefunction of an electron: $\psi_{nlm} = R_{nl}(r)Y_{lm}(\theta$	$(\varphi) \exp(-iE_n t/\hbar)$ s electrons have a nonzero probability of being located at the nucleus. Sensitivity to the chemical environment therefore is mediated by outer (or inner) s orbitals.	Figure removed due to copyright restrictions	This example is for Eu ₃ S ₄ . Similar effects can be seen for Fe in Fe ₃ O ₄ , for example. At low temperature hopping is slower than the characteris- tic time of the Mössbauer transition (9.7 ns). Two peaks are seen, corresponding to the Eu ²⁺ and Eu ³⁺ states. At higher temperature the hopping becomes faster than the Mössbauer probe, which sees only an average peak posi- tion, giving a 'fractional' valence for Eu. In conclusion, oxidation states present a useful language for rough characterization of materials. Valence states should not be taken too seriously, however. Crystals are not purely ionic and charge cannot usually be divided as integers be- tween ions. Greenwood71			
	19		20			

Thermodynamic stability of oxides

The stability of a compound depends on the Gibbs free-energy change

$$\Delta G = \Delta H - T \Delta S,$$

where we have enthalpy H, temperature T, and entropy S. We look at formation and decomposition reactions, such as decomposition of MO_m to MO_{m-n} , i.e. loss of oxygen:

$$\mathsf{MO}_m = \mathsf{MO}_{m-n} + n\mathsf{H}_2\mathsf{O}.$$

Enthalpy doesn't change much in such a reaction, mostly we are interested in the entropy change (production of oxygen gas). Entropy is a function of the oxygen pressure

$$\Delta S = \Delta S^0 - (nR/2) \ln p_{O_2},$$

where R is the gas constant 8.31 $\frac{J}{Kmol}$. The Gibbs free-energy change is thus

$$\Delta G = \Delta G^0 + (nRT/2) \ln p_{O_2}$$

This reaction can only proceed if $\Delta G < 0$, i.e. the oxygen pressure must be below a value p_d

Ellingham diagrams give a rough idea of which oxidation state to expect. Oxides are often

There are regions with two solid

phases (mixture of Fe_3O_4 and Fe_2O_3)

and regions with a single (but variable

composition) phase, i.e. the wüstite region in the $Fe_{0.85}O$ to $Fe_{0.96}O$ range. There are very narrow *line phases*, like Fe_2O_3 . These tend to spread out at

This figure also illustrates the phase

F + P = C + 2. P: number of phases, including gas, C: number of components, equals 2 in a binary oxide, F: number of degrees of freedom (temperature, pressure, etc.)

nonstoichiometric, however. We therefore also need more detailed phase diagrams.

Figure removed due to copyright restrictions

$$\ln p_d = -2\Delta G^0/nRT$$

This simply means that an oxide decomposes to another form or pure metal if the oxygen pressure is low enough. This pressure also depends on temperature, i.e. decomposition occurs at a fixed oxygen pressure if the temperature is high enough.

Very low oxygen pressures can be achieved by mixing CO and CO_2 gases due to the gas phase equilibrium reaction

$$CO_2 = CO + \frac{1}{2}O_2$$

Another choice is a mixture of H_2 and H_2O in the reaction

$$H_2O = H_2 + \frac{1}{2}O_2$$

Ellingham diagram

Crystal structure of oxides

21

23

The Ellingham diagram:

Oxides are largely ionic crystals. The nearest neighbor of a metal is always oxygen. The crystal structure and stability of a phase depends on this bonding. Specifically we are interested in *bond lengths, coordination number, and geometry.* Bond length is often compared to *ionic radius.*

Cox92, p.13

high temperature.

rule:

22

General rules:			
1. Ionic radius decreases as electrons are removed			The planar coordination (b) is a highly distorted case of the tetrahedral coordination (in terms of ionic radii), found
2. Ions with larger mass are smaller due to increased nuclear charge			in PdO. The octahedral configuration is often distorted Shown examples are for
3. $3d$ elements are smaller than $4d$ and $5d$.		Figure removed due to copyright restrictions	MoO ₃ and Cu in La _{1.85} Sr _{0.15} CuO ₄ . This happens for V ⁵⁺ , Mo ⁶⁺ and some
4. Large drop of size between La and Hf, a.k.a <i>lanthanide contraction</i> , due to the filling of the <i>f</i> orbitals			others. In a chemical sense the shorter Mo-O bond would look like a double bond, $Mo(=O)_2^{2+}$. These ions are too small for the octahedral configuration.
5. Small ions ($<$ 50 pm) are usually in tetrah	edral (or square planar) sites		This type of distortion may also be caused by crystal field effects, or
6. Most ions (50 to 80 pm) are in octahedral	sites		for Mn^{3+} in LaMnO ₃ and Cu ²⁺ in La ₂ CuO ₄ .
7. Large ions (over 80 pm) have higher coordination numbers 25			26
Structural families		It is often easier to think in terms of oxyg	reploctabedra. Look at the Re Ω_{2} structure again:
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	(a) Rock-salt: a common structure for binary oxides: MnO, CoO, NiO. Includes nonsto- ichiometric oxides FeO, TiO _x , VO _x . Also exists in AMO ₂ type oxides where A is usu- ally Li or another alakli earth. Li substitutes for M.		Contractine Look at the record structure again.
Figure removed due to copyright restrictions	 (a) Rock-salt: a common structure for binary oxides: MnO, CoO, NiO. Includes nonsto-ichiometric oxides FeO, TiO_x, VO_x. Also exists in AMO₂ type oxides where A is usually Li or another alakli earth. Li substitutes for M. (b) Corundum M₂O₃-type oxides, like Al₂O₃, Ti₂O₃. Also some ternaries like ilmenite FeTiO₃, and LiNbO₃. (c) Rutile Typical for TiO₂. Common for dioxides. 		Figure removed due to copyright restrictions
Figure removed due to copyright restrictions	 (a) Rock-salt: a common structure for binary oxides: MnO, CoO, NiO. Includes nonstoichiometric oxides FeO, TiO_x, VO_x. Also exists in AMO₂ type oxides where A is usually Li or another alakli earth. Li substitutes for M. (b) Corundum M₂O₃-type oxides, like Al₂O₃, Ti₂O₃. Also some ternaries like ilmenite FeTiO₃, and LiNbO₃. (c) Rutile Typical for TiO₂. Common for dioxides. rhenium trioxide ReO₃ structure. Quite unusual, but parent of the <i>perovskite</i> structure. 	(a) ReO ₃ ,	Figure removed due to copyright restrictions

More complex ternary structures:		More complex oxide structures:						
Figure removed due to copyright restrictions	(a) is the <i>perovskite</i> structure AMO ₃ , like (b) is a layered perovskite, the K ₂ NiF ₄ s (c) is a spinel, AB ₂ O ₄ , having both o and tetrahedra.	e SrTiO ₃ structure ctahedra	Spinels form a is fairly simple, quite complex. naries, such as mixture of vale lent metal sites Garnets also h where Fe ³⁺ io coordinate site. is a well-known	an important g , e.g. MgAl ₂ C . Also found in s Fe ₃ O ₄ and ence states. A s, octahedral a have a completions are in tetra e. YIG is an im-	group. Composition D_4 , but the structure n some forms of b Co_3O_4 . All have also two nonequivation tetrahedral. ex sructure. Example and octahe the portant magnetic of a laser material.	on re oi- a a- nples are Ca ₃ Al ₂ S edral sites and the material, while and	Si ₃ O ₁₂ and Y ₃ Fe ₅ larger Y ³⁺ ions a other garnet Y ₃ Al ₅	O ₁₂ (YIG), re in eight- O ₁₂ (YAG)
In perovskites the center metal has 12 oxy a pretransition metal ion, like K (KTaO ₃) of atoms can also be found, e.g. Pb in PbTiC	gen neighbors and thus has to be a large ion, or Sr (SrRuO ₃) or La (LaVO ₃). Post-transiti O_3 .	, typically on metal		Figure removed due to copyright restrictions	Figure removed due to copyright restrictions	Figure removed due to copyright restrictions	Figure removed due to copyright reativations	
Ideal structures are very rare. Structural d	istortions are usually present	29						30
Some distorted lattices:			Many lattices h	have several o	different metal coo	ordination sites, fo	or example the Hg	-containing
Mc tał typ an	enoclinic form of WO ₃ . Note the rotated of hedra, forming diamond-shaped tunnels. The of distortion is very common in ruthenated deven titanates at low temperature.	oc- nis es			Figure rem copyright	ioved due to restrictions		
Just to show that some oxide lattices can have very complex shapes, here			(a) HgBa ₂ Cu (Poole95)	uO _{4+δ} (1201)) (b) HgBa ₂ CaCu ₂	${\sf O}_{6+\delta}$ (1212), (c) H	HgBa ₂ Ca ₂ Cu ₃ O ₈₊	_{-δ} (1223)
is a Gatehouse tungsten bronze, or $Rb_3Nb_{54}O_{146}$ Rao98		31	Mercury in the the octahedral phase with a T _d with $\delta \approx 0.1$.	form of HgO ₂ layers. The hi c=96K is Hg ₁₋	$_2$ in a square-plana ghest T $_c$ does not $_x$ Ba $_2$ Cu $_{1+x}$ O $_{4-\delta}$	ar configuration se always appear in a . The extra oxyger	erves as a separate a 'pure' phase, e.g. n goes into the mer	or between the $n = 1$ cury layers 32

Classification of oxides		2. Other closed-shell insulators:			
 Oxides exhibit a very wide range of different what arbitrary, and materials may belong into 1. d⁰ insulators: Usually stoichiometric oxides with a d⁰ electronic configuration (such as SrTiO₃, containing Ti⁴⁺). Band gaps are relatively large, e.g. 	characteristics. Classification is therefore so several classes.	P- $ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
 3.2 eV for SrTiO₃, over 5 ev in Zr and Hf oxides (CaHfO₃, CaZrO₃). Optically transparent below the band gap energy diamagnetic (no unpaired electrons) the filled levels are mostly oxygen 2<i>p</i>, the transition metal 3<i>d</i> levels are empty 	Figure removed due to copyright restrictions	A completely filled shell is just as good as a completely empty shell, i.e. we get an insulator because there are no electrons that could be easily delocalized. Partially-filled shells usually result in partially-filled bands and thus also metallic conductivity. Figure removed due to copyright restrictions 33			
Π		3. d^n impurities:			
Up to now we have looked at the 3 <i>d</i> electron levels as a single set. In fact, in oxides we also have to remember the presence of a crystal field, i.e. ions are not floating in vacuum. In a crystal the <i>d</i> levels are split. The splitting Δ can be large enough to favor a <i>low spin state</i> .		 Transition metal impurities often occur in various oxides (transition metal oxides and others, such as MgO or Al₂O₃). These impurities form localized states in the bandgap. Such impurities give color to various gemstones (ruby, sapphire, etc.) Magnetic insulators: 			
		This group includes some very important materials, such as yttrium-iron garnet (YIG) $Y_3Fe_5O_8$. Other magnetic oxides are NiO and Cr_2O_3 . In all cases we need an unpaired electron. Magnetic order arises when <i>d</i> electrons interact (weakly). In most cases antiferromagnetic order arises at low temperature. The magnetic insulators can be easily turned into semiconductors by impurities or changes in oxygen stoichiometry. NiO, for example, is insulating and green when pure, but can become semiconducting and black when excess oxygen is present.			
Cox92					

5. Semiconductors:	References:
Semiconducting properties are usually seen in nonstoichiometric oxides. TiO2, for example	
is a good d^0 insulator. Slightly oxygen deficient TiO $_{2-x}$ is a semiconductor. Same happens	
with Ni _{1-x} O, and SrTiO _{3-δ} .	Cox92 P. A. Cox, "Transition Metal Oxides: An Introduction to Their Electronic Structure and
Doping may also be done by adding other metals, such as $Li_xMn_{1-x}O$, or adding Nb into	Properties", Clarendon press, Oxford, 1992.
SrTiO ₃ .	Poole95 C. P. Poole Jr., H. A. Farach, R. J. Creswick, "Superconductivity", Academic Press, San
	Diego, 1995.
6. Transition to metallic state:	
Increasing the dopant concentration pushes the otherwise insulating parent compounds	Greenwood71 N. N. Greenwood, T. C. Gibb, Mössbauer spectroscopy, Chapman and Hall,
into a metallic state, e.g. 0.5 wt% doped SrTiO ₃ is black and metallic.	London, 1971.
	Devoor O. M. D. Dev. D. Devour "Trans" "the Matel Original" Millor New York, 4000
7. Simple metals:	Rao98 C. N. R. Rao, B. Raveau, "Iransition Metal Oxides", Wiley, New York, 1998.
This is a rather small group of compounds with a partially filled conduction band. Examples	
are usually found among $4d$ and $5d$ elements, such as ReO ₃ , RuO ₂ , and Na _x WO ₃ for	
0.3 < x < 0.9.	
8. Superconductors:	
Well known materials like YBa $_2$ Cu $_3$ O $_7$. Also several others, like NbO and SrTiO $_{3-\delta}$.	
3	38