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Nonlinear 
Finite Element Method

• Lectures include discussion of the nonlinear finite element method.
• It is preferable to have completed “Introduction to Nonlinear Finite Element Analysis” available 

in summer session.
• If not, students are required to study on their own before participating this course. 

Reference:Toshiaki.,Kubo. “Introduction: Tensor Analysis For Nonlinear Finite Element 
Method” (Hisennkei Yugen Yoso no tameno Tensor Kaiseki no Kiso),Maruzen.

• Lecture references are available and downloadable at http://www.sml.k.u-
tokyo.ac.jp/members/nabe/lecture2004 They should be posted on the website by the day 
before scheduled meeting, and each students are expected to come in with a copy of the 
reference.

•Lecture notes from previous year are available and downloadable, also at 
http://www.sml.k.u.tokyo.ac.jp/members/nabe/lecture2003 You may find the course 
title, ”Advanced Finite Element Method” but the contents covered are the same I will cover 
this year.

• I will assign the exercises from this year, and expect the students to hand them in during the 
following lecture. They are not the requirements and they will not be graded, however it is 
important to actually practice calculate in deeper understanding the finite element method.

• For any questions, contact me at nabe@sml.k.u-tokyo.ac.jp 

http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004
http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004
http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2004


Nonlinear Finite Element Method 
Lecture Schedule

1. 10/ 4 Finite element analysis in boundary value problems and the differential 
equations

2. 10/18 Finite element analysis in linear elastic body
3. 10/25 Isoparametric solid element (program)
4. 11/ 1 Numerical solution and boundary condition processing for system of linear 

equations （with exercises）
5. 11/ 8 Basic program structure of the linear finite element method(program)
6. 11/15 Finite element formulation in geometric nonlinear problems(program)
7. 11/22 Static analysis technique、hyperelastic body and elastic-plastic material for 

nonlinear equations (program)
8. 11/29 Exercises on Lecture7
9. 12/ 6 Dynamic analysis technique and eigenvalue analysis in the nonlinear 

equations
10. 12/13 Structural element
11. 12/20 Numerical solution— skyline method、iterative method for the system of 

linear equations
12. 1/17 ALE finite element fluid analysis
13. 1/24 ALE finite element fluid analysis



Hyperelastic Body
First, let us clarify the symbols that are used in this material to define certain quantities.



Provided that represents a base vector, represents the tensor product, and .



Incompressible Hyperelastic Body 1
• Hyperelastic body is defined as a substance,in which the elastic potential function W exists. The 
elastic potential function gives a conjugate stress component by taking its differentials of the 
components deformation or a strain.

• E = hence,

•Since W requires the objectivity in the scalar, which is expressed as a function of principal value in C. 
In addition, the principle value makes a function of principle invariants defined as following so, W and 
C can be expressed in the function of principle invariants as well.

• Thus,



Incompressibility Hyperelastic Body 2
• Furthermore,

Based on above,

•Apparently, the direction of principle axis in S and C coincide,
• Rewrite the above into Cauchy stress,

• Still, the direction of principle axis T and B coincide.



Incompressible Hyperelastic Body 3

• The high polymer materials possess characteristics to stay constant even under the extensive 
deformation, and generally, such substance are modeled in supposition of incompressibility.

• By adding equal force to the incompressible materials, the inner stress occurs without any change in 
volume being observed.

• In a case where there is only the hydrostatic pressure acting on the incompressible substance, the 
inner stress matches with the hydrostatic pressure while there is no deformation being observed.

• This inner stress is called a nondeterministic stress for which cannot be determined by the history of 
movement the substance points follow.

• In analyzing an incompressible substance by modeling the hyperelastic body, we need to take an 
nondeterministic stress (indefinite hydrostatic pressure)as independent variables.

• Here, consider and J = 1,

• Where p represent the indefinite hydrostatic pressure determined by the boundary condition.
• Again, rewrite the equation in the second  Piola-Kirchhoff stress, then given by,



Mooney-Rivlin Material 1
• Often, Mooney-Rivlin material is applied for the elasticity potential function W of incompressible 
hyperelastic body.

where  c1 and c2 are invariables defined by the substance being used.
The second Piola-Kirchhoff stress can be gained by adopting Mooney-Rivlin material.

• Therefore,  when there is no external force present and no deformation is made, represented as Cij = 
δij,

p is allowed to have the initial value 2c1 + 4c2.
• In order to provide a resolution to this inconvenience, a modified model of WM is often considered.

Where,



Mooney-Rivlin Model 2

• are called reduced invariants.
• The second Piola-Kircchoff stress can be obtained based on          ,

Therefore,

• Under the absence of deformation,

Hence, there should be no such inconvenience as p to possess an initial value.



Mooney-Rivlin Model 3
• Reduced invariants contain a physical signification explained in the following.
• In considering incompressible materials, it is appropriate to handle the elastic deformation in isochore
deformation and enhanced deformation in separately. To do so, we define the part of isochore
deformation in tensor F by deformation gradient.

• Here F is called Flory’s deformation gradient tensor, having det F = 1 for arbitrary deformation.
• Modified right Cauchy-Green deformation tensor C can be defined by,

• Since reduced invariants takes the first invariant and the second invariant of C, we obtain           
simple pulling with finite deformation.



Young’s Modulus and Shearing Modulus in 
Infinitesimal Deformation 1

• To verify that hyperelastic body concord with linear elastic body by taking arbitrary and under 
infinitesimal displacement, consider a simple pulling deformation in the figure below.



Now, F, B and  are respectively,



Young’s Modulus and Shearing Modulus in 
Infinitesimal Deformation 2

• If we adopt for W  then,



Young’s Modulus and Shearing Modulus in 
Infinitesimal Deformation 2

• Cauchy stress is evaluated as,

• If we pull the plane      , then given                       ,

• Here, l = 1+ε is given under infinitesimal displacement, and having ignored   , 
we obtain as,

• 6(c1 + c2) is equivalent with Young’s Modulus E .
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