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Partl
Scattering Theory

1 Scattering Theory in One Dimention

In this section, we present the basics of scattering theory as we demonstrate
some examples of scattering in one-dimensional systems shown in the figure below,

describing a left-moving incident particle on a potential barrier.

.0
@ha\ll(x,t) = HVU(z,1)

H = —— +V(z)

Vo = € [—a,d
V pr—
(z) { 0 otherwise

_—
- VA
A v B C

We assume that the time dependent variable in the wavefunction is separable
(stationary state).

U(z,t) e (1)
HVY(x) = EV(r), F=hw

1.1 Transfer Matrix Method
1.1.1 Transfer Matrix for Scattering State and Bound State

Let us divide the system shown in the figure above into three regions: A:
(=00, —a), B: [—a,al, C: (a,00). For the solutions int the regions (r =A, B,
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C), we can write with the wave number k, for which the potential is constant.

) ) h2k2
L I
2m

We define the former wavefunction as ¥y and the latter as U5, and the junction
conditions for the wavefunction when z = £ can be Vy(§) = Wy(§) and V) () =
U, (€), which we can further write down as:

gil—eik‘lf + gl—e—ik‘lf — Sg-eikgf 4 52—6—ik2§
kil e™e —grem™e) = ky(ge™t — g e ™)

In matrix representation, we can write

M (k) ( g ) — M(ky) ( g )

ke ik X Lo—ike L ik

M= . ¢ ), Mfwy =2,
- ; ¢ k 1 ik
ketks  fe—ike etké — 57 3

N

Thus, we rewrite the equations to give

()i () - sa s

We repeatedly use the above equation particularly in our present case to yield

( fz ) = T ( gg > y T — T—a(kouta kin)TG(kin’ kOUt)

€a o
Thus,
h2k? h2k?
Dlout _ o Zln o B
2m 2m

We can solve the scattering problems for more complicated scatterer in the same
way we showed above. Let us now consider two different boundary conditions.

e Boundary condition I: ¥(z) ~ e** 2 — oo Recall that an asymptotic
form of the time-dependent wavefunction where x — +o0o is e!**=% g0 the
waves (i.e., only the scattering waves) traveling toward the positive direction
on x axis are what required in the limit + — +o00. Such states are called
the scattering states, and require the conditions {5 = 0, (5 = 1) . The
scattering states always exist whenever energy E is positive ( £ ; 0 ). For
the reflection coefficient R and the transmission coefficient 7,

(8)-=(4)-( )
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giving £}, and¢; thus, we obtain

R~ G _Tn
€4 Tn
1 1
T = —+ = —
€4 Tn

(Note that the reflection rate is |R|* and the transmission rate is |7 |2.)
Furthermore, there is a relation between the transmission coefficient and the
reflection coefficient, which can be written

T +[RI* =1

We may generally explain the above relation by studying the Wronskians
of the differential equation. Suppose we have the potential V' that is real
and whose solution is W(z) then, its complex conjugate W*(z) can also be
the solution. The Schroedinger equation does not contain the first-order
derivatives; thereby Wronskians W (z) = W (¥ (z), V*(z)) is independent of
x.

L Asymptotically we can write
U(z) = e* + Re ™ g aTe™ 2~ 00

from which we evaluate the Wronskians to give W() = W(o0), revealing
indeed that we have |7|* + |R|?> = 1. As another way to express the above,

!Consider the solutions for the differential equation of f(x)

" +p@)f +q(z)f =0
from which we write the Wronskians for the two solutions f; and fs,
W(a) = W(f1. fo) = det ( oo )
i fa
Thus,

W =det (11 f2,>=dt( /1 2 )Z—W
¢ ( 1 YN\ i —ah pfh—afe b
which leads to -

W () = W(y)e™ v 70
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we define the current J, in x direction to have

h .
Jo = W)
_ (et A
~ 2mi (dj de  dz ¢)

and write out the conservation law of .J, to be

dJ,

. =0.

e Boundary condition II: To satisfy the condition [~ |¥(z)|dz < +oo , we
will need the pure imaginary wave number; i.e., the energy E is negative.
(E < 0) Which we may write

\V/2m|E]|

h

Furthermore, to avoid the exponential divergence of the wavefunction when

kowt = 1K, K =

we define &y, we will need both £§ = 0 and &5 = 0. So, we write

(1) (%)

T11:0

whose first equation

gives restriction to the wave number k. This is called the bound state in
contrast with the scattering state. In our earlier discussion of the scattering

2Where = ~,

eika: + Refik:w efik:w 4 R*eik:p
W(_OO) = det < ikeikz _ ikRefikx fikefikm 4 ikR*eikz >
eika: + Refika: efik:v 4 R*eika: eikw 4 Refika: (1 _ |R‘2)67ika:
= det < 2ikeiks 2ikR*eiks ) = det < 2iketke 0 >
= 2k(|R]*-1)

, while at x &~ co we have

ikTeks  _jkT*e ks 0 —2ikT *e ke
—2ik|T|?

ikx * ,—ikx ikx * ,—ikx
W(so) = det( Te T*e ):det( Te T*e )
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states, we defined the transmission coefficient 7 and the reflection coefficient
R, from which we understand that the energy and the wave number in the
bound states are defined as the

polars in the upper-half of the complex plane k of

the transmission and the reflection coefficient.

The Transfer-matrix Approach to the Scattering Problem in One-dimensional
Square-well Potential

Here we discuss specific calculations for the scattering problem in a simple
square-well potential. To begin with, we write the transfer matrix for a single
boundary 3

T <k17 k2)

1 (kl + k2) —i(k1—k2)E (kl k2) i(k1+k2)E
le (;ﬁ kg) i(k1+k2)é (k‘1 + k‘z) —k2)¢

T = T—a(koaki)Ta(kiako)
1 ( (k 4 k) i(ko—k;)a (ko _ ki)ez’(ko—i-ki)a )

4k;k, (ko — k;)e~iothkida (4 ke i(ko—ki)a

(k—i-k)_Zk —ko)a (k_k)—zk:—i—ko)
X
(k? —k ) i(kitko)a (kz +ko) i(ki—ko)a

eiQkOa
T, — k’ k 2 —2ik;a k —k 2 2ik;a
T {( + ko) (ki — ko)?e
_ 1 2 12\ —2kia 2k
Ty = o (ki —k2)(e e i)
— 1 2 —2ik;a __ 2ik;a
Ty = ok (k7 —k2)(e e
T22 _ e—ZQkoa (k; + k )2 2ik;a (k‘ —k )2 —2ik;a
4k;k,

Therefore, int the following case:

3

Tk ko) = Mg ' (ki) Me(ks)
1 e—iklf 1 —Zklf 'LkQE efikgf
5 ik1§ 1 2/{:15 ) ( 'L'kQE _er—ikQE )

1 [ ke zklf e—ikrg gik2g e—ikat
= % ( klezk1£ _etkig > ( erikzﬁ _k26—ik;25 >
1 ( (ki + ko)e i (ki=k2)e  (f) — ky)eilkatha)e )

Tkl (kl k‘Q) i(k1+k2)E (k1+k2)ei(k1*k2)§
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e Complete transmission
15 =0

that is where we have

2a+/2m(E — V) 0

h

sin 2k;a = sin
there will be no reflection R = 0 so, we will have a complete transmission
|7|=1.
e Bound state

WhereE <0, that is k, = ik (where & is real, ( h;:f = E ) We look for the

solutions for
T11 — 0

, which we find the bound states when
N2
ki +in\" pitkia
k’z‘ — 1K

The classical particles cannot pass through a barrier where

e Tunneling

E <V
, but if we calculate the transmission rate having considered

ki = Z'K,Z'
(Vo = E)
h

KR; =

generally we can obtain |T'| > 0 , meaning that the quantum effect allowed
the particles to be passed through the barrier. This is called the tunneling
effect. In the case where we have energy of the incident particles that is
much smaller in contrast to the potential (|k,| << |k;| = k) , we can write

16k2 1 2
2 o o —4ka
TP~ () ¢

4

K ko) ko\?
T, — 170 2ka 1770 —2ka
ml = (i) e (- 5) ]

o 672/111)

1 16k2 1
T 2 _ — o —4Ka
7] Tn)2 = K2 (1—e-dra)2®
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thus, lowers the transmission rate of the thickness of the potential barrier by
remarkably high speed.
e Delta-function potential

Where
V(z) = gé(x)

, % we consider the limit of

Vo2a — g, (|Vo| = o0, a—0)

% (Note that 2%¢ = g)we obtain

. g .9
T,y = 1 — Ty = —1—
11 +22k0’ 21 Z2k07
g . g
Too = 1 —4— Ty =
22 22]{;0, 12 Z2k0

Thus, giving
g 2
|R|2 — Qko)

L ()" L+ (o)’

7% =

g
2ko

1.1.2 The Transfer Matrix and the Scattering Matrix

i — — 0

r €— <« |

V02a - 9, (|‘/0|—>007 a_>0)

szzQa — ﬁgzg (77’”’;%‘/0)

kil — o0, a—0, (|kila—0)

_ 1 . 2 L 2 idk;a
T11 = 4kiko ((kﬁl + kio) (k‘l ko) e

1 5.
m <4k21€0 — (kl — 0) 24]{71@)

k2a g
= 1— 2 :1 )
T
1
T, = — k2 — 0)(—idk;
21 4kiko(’ )(—idk;a)

k2a g

ko 2k,

Q
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Let us suppose the wavefunction with the incidence and reflection from free-space
to an arbitrary region shows in the figure above. When we have the wavefunction
of the left side 1;e™** +1,e~** and the light side 1,e*** 4+ 1)~ the consetvation
of probability yields an equation. ”

|¢z|2 - |¢r|2 :|1/J0|2 - |¢i’|2

Now we define the one-dimensional scattering matrix S

(0)=()

At which S becomes the unitary matrix
8

SST =SS =1
We further define the transfer matrix T' to obtain

() ()

T'JT =J

9

To provide more details, we define the scattering matrix S (including the mul-
tichannel cases)

7Calculation of the Wronskians.
8The conservation law

2 2 _ (% * w’r _ * * T /(/)i _ * * %
|1/}7‘| + |"/]O| —(%ﬂ/}o)( 77[}0 ) - (wwwz’)s S( 1;[11'/ ) - (1/}”1/)21) ( wi/ )

is valid for arbitrary v;, 1) thus, STS = I.
9The conservation law is written

2 _ '/2_ * * 1/10 — * * T 1/12 — * * i
oo? = wel? =0 (47 ) =wiwnrar () =whuna (5

,giving

T JT =J
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so that we can write

AR T
T= Pl oyt
10 Here we can write
T ' =JT'J

(TTH ™ =(TH'T™ =JTT'J

Glven that each pair becomes idential with the non-negative eigenvalues of TT"
and (TT")~, all eigenvalues can be written

e:l:?xn’ T >0

10The unitarity can bu expressed in the relation equaitons
Stg_ rtooqt root\ rir + ¢ttt rie/ + ¢y B 1 0 %1
AN t ) AL A A P 0 1 (1)
’ . £ T 141 + 101
Sst — r t/ M p _ rr +ttT rt —l—trT _ 1 0 (*2)
t r t r trt Tty 0 1
with the definition of the S matrix we obtain
Y =11h; + t'
1/10 :twi + 7”/%/

It is clear that if the boundary condition 3;; = 0 is required, ¢ will represent the transmission
rate, andr, the reflection rate. To obtain the transfer matrix through solving 1,,1i’, we rewrite
the first equation

-1

Yy =—1'
and the second equation,
Yo =tihy — ' by + 1t e = (= T )+
The unitarity may give
1=ttt + 77T =t /(@ )T = wh T (ot
=(t —r't' )it

which leads to obtain
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The further calculations may yield !

-1
_ I
(TTT +(TTH ™ + 21) =1 iy

Thus, we know that COS}ll .- may give the absolute eigenvalues for 1t ande't/. 12

11

- -1
rri—( Lot =ttt
= *tlilr t/*l t/Tilr/T t/Til
E R e W
— _ _1 -
ety
T =JT'J
(! =TT =TT
-1 — -1
T 1 (TTT)fl _2< AR e SR )
'

(ttT)_l +T’(t/Ttl)_1T/T )
+ ( /)—1

given that

—1
1/ttt
(TTT +(TTH ' + 21) =1 ( ity )

12

1 1/t
2 2z, —2x,\—1 _ Tn —xp\—1\2 _ -
(2+e™ +e ) (™ +e™™)7) 4coshz, 4 ars
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1.2 The Green’s Function and Scattering Integral Equa-

tions
Consider the Schrodinger equation in the form

(B — Ho(x))¥(z) = V(x)¥(z)

n* d?
Hole) = ~onae

Suppose we obtained the Green function Go(&bylettingd(x) to be the Dirac delta
function

(£ — Ho(€£))Go(§) = 0(¢)
With homogeneous solution ¢(x)
(E — Ho())®(z) = 0

we write the equation
¥(a) = o) + [ " dyGole — V)T (LS)

13 Next, we recast the equations above in the form, which clearly show the energy
dependence instead of the x space coordinate dependence

(E—Hy)¥ = VU,

1
Go(E) =
o(E) E — H,
(E—Hy)® = 0
1
U = & 8%
T ECH,

= O+ GVU (LS

13We may simply check by making substitution into the Schrodinger equation
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The last line of equation is called the Lippmann-Schwinger equation. 4 1% 16

14We consider that the inverse number of the operator (z — Hy) uses the eigenstate |e) of the
energy € for Hy to be defined as

Z — €

Go(2) = 3" ——|e)(e]

Generally, in contrast to the real energy of z = E, Go(z) cannot be defined for its unique
property it has. We will instead have to use the limit z — E £ i§ at the end by calculating for
the complex energy z. Throughout the proceeding sections, we need to note this as an important
fact. The further details of the calculations can be found in the following.

5The relation between the formal solution and the coordinate representation can be considered
as

(Z - Ho)GO =1
(x|(z — Ho)Golz') =(x|2")

[ [ dpast wlp)tole ~ Ho)l!) 'l " Gole') = (el

On the one hand, (z|2’) = 6(xz — 2’) is the eigenfunction for the eigenvalue x’ of the operatori
such that we may treat it as &|z) = x|z).

2{x|x") :/dz" x(z|z" 2" |2') = /dx” x6(x —2")o(z" — ') = 2'6(x — ') = 2 (z|x)

For (z|p) = \/ﬁ eP*/" on the other hand, we may treat it as p|p) = p|p) because p = —ihd,
is the eigenfunction of the eigenvalue p for the operator p = —ihd,. Th completeness and the

orthonormality are given

/dx" (x| (2 |2")* :/dx”é(x —2")o(z" —2")=6(z' —2') completeness
/dm (x]x'y (x]2") = / drd(z — 2")o(x — 2") = §(a’ — 2")  orthonormality
/dp (z|p)('|p)* = /dpe”"(r )/ = hé((m —a')/h) = §(x —z') completeness
/dx (z|p)*(z|p’) :% /dm e~ {p=P)0)/h — §5(p — p')  orthonormality

Thus, we have (x|Gola’) = Go(x, ') to write

2

(o= — o)) =Gz — L)) = 60— (e — )

dpdp' {2]p) pl(z — Ho)lp') (2" Go(a”, o') = e (o PG )
e | // L

<z+2}ncgg>/dw”6(:px VGo(2",2') = <z d2 >G( ')

Given by the translational symmetry, we have Go(z,2") = Go(z — ')
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We can further write the variation of the Lippmann-Schwinger equation in the

16Let us summarize different types of normalization for the plane waves.

e L volume V = L? =boundary condition
Let us define k,, = 2% (n,, ny,n.), n; = 0,21, £2, -+ to write

1
(rln) =tu(r) = e
(n|n') :/ dr ) (P () = dppr : normalization
o) = L —itk,—k, )T
; r|n){n|r’) Z?/}n )7V;e '
1 2m.\3 Zefi(knfkn,)-"' = 41) /dk: itk —k,)r

~(2n)3 (Z) (27)3
=0(r —7r') = (r|r')

n
Z |n)(n| =1 : completeness
n

e Take the continuum limit for the wave-number represetation

<’I"|k: _ ]' zk-’l"
means k) = |
(k|K'y = (27r) /dr i (P (r) = §(k — K') : normalization
] iy = [ ki) = g ek

=i(r — ') = (rlr)

/dk: |k) (k| =1 : completeness

e For the momentum representation

o) — (1) — ;eip-’r/h
] |4
Thatis, |p) = \/h>3|k> th

PIp) =g | A U3 (r) = 8p — ) mormaiation
[ v ripyoir') = / Uy ) ) = s S e P
—5(r ') = (rlr)

/dp |p)(p| =1 : completeness
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form

U = (1-GoV)®=(1+GV)d
1
E—H
= Go+ GoVG = Go+ Go(VGo) + Go(VGo)? + -+ -

17 Let us now consider more specified one-dimensional Green’s function Gy via

"Here we used the relation

A(B-AB = (AB—-1)B=A-B
= —B(A-B)A=DB(B- A)A

The substitution of A = F — Hp,and B = E — Hy — V into the equation above gives
—GoVG =Gy —G=-GVGy
hence, we have (1 — GoV)G = Gy. That is
(1-GoV)=GGy=(Gy+GVGy)Gy =1+ GV
We also obtain a useful reration

G =Go+GoVG = Gy + Go(VGo) + Go(VGo)? + - --
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Fourier analysis & 19 20

18Clariy the space coordinate to express

1 e oA
Go(z) = = / dke™*® Gy (k)
1

so, we can write §(z) = 5= [ dke™*® to give

R2K?

2m

E

2m

which leads to (E — Ho)Go(z) = §(x) thus Go(k) = = (32) o'

1 /2m
G““”Zzw(m) [

K212

In the following, we consider F of the positive and ngative energies.

9Where E > 0, the integral remains indefinite for the unique characteristic observed along
the real axis. We now consider expanding the energy E into the complex energy £ — FE =+ 0.
This in fact corresponds to having K — K + i0 thus gives

1 /2m
0 (2) 21 \ h? wdkﬁ(( 1 k}%;i[))eikz

E+KEi0

The evaluation of the integral is done via the complex integration along the paaths Cy 4+ C'y or
Cy + C_ shows in the figure below. Further, we proceed by use of the Jordan’s lemma.

When |f(2)] is uniformly 0 on the upper-half/lower-half plane at |z| — oo, we can write

/ dzf(z)er** =0, (R — oo,a>0)
Cy

20Where E < 0, we write

2mlE
K — in — i V2IEl

h
which we can use directly to evaluate the integral. Applying a clear case such as K — K+i0 (E —

, k>0
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2 Ly nE

GO(E) =

h ?

2m\ —1 —k|z \/ 2m|E|
(ﬁ) %6 | |, K = E <0

21 Where the energy E > 0, the Green’s function and its homogeneous solution
take the traveling waves ®(x) = \/%76”“ of +x direction. the substitution into the
Lippmann-Schwinger equation may give

\I/i(l’) _ \/LQ_T(eikm + (QH_ZL> (g:) /_Oo dyV(y)eﬂk\x_yl\Pi(y}

form which the solutions that satisfy the boundary condition I we discussed in the

prior section can be clarilfied to be U (z). For this ¥t (z) where x << —a, we
can write
1 . .
/s ) ~~ _(ezkx+elkm k', )
@~ o= i)
2m\ —iv2m [
h 2k

While in a << x, we can write

dyV (y)e™ Ut (y)

— 00

L (e““(l (k. oo))

ki oo) = 2m\ —iv2mr [
T\ ) 2k

which giving the reflection coefficient (R) and the transmission coefficient (7)
to be

dyV (y)e ™0t (y)

—00

R=f(k), T=1+f(k, o0)

. To obtain more specific form of the equation, we need a specific form of U*. The
approximation of taking U*(z) ~ ®(x) in the right term of the equation is called
the Born approximation.

E+ ZO) may give
2m\ —i
+ K
GO (l’) = (2> 2761 ||

_ (2 2L e
- h? ) 2k

2INote that this solution remains indefinite as we have the linear combination of the homo-
geneous solution e****  This indefinition rests on how to take the formal solution as we are
discussing in the next section.
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The Scattering Problems in One-dimentional Delta-function Potential
via Integral Equation

Here we discuss how to solve the scattering problem in the delta-function po-
tential V(z) = gd(x) in detail. The scattering integral equation is written

wo) = et () G [T awmer e
\IJ( ) _ 1 ik .~ 1 —zquj(o) <0 1 ikx .~ 1 zkx\p(o) >0
r) = \/ﬁe ngke , T \/ﬁe ngke , T

Let us have x = 0 to give

1 1
UV0) = ———
V2r 1+ gy
thus o
g
. ) . Y
7’:1_i§ - = 7 R:_L@
1+4+1g— 1+ — 14+ =
T o ok

1.3 Levinson’s Theorem in One Dimension

Now we discuss the Levinson’ s theorem, which relates to connecting the number
of bound sates to the scattering states. We consider the solutions and the new
boundary conditions for the Schroedinger equation

h2 d2f:|:oo h2k‘2
—% A2 +V(x>f:too - Ef:l:oo -

f:l:oo

2m
o fo(k,x) —e* z — oo

o foo(k,z)—e ™ 2 — —oc0

The integral equations for the solutions above can be obtained via taking the
Green’s function

B . 2m,, sin k(z — 2’)
G =G = —hZH(x—x) ’
2 i —a
Gom Gy = gy SnkE =)
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22 23

22LLet us consider another way to obtain the Green ' s function. Generally, we consider the
Green ' s function in the second-order differential equation for y = y(z)

G"(z,2") + p(z)G'(z,2") + q(x)G(z,2") = §(x — 2), * is the z differentials

Suppose we already obtained the independent homogeneous solutions y4(x), and y_(x) so we
write
i +p(@)y; +q(@)y =0, i=+,—

Based on the variation of parameter we have
G = C+y+ + C_ Y

whichleads to
G'=(Clys +CLy-) + (Chyly + C-yl)

Now requires
(Chys +CLy_) =0

which yields
G"=(Cry, +C_y ) = (Chyy + C .y )+ (Cyyf + C_y")

SO we can write

G"+pG +qG = CL(] +pyy +ayr) +C-(v! +py_ +qy-)
+Cy +CLy. =Cy +C Ly =6(x—2a')

which giving
Y+ Y- ch _ 0
vyl cr 6(z —2')
1
w

( f’;j; e > ( §(x(1x’) ) = % ( Zi?sfixffﬁ) )

G(z,a) = /b ) dt_y+l/(§()g W st — ) + /b j =\l @Vv)é;(t) 5(t — o)

hence,

Note that by, and b_ may impose differnt boundary conditions for the integral constants.
23We consider some examples for such cases.

Whereb_ =by =2’ —0

Gale,a') = O — o) Y OW=) T - (@)y+ (@)

Where b_ =b, =2’ +0
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For these Green ’ s function written above, we add each formal solution to de-

termine the integral equations

foo(kax) = et —

foolhw) = et

2m1 (> . / / /
FE/gc da’ sink(x — 2")V(2') foo (K, 2")
2m1 [* ., . / / /
T 7ood$ sink(z — 2" )V(2') foo(k, 2')

It is clear that each solution satisfies the boundary conditions.

We now regard the functions fi.(k,z) as functions of the complex number &

to investigate the analyticity.

the complex number k& where

First, given the integral equations we should have

Imk >0

which clearly indicates that there are the convergence conditions of the integrals

for each term by successive approximation of fi..(k,z). In fact, the series itself is

said to converge while fi..(k,x) beocmes the regular function of & on the complex

plane k£ and on the upper-half plane.

We make evaluations for the

feoo(—k,x) where z — oo,

Wronslians in fo(k,2) , fo(—k,2) , f-co(k,z) and

W(f-oc(k, ), foc(=k,x)) = 2ik
Whereb_ = o0, by = —o0
Gz,z') = /OO dtWé(t—x’H[T dtby‘&f)(?)*(t)a(t—x’)
_ Y+ (E<)y-(&>)
W (')
& = max(z, '), &< =min(x, )
specially
h? d?
(E — Ho)Go %(k2 + @)G{)’ =0(x — ')

B h%k?

2m

as Y+ (v) = e W(yy,y_) = det (

h2

e n _ R
QmGQ(l‘,.’II) O(x — )

hQ

—Gi(z,2') = —0(z' — 1)

2m

ikx —ikx
e’ e .
. ik . —ik = —2Z]€
ike —ike "

sink(z — 2’)
k
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Thus, the solutions are independent where k = 0. This allows us to expand the

equations #*

froo(kyz) = cn(k)foolk, ) + c12(k) foo (=K, )
foolks2) = ca(k)foo(—k, ) + caa(k) f-oo(k, )

We now consider x — +oo for tha latter equation above to write in the form

1™ 4 Cp0e™ M (1 — —00), e*T (1 — 00)

These are the solutions that satisfy the boundary conditions for the scattering thus,
the relation between the transmission coeflicient and the reflection coefficient are

expressed as

c
R = -2
Co1
1
T = — = —: Referthetransfermatriz
Co1 11

Here we consider the Wronskians for each form of fr.(k,z) and fi.(£k,z) to

derive
(k) =~ W (b, ), foo(—h:)
k) = S W b 2), Sl )
enlh) = =5 W (el ), foacll2)
enlk) = Wk ), ook, 2)

24h The successive substitution may give

fooo(k) = cr1(k)(car(k)fooo(—k) + c2a(k) f-oo(F)) + c12(k) (c21(—k) foo (k) + coo(—F) f-oo(—F))
= (cr1(k)eaa(k) + cr2(k)car(—k)) f-oo (k) + (c11(k)c21 (k) + cr2(k)caz(—k)) f-oo(—k)

Where k # 0
Cll(k)CQQ(k‘) + C12(k‘)(}21(—]€) =1, 611(]{})(}21(]€) + 012(]{1)622(—]6) =0
Likewise

foo(k) = car(k)(cr1(=F) foo(=k) + c12(=k) foo (K)) + c22(K) (c11(k) foo (k) + c12(k) foo (=)
(cr2(=F)ean (k) + cr1(k)eaz(k)) foo (K) + (c11(=k)ca1 (k) + cra(k)eaa (k) foo (=)

thus,

612(7k)621(k) + Cll(k)CQQ(k) = ]., Cll(fk)621(k) + Clg(k)CQQ(k‘) =0
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Especially the forms of ¢9;(k), the equations are expressed in regular fi.(k,x)
on the upper-half of the complex k plane, and the zero-point kg on the upper-half
of the plane gives the polar of 77 i.e., giving the bound states, because c9; (k) is
also a regular function.

We may also show some other facts for co; (k).

e Where |k| — 00 ,ca1(k) =1+ O(3)

In |k| — oo, where the incident energu is large enough, the effects by the
potentials can be ignored, so that we understand from the transmission co-
efficient to take 7 — 1 or from the analyticity property.

e The zero-point co1(k) of kp exists on the imaginary axis, not on th real axis.
25

251t is clear from the discussion of the transfer matrix.
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e All the zero-points kp for coi(k) are in the first-order. Thus, ¢9(kg) # 0. 26

We can integrate d% log c91 (k) along the integral path C' where the path is ormed
by the real axis and the half circle on the upper-half plane. This integration may
completely detached (% = O(75), |k| — oo away from the half-circle. From the

26 At the wave number kp, in which the bound states are allowed to exist, fi(kp, ) become
linearly dependent to each other.

ca1(kp) = 0, cu(kp)eaa(kp) =1, cui(kp) #0, ca2(kp) #0
JoolkB,z) = c22(kB)f-o(kB,x)
W(foo(kBax)7f—oo(kB7x)) 0

k differentiation is written by °,
1
2ikp

— 1 <1W(foo<k3,x)7foo(k3,x)) + CQQW(foo(kBax))fOO(kB7x)))

B 2ikB C22

éo1(kp) =

(W(f'oo(kB, ). Foso(ks)) £ W (Foo(k, 2), fso () a:»)

To evauate this we diffentiate the Schroedinger equation and equation above with respect to k.
Which gives,

2m
2 _
"+ Ef = ﬁvf
ok f + k2 %Vf

With the potential terms being cancelled in the equation, we can rewrite

FE ok = W) -2k =0

This above equation is used for fo to give Imk > 0 lim, o foo(k, ) = 0 thus

Wi fo) = —2k/oodx’[foo(k7m’)]2

x

the same as Imk > 0000 lim,—, o fooo(k,x) =0

W f o) = 2k[ Ao’ [f oo (B, 2]

hence,

. _ 1 B 1 ~ 2! 2N + ¢ — : x’ a')]?

entin) = g (= gy e [0 Ul b entim(-2in) [ 211t )
= —i/_ da’[foo(kp, ") f-oo (K, 27)]

_ —iCQQ(kB)/jO Q' [f oo (k)2 = —i%}g) /jo da [ oo (i, 7))

C22

Thus, i¢a1(kp)caz(kp) is not zero for foo (kp, ).
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argument principle, the number of zero-point N for cy; on the upper-half plane
can be written

1 N
N = 2m/ — log co1 (k) = 2—m_10g021(k+10) o
= 5 (Arg c21(—00 +i0) — Arg coy (00 + ZO))
1
T
1
= —5- (Arg T (—o00 +1i0) — Arg 7T (o0 + zO))
T

Note that the changes in argument are measured on the straight line in which the
argument deviates infinitesimally on the real axis towards the upper-half plane.

k+1id

>
»
>

The N represents the number of bound states. It is defined by the transmission
coefficient 7 (more precisely, by what 7 is analytic continued to the complex k
plane), which provides the scattering information. This is called the Levinson’s
theorem.
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2 The Scattering Theory in Three Dimention

In this section, we discuss the scattering theory in three-dimension by following
the methods especially using the integral equation that are introduced in our earlier
discussions on one-dimensional scattering theory. More specifically, we consider a
spherically-symmetric scatterer at periphery of origin, in which the plane waves
incident in z-axis direction.

N @ NIV z
\WARARY /VV

2.1 The Scattering Amplitude and the Differntial Cross
Sections

In such case shown in the figure bove, the boundary condition for the stationary
state be | £0)
5 T—00 ikz ikr
U(r) — [2m)i /2 (e +_r e )

We can rewrite the above by using mv = hk$, and Vo = (2r)3 27 28

2"We can understand from [*_dx [T dy [T dz |¥|? = 1 that U(F) = Wei’;f has a

particle for every volume vy = (27)3.

28@Given
S oi 100, 1 of,
VIi= 87‘r+7‘899+rsin98¢¢
* _ 1 f*(a) —ikr [ _ f(o) ikr f(e) kT 1. laf(e)l ikr
Vs = (2m)3 r c P2 © Tt r © ZkTJrr 0 r° o
I T Vi 1
= Gnp zkr+(9(r2)
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Uy, = (2;)3/26”“

jo = 2—7?”) (\IJ;;WJO . (ﬁ\pg)\po) _ (2;3%2 _ %z

Vo= G

Jo = (2—fm> (xp:ws - (W;)\ps> _ (271T)3 ‘f@'Q%f . O(%ﬁ N %\f@m

The boundary condition at infinite distance away is the superposition of the plane
waves and the spherical waves.

Let f(0) be the scattering amplitude. We can write the differntial scattering
cross section o (f) given the ratio between the incidene flux per unit area &5 = J.-2
snf the scattering flux ®, = j, - dS per surface element dS = r2dQ (d = dQF)

O, = 0(0)d) - Py
This gives
a(0) = f(0))"

Now that we call o7 = [ dQo(f) a total scattering cross section.
Now we can express the equation of continuity for the waveunction W(7, ¢), which
is the solution for the time-dependent Schroedinger equation,

ap(Fut) _i_ﬁ—’ -

2ma

Y Jj(mt) = 0
p(7, ) W(7, 1)
G N <\I!*(F, HVU(F 1) — h.c.)

2 This gives the wavefunction for the stationary states, the main forcus of our
discussion

Vi@t = 0

?We use Schroedinger equation in the forms of time resolution &, N = 9, [,, dr|¥(7)|? for the
number of particles IV in an arbitrary volume V' and write

o = [ar( @+ v i) = [ e (- meeue v Ee o)

= - (z;z) /V di( = (V20" (7)) W(7) + O (F) V20 (7)
~ (o) [ (- @ @ee + w@Fee) = - [ asie)

J()

(5 ) |19 - G )

which shows that jis the current operator so, given that the volume V is the arbitrary volume,
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Integrate the wquation above over a region bounded by a largy sphere S having
a radius R with its center located origin. Applying the Gauss theorem to write *°

the equation of continuity
QYA +V-j=0

is obeyed. We can also obtain the above equation directly without using the arbitral character-
istics of the volume.

30We consider a more unified expression for the behavior of spherical waves at infinite distant
away via analytic continuation given the wavefunction in bound states. So, we can write

W) s (e + L)

kT =k 4140 = k + ie

We further suppose Re >> 1; i.e., we have the initial system of infinite large then, take the limit
of ¢ — 0 at the end. Thus,

(2 1)3/2 (eierOSO + {ez‘lﬁr)
VQ\I/*V\I/ :(e—lkTCOSQ f* etk r)(ikeikrcosé _’_Z’k{eik*r)?; —|—(’)(1/R2)
r=R
= <zk cos 6 + zk cos e filkcos0—=k™) ik%e‘m(k ©os G_H)) 7
= <zk cos O + zk cos fetklilcosO—1)—cl | ik%e*i’m(cos 01)6R> 7
VO\I/*V\I/ - <22k cosf + zk—*(l + cos §)eiFFlcosO—1)—ck | Zk%(l + cos 9)6ikR(COS€1)6R> 7

In the following equations, the higher-prder terms are ignored (1/R?) ,and rewritten
= / dS - oo
s

h oY
() fas(3 2% e
2mi ) Jg or

- P .
— dQ I R? - v [/
/ o= 2Jo) + / [ Vo R

Sz
W) /dQ e (21)3 (e_ikz(ik)f(e)em P+
|
)

E)
(

) e~ R (ik)ei** 5 _ . C)

<2 R
_v 2
= [ aniree)

ink
+<2mz

Q
— /dQ R2 (21)3 <eikR(1cos 0)% + f*Rgg) efikR(lfcos 0) cos b
™

. (6 ) ;
+ efsz(lfcos G)fTE) 4 %eZkR(lf‘:OSG) cos 9)

v/dQ|f(9)|2+hk( 1)3R/dQ (1+C0s0)(f(9)6ikR(lfcost9)+f*(9)efikR(17cos9))

/ aAO) + *ﬁm 2mi((0) — £7(0)) + const. R
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31 32

31

T 1
/ dQ et i—cos0) r(gy = 27 £(0) / df sin eFF=cos0) £(9) — 27 £(0) / dt e 0= kR - 0o
0 —1

1

— 2 f(0) -

— 27Tf(0) 1 eik}R(l—t) R
—1

1 — o—2ikR
kR (I =)

1 .
= 27‘(’@1']0(0) + const.e~2ikE

/dQ e ikR(1=cost) px(gy = —271’%27“(0) + const.e?* R

320ur discussion in general can be

S

h Lo

G/a7 .7 IR 1
[qu(zyO—zyo)+/dQ{R2~;;()'fgp)' }Jro (=)

<2;Lu> / dQ R? (Qi)3 (eikz(ik)fg)eikl% Fyd *éa) e R (ik)e™* 2 — h.c.)

0

v

— o [anuseo)

ihk 2 1 ik R(1—cos 0) f(a) f*(e) —ikR(1—cos )
+ <2mi>/dQR @) (e I + 7 ¢ cosf

4 ikR(1—cos0) fr0) | f9) ikR(1—cos0) (g 9)

R " R°
— o [ARUSOP + 5 R [ 01+ cos0)(FE)HTI ) . g g HR-ees0)
V() 2m (27T)3

v hk 1
= — () 2L

1
2. 91—
@rp 2 2R

(f(0) — £*(0)) + const.e=*

We can take average of the above at infinitesimal region of R, which we can leave out the last
term. Thus,

0 = 3 [P + 75 () o)
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- h ov
e = | — || ¥*— — h.c.
Joo (Qmi)( or hc)

) /Sdg(éfo—ffo)+/dQ[R2'£|f§§2)|2] 1O (3)

Vo
h A D2 1 —ikz(; f(e) kR o f*(e) —ikR ikz 2
+ (%) /dQR W(e (zk’)Te 7+ 7 ¢ (1k)e™ z — h.c.
We average the above by the infinitesimal area on R to obtain
k s Kk
m f0) = o [d0lfO)F = or

Such relation between the forward scattering amplitude and the total cross section

of the scatterer is called the optical theorem.

2.2 Lippmann-Schwinger Equation and the scattering Am-
plitude

We now consider determining the scattering amplitude via the integral equation
derived from the Lippmann-Schwinger equation, which we discussed in our previ-
ous section. To begin with, we difine the Green’s function Go(7) = G& (7, E) of

the three-dimentional free-particle system as the solution of the equation
(B — Ho(r)Go(T) = 4(r)
h2v2

2m

Ho(x) =

Specific forms of the equation above can be obtained by using the Fourier analysis

in the same way we did to obtain the specific equation form in our previous section.
33

" 2m\ 1 eFEr _ VomE | - .
Go(fj: — ﬁ E ” s KﬁKiZO:Ti'LO, E->Eilo,E>(
Go(E) =

) 1 e~ K" -
GI(F K — ix) = —< m) S ) = Y2iE E<0

2 )an

330n the one hand where E > 0, we may write

K3 1 o i
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In out present case, we consider the scattering states where £ > 0, and having

—\ — 1

the plane wave of ®(7) e e™** traveling in z-axis direction as homogeneous

solution to express the Lippmann-Schwinger integral equation

1

S VA
Eiz’O—HOV

U* =0+
In more specifin form we can write
1 ] 2m. 1 e:l:ik|r—r’|
\Iji :—zkz_ __/d—’/—v—v\lli—-l
(" = G <h2)47r M V)

Here we suppose there is the scatterer of a finite size (V(7) =~ 0,7 >> a). We
consider the wavefunction at a point, a sufficient distance away from the scatterer.

The equation we initially defined and 8(7) = iy [ d*ke’™ 7 yields GF (k) = (22) 52

2my__ 1 1 _
(2m)372 K2—k2
1 2m 1 o
+ _ 3 ik-T
Go () = 3 ( n2 ) /d " et

This integral is evaluated in the polar coordinated (z-axis in 7 direction) such that

. 1 7 e 1 4 .
ddk ik _ / dka ) / dfsin b ikr cos 6
/ 7}(3: — k2€ ; 7}(3: — k‘2( ) ; sin fe

so, we cn write

w1l /
) k ikr —ikr)— 1
T OodkKi—kQ (efkr—e uw)_%;gfmdk 2*"'_ ik

Tl [ 1 1 ik > +iK
_ - —etkry =" _(_9 iKr
ir/mdk<k+Kii0+k—K$iO)( )= (=2e

Thus,

2m\ 1 e=Kr
4 r

65 =~

On the other where F < 0, same way we handled the one-dimensional systems, we write

2m|E
K—in— i Y2EL g

h )

In this case, we may directly evaluate the integral, in which we can apply K — K+i0 (F — E+i0)
. Thus,

Go(7) = — (2;;) Le”

4T r
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Having r >> a ' =~ a, we can write 3*

which giving

- () frc v o)

Here we note that k, = kf is the k-vector in the direction of the scattering. This

in fact shows that U*(7) is the solution, which satisfies the boundary condition.
The scattering amplitude can be given from

£(0;) = _(i_?) (2)3/2 /df,e_iﬁr-ﬁv(fr)qﬁ(?ﬂ)

47

Note that the incident wave is expressed as

dp () = (2753/2 eik= T (k. = k2) , we can write 3
1) = —(32) Eh e o)
- (5 B g e
T = v+vmv

2.3 Born Approximation

The approximation method that has solution Phi in the right side of U* as the
lowest order of the successive approximation steps within the integral equation to
give a simplest form of approximation

1 . 1 o
\I]i ~ 7 elkz — 7 ezkz-r
(2m) (2m)
34
g /2 g 2
=Pl = (% 2 ) = (-2 ) = (1 -2 +@<(a> )12

35We used Ut = (1 + GTV)®
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Is called the (first) Born approximation. The scattering amplitude in this approx-
imation can be written

2m ]_ — 7 o e
/) = —(ﬁ)g/dre =Ty (1)
o= k2
Now let us have
K=K —Fk

Calculation is made with the polar coordinates (7,8, ) in K direction to give 36

fe(6y) = ( )M / do / dfsin 0 / dFF2e T30y (7)
cos 0=
— 2m 1/df_2 1 zKrcosé) '
h2 ’LK’I"

V(7)
_ _(QB_TD% / drr sin(Kr)V (r)

cosf=—1
The differntial cross section can be written
B 2m 2
T\

A Case for Born Approximation (Rutherford Scattering)

1 2

1 /0 eV () sin(Kr)

Consider scattering by Yukawa potential

Ae Hr

r

AN

K

Vi(r) =

36

0
K =|K|=+/2k?>(1 — cosf) = stini

dK = kcosf/2d0
KdK = k:2sm9d9

sinfdf = ﬁKdK
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In which we can write 37
2m A

R K2 + 2

We can rewrite the above equation with y — 0, A = —Ze? to have

fB(9> =

m Ze?

(hk)?sin® 0/2

—0
fB“—>2

This indeed is equivalent to the classical formula of the Rutherford scattering.

2.4 Partial Wave Decomposition

In the following sections we discuss the scattering problems with an approach

by the partial wave decomposition. 3

2.4.1 The Schroedinger Equation in Spherical Symmetric Field

The Schroedinger equation is expressed in the forms

HY(F) = EY(7)
%+V(T)

h
= -V

]

=
Il

1

Given that we consider to obtain the its eigenfunction in the following forms

w(r) = R(r) 6(0) o(¢)

xr = rsinflcos¢, y=rsinfsing, z =rcosf

Let the angular momentum be

—

EEFXp

L = €jxipr, T1=2, T2=y, Tz=2

37

/ drsin KrrV(r) = A/ dre #"sin Kr = — / dr (e(““K)T - e(”’K)T>
0 0 0

21

-1 1 1 AK
= A— — — . =
2i \—u+1K —pu—1K K2+ p?

38Review the mathematical handbooks for the basic knowledge of the spherical function.
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giving 3
[Li, LJ] = ZhEZ]kLk

This exchange relationship generally makes clear of the fact (from the algebraic
relation only) that the simultaneous eigenstates for L2 and L, can be obtained as

LY = R +1)Yom
LGm = hm}/fm
m o= —l 41, (—10

Furthermore, we may write 4

v oagligld g L O

T T or P00 T rsind 0g
Lo o
& = 5 = (sin @ cos ¢, sin 0 sin ¢, cos @),

r

Lo . |
G = 55— (cos 8 cos ¢, cos O sin ¢, —sin ),
€y = g—; = (—sin ¢, cos ¢, 0),
T = ér

which gives a clear sense that L does not depend on r but depends on 6, and ¢ in

9z, pj] = xip; — pjx; = thdy;

[Li, Lj] = €iav€jcd[TaDbs TePd] = €iav€jcd(TalPo, Tepa] + [Tas TepalPy) = €iav€jed(TalPo, Telpa + TelTa, Palpy)
€iab€jcd(—thOpeTapd + thbaacPy) = —ih€iab€jpaTaDd + Ph€iab€jcaTeDp
= ih(0ij0ad — 6iddaj)Tapa — 1h(0ij0pe — dicObj)TcPp
= ih(0ijTaPa — TjPi — OijTepy + Tipj) = ih(xip; — xjpi) = iheijn Ly
(= iheijrerapTapy = ih(xip; — 5p;))

40Tt is cleat that
7= x€; + Y&y, + z€
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the function. We can write respsctively, !

L, = —z'h( — Sinqb% — cot # cos ¢§;§>
L, = —ih(cosgb%—cot@sinqﬁ%)
L= ihg
2
[? = _h2{sii9%<sme%)+@%}

We use these specific in the above to determine the eigenvalue h2((¢ + 1) for L2,
In the first step, let us have Y, (0, ¢) = ©(0)®(¢) and write out the equations
according to the eigenfunction to have

L0 (ol )+ L Yoo — —ue+nowe)
snfoo\ """ 00 ) " sin?6 02 -
1 ., 1 d . dO 1 d&?d
@sm G{Smgﬁ(snﬂ@)—kaé—kl)@} = _w?&

11

L= FXp= fihég% +ih§gsi%% = —ih(— sin ¢, cos gf),())% +ih(cot 0 cos ¢, cot O sin ¢, 71)(,%
L2 =—Nh?(singdy + cot O cos ¢ dy) (sing g + cot O cospdy), (cot ) = — .129

sin

=— hg(sin2¢3g - _Lzasingbcosqﬁagﬁ+cotHSin¢cos¢898¢
sin

+ cot 6 cos? ¢ Dy + cot 6 cos ¢sing 0y Op
— cot? fsin ¢ cos ¢ Dy + cot? O cos? ¢ 635)
Li =— h2(cos¢89 — cot@sin¢8¢)(cosgz58g — c0t051n¢0¢)

=—h*(cos® ¢ 0; + ﬁsingbcosgb@) — cot fsin ¢ cos ¢ g Dy
+ cot #sin? ¢ Dy — cot sin ¢ cos ¢ Dy Oy
+ cot® fsin ¢ cos ¢ Oy + cot”® fsin® ¢ 03
L+ L = — h*( 95 + cot 0 g + cot® 0 93)
L =—1n"08;

L2:—h2(8g+cot989+ 8)¢2)

1 . 1
= — p? <Sm€ Op(sin b 9p) + — 7y 8)(;52)

sin? 0

S
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We separate the equations above to give

d*®

a e

sin @ df do in%6

The first equations above to give

2
]'i(m¢@>+w@+m—7”}@:o
S

O(p) =e™, m=0,41,42, 43 -

The condition for the m is being satisfied given the monodromy of the function.
If we require the finite property in the whole region for 6 in the function of ©, we
may use the associated Legendre differntial equation to write

O(0) x P™(O), =012, m=—L0+1,--(

42 With all the iformation we obtained from above, we now determine the normal-

ization constant as in the following form

mtlm|  [20 41 (0 — ' im im
nm<e7¢>:<—1>2'\/ R cos e

Thus, we can write the orthonormality,

<}/€/m’ D/Zm> = /dQY;m/ (67 (b)}/fm(e’ (b) = 5575/577"”/

the effects of ladder operator as,

LYo = B/(EFm)(l£m+1)Yome

and the complex conjugation as,

nin(a ¢) :<_)mY€—m(07 ¢)

427373 — . d _ ded _ _ ,p94 . 1 d(4inpd®) —
With z = cosf, we know 75 = 5= = —sinf - thus, we have sinOdG(blnada) =

4 (sin®092) = 4L ((1 — 22)492) From that we obtain

{a —x2)£} + (et +1) — %;)9 =0

(associated Legendre differntial equation)
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43

“3Here we demonstrate step-by-step of deriving the spherical harmonics Y, (6,¢) =

Oum (0)P,,(¢) via algebraic functions alone. First, we have L,Yy,, = mhYy, , which gives.

— 1 oim¢ i
®,, = NoT We may also write

Ly =L, +iL, = he'?(0p + icot 00,)

L_ =L, —iL, = he ' (~0y +icot 0,)
So, from LYy = 0, we can write

0}y — Lcot 004 =0, — O (#) = Cysin 0
Normalization may give

i /2 [(¢ 4 1)I(1/2)
1=|C, 2/ df sinfsin? 6 = 2|C, 2/ do sin®*t1 9 =C?B(l+1,1) = |C))P———L2
|Cel A i |Ce| ; 1 B( ) =1C {0+ 3/2)

0r(1/2)

=ICel (€+1/2)(¢—1/2)(¢ - 3/2) -~ (1/2)T(1/2)

2 012¢ 9 012¢ . (2€+ 1)2"[! , 2(&2@)2
= e T e Y e
e 204D
=N T
Thus, we write
Yim—1 = 1 e~ + i cot §0,)Y,
" V(+m)(l—m+1) 0 ®) ¥ em
1
= \/(f (= m D) (—=)(0g + mcot )0 ®r—1(0d) = Op—1Pp—1(0)
1
Opm—1=— (09 + mcot 0)Opp,

VI+m)(l—m+1)

Here we note that

sin!=™ 0 d (sin™ #O) =sin' ™™ 9(

deos®\ ' d
dcosf

df
=— (Omcot b + 9yO)

do

—(sin™ 0O) = —sin~ " H(Om sin™ ! f cos 0 + sin™ 00 O)
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which giving,

1 d
Opm_1 = inl="m g in™ 00,
tm—1 \/(E—i—m)(é—m—i—l)sm dcosﬁ(sm om)
1 d
Opm—2 = in?=™f———(sin™ "1 60y, _
2 e m Dl —mt2) dJoosd 10 em=1)
1 . ( >2 |
= s m sin™ 0O,
Jlrmltm D (-miDl-—m+2) dcosg ) (" 0Oum)
¢ — k)= k
@mek:\/( +m = Wi m)! sin®~ m(‘)( ) (sin™ 6@ y,,)
V(+m)(C—m+ k) dcos 0

Letusnowhavem — £,k — { — mso, werewriteinthe form

VTR
RO —m)! a(dcow

s (2041 (0+m)! 1 1 d \""
Y} - 20
— (£ —m)! £12¢ sin™ 6 (dcos 9) (sin™9)

—m
> (Sine 00y)

W eespeciallyconsiderm = Otoobtai

s [20+1 1 d \' . : [2041 1 d
__ 46 20 _ L6 _\¢ 29 1\¢
Ot =e 2 02! (d(cos@)) (sin™6) = (=) 2 02 d(cos@)(COS 6-1)
. 2 1
= () g; Py (cos 6)

so, wepute® = (=)*

20+1

Oy = 2+ Py(cosb)
2+1(0+m) 1 1 d \'"m .
—(_\¢ = 20

Oem =(-) 2 (L—m) 012¢sin™ 0 (dcos@) (sin™6)
m <0,

20 + 1(l+m) 1 d \"
Oem = (£ —m)!sin™ 6 (dcos9> Pe(cost)

2+ 1= |mD! ol d ™
> (0T m)) sin'™ 6 Py(cos 6)

On the other hand, we have

1 )

Yime1 = €' (g + i cot 004)Yorm

T - m)(ltm+ 1) (% o)Ye
1

= g —mcot 0)Op, Py,
\/(e—m)(e+m+1)( ’ JOemBema1

1

Otm+1 (09 — mcot 0)Oy,
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While we can write using the algebraic functions alone, 44

Thus,
s 1y, 1 L?
om  2mlT " 2m 12
-1
sin™ ! Hﬁzse(sin_m 00) =sin™*1 9 (d(;)esﬂ) C%(sin_m 00) = —sin™ §(—Omsin~™ ! f cos O + sin~ " 09, 0)
=(Omcot § — JyO)
which giving,
1 d
Ormi1 =(— sin™ ! g—— (sin =™ 00Oy,
e =) T m deosd' tm)
1 d
Otm+2 =(— sin”*% 6 sin™""" 00,
emt2 =( )\/(Z—m—l)(€+m+2) dcos@( eme1)
2 1 s om+42 d 2 o —m
=(-) sin™ =0 ——— | (sin™™ 00y,)
VIE=—m)l—m—1)-((+m+1)(l+m+2) dcost

k\/(g_m—k)!(€+m)!sinm+k _v ksin_m
V= m)+m+ k) 0<dcose) ( o

Weputm — 0,k — m(m > 0)

_ m (f—m)'ﬁ' m d "
Oum =(—) 7£!(£+m)!sm 0 Jcosd Oy

m [20+1(—m)l | d \"
=) T(f—f—m)!sm 9<dcos€) Py(cost)

d
dcost

oyl (2041 (= |m])!
Oum =(-1) \/2(f+|m|)!P£ (cos)

Withm < 0, wecanwrite®g_,, = (=)™ O,

Otmtr =(—)

|m|
Now, fromPg‘ml(cos 0) =sin/™ 9( ) Py(cos §)weobtain,

4 Glven that we have 7'+ p' = —iha;0; = —ihr%0; = —ihr 220; = —ihr0, ,

= €ijk€ilm T PRTIPm = (0j10km — 0jmOkl)T;PkT1Pm
Tipr®ipk — Tipitip; = 5 (xipr — thdjn)pr — 5 (xipr — ihon)p;
r2p? — il — x(pjar + ihdyy)py + 3ihi - p = r?p® — (7 p): + b

_ 22 2,2
= rrp —rp.

2

1({,, N h 2
Pl = T2{(r~ﬁ)2zhr~p}ﬂ{rarrarrar}h2(5f+r3r)
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Here we suppose V(7) = R(r)Y;n(0, ¢), the Schroedinger equation may give

(C(£420) 4 10 b e

rdr r
h2k?2 h2
= F — =V
2m ’ 2mU<r) (r)

Especially in the case where the potential employs the constant V' = V{), we define
r=kr, E—Vy= %, and write

(8 22) 12

This equation is caled the spherical Bessel equation, and its second-order of the
differntial equation has two independent solutions. %° General solutions of the
Schroedinger equaiton can be obtained by using those two independent solutions,
and written p2p2
W) =Y conBe(r)Yem(0,9), E =

Im

2m

Here we summarize the requirements for the radial of the wavefunction R,.

e Behavior at origin periphery

Where V (r) has no uniqueness at origin periphery 6
Re(kr) =3 (kr)*

e Conservation

4SEither the pairs of the spherical Bessel function j,(z) and the spherical Neumann function

ng(x), or the Hankel function of the first kind hél) () and the Hankel function of the second kind
h()¢(x), can be used as the independent solutions.

Fu(z) = Agjo(x) + Bing(z) = CobV () + Deh$? ()

and more specifically given
¢, . ‘
1d sinx\ z—o0 T
. _ o YA - x
Jelw) = (=) <xdm> ( z ) 20+ 1)

o = () () =

46Let us suppose Ry ~ r™ at the origin periphery, the Schoedinger equation may give {—n(n —
1) —2n+£(€ +1)}r"2 ~ 0. From which, we write

—n?—n+ P Hl=L-n)(l+n+1)=0

This gives r‘,and —~ yat, the probability amplitude is required not to diverge at the origin.
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Especially the case where the potential is the real 47

rRy ri;

Ry (R | "

det

This becomes the conserved quantity; independent of the coordinate systems.
(Consider where r — 0)

2.4.2 Phase Shift

We now consider the potential that is resticted to the finite region. In this case,

the region with no potential possesses the free particles, and the wavefunction can

be written *®

U() = > A Seh{V (kr) + b (kr) } Py(cos 0)
l

4TSuppose we define, R(z) = z"R(x) we can write, R = na" 'R + 2"R', R" = n(n —
12" 2R + 2na" 'R’ + 2" R" which giving

R'+227 'R = n(n—1)2" ?R+2n2" 'R/ +2"R"+2n2" 2 R422" 'R = 2" R"+2(14n)x" 'R +- - -

If we take R(z) = 2 'R(z), there are no first order differntials for the differntial equation of
R so, Wronskians will be invariable when solutions for the differential equation be R, and Rs.
Especially in this case, we consider the Wronskians of R and R* for the real potential, giving

rR rR*
det ( (rR) (rR*) )
This does not depend on the coordinate system

48The point of measurement for the angle of ¢ can be selected at any points, and therefore,
the wavefunction does not depend on ¢ but, depends only on Yy,,—¢.
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Let us first define the amplitude A, of each partial wave as we consider the
asymptotic conditions for the point where infinite distance away. We can write *°

. 1 X (20+1).
U(r) = (27T)3/2Z( 5 )Ze{Sghgl)(kT)+hé2)(k7”)}Pg(COS¢9)
2£+ 1 1 ikr —ikr
— Z 3/2 5 —T{Sgek — (=1)fe }Pg(cose)

49The asymptotic form for a large argument can be written

]/(I) e éSin (I — %), TLg(:C) i —% Ccos (:L’ — %T)

T —ix
h () = (<) b ) ()

X X
giving,

f‘)—>ZAe

We expand the scattering amplitude in terms of the complete set f(0) = >, arPe(cos8), and
further expand the incident wave in terms of the partial wave as following

{S e*r — (=1)‘e """} Py(cos 0)

ekreost =N (20 + 1)ijg (kr) Py(cos 0)
£=0
z—oo 1 . ¢ 1 in ipailm 1 N ix ol —ix
jela) "= Zsin (o = ) = g (€TF — e HE) = (i) — i)

From the above, we can express the expansion of the boundary condition at infinity point in
terms of the Partial wave in the followin form

1 (eikrcose + f(e)eikr>
(2m)3/2 T

1 1 : - ikr -4 —ikr . ikr
= ()72 ik Z {(25 +1)if ((—i) ™ — i'e ™) + 2ikase™ }Pg(COS 0)

o0

1 2ika iy ik
= @ o Z% o {(1+(2e+€1))61k7_(_)46 ' }PZ(COSG)

Compare the two equgaions from above and write

Thus,
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We use Sy to write the scattering amplitude as

f(0) = ij i 20+ 1)(Sy — 1)Py(cos0)
=0

Note that this undefined coefficient Sy is called the scattering matrix, which can
be difined by the boundary condition of a region with a presence of the potential.
We precede the rest of our discussion based on that we assume having defined the
coefficient.

Now we apply the conservation law from our earlier discussion to each partial
wave £ of the radial part, which corresponds to the conservation law for the number
of the particle, and gives 5

1Sel =1

Thus,
Sy = 2% §: real

Rewrite the asymptotic form as °!

U(r) —

1 2+1) , 45 5
)i Z ( o )de % sin(kr — §f + ¢) Py(cos 6)
¢

Compare the above with the asymptotic form for no potential,

1
(27?)3/2

4 I =(20+1), . T
gikrcos® _ E i* sin(kr — =€) Py(cos 6)
3/2
(2m)3/ — kr 2

This makes us aware that there is a shift in the phase, and the shift occurred as
much as dy. d, is called the phase shift.

50

0 — det S[@ikr _ (_I)Ze—ikr S* —ikr _ ( 1) ikr
- ikseeikr +ik(_1)€e—ikv' Z]{)S* —ikr —’Lk’( ) ikr
— det S[@ikr _ (_I)Ee—ikr Sje_”" _ (_1)5 ikr
- 2ik(—1)teikr —2ikS;e~tkr
B S[@ikr _ (_I)Ee—ikr {|Sg|2 _ 1}( )Z ikr B ) 5
= det ( Qik‘(—l)ee_“” O = _22k{|8,€| — 1}
51
ei(26g+kr) . ei(ﬂffkr) _ 6i(6[+%5) (ei(65+kr7%4) . ei(7514+%ffkrr))

e!0et309; sin(kr — gﬁ + 0¢)
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The total scattering cross section satisfies *2

4m 4m . o
or = ?f(O) = zg: ﬁ(%+ 1) sin® o,

This first equation is called the optical theorem. We understand that when ¢, =
(n+ 3)m,n : (integer), the scattering cross section of ¢ becomes the largest, while
the area becomes 0 when §, = nr.

2.4.3 Lograrithmic Differntiation and the Phase Shift

In determining the phase shift more exactly, let us first consider the junction
conditions for the wavefunction within the radius » = a and the wavefunction in

radius part; outside the radius, by each partial wave.
Rj*(a) = R{"(a)
Ri"(a) = R(a)
We can write the wavefunction of the outer part as
Ry (r) = C(Suhy) (kr) + b (kr)
Since the noemalization factor C' is unknown, the condition we can obtain now is

dlog R (r) _ dlog Ry*(r)

dr dr

_ St (ka) + B (ka)
ma S (ka) + b (ka)

Here we have
_ dh(x)

dx

from which we write the effects of the potential for the inner part

h1? (ka)

r=ka

Tk dr

52

or

2 1 2 2 2
/dQ|f(9)\ 74—1{;2;(2“1) 1Sy — 1] 27r(2£+1)

% S0+ 1))5 - 1P

fO—f0) 11
21 21 2ik

_ L 11— g L g L n2
- w2 (20 +1)(=1)(1 = Sy)(1 sé)_%ze:(zunu Syl —4k4;(2€+1)sm S

(204 1)(S¢ + S; — 2)Py(cos9)
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We parametralize the above to write

0P ka) i — b (ka)

Sy =
1 (ka) fir — b (ka)

While we have 53 , o
je(ka) fi" — ji(ka)
nelka) fi* = mj(a)

This indicates that the wavefunction in the outer oart region is defined only by

tan dp, =

the logarithmic differntiation of the boundary of the scattering region, and not by
the details of the potential.

The Low Energy Scattering

In the case for the low energy scattering

ka << 1
This gives ?* %
5£ o (ka)Q 6 — O(ka)Qf-‘rl é Z 1
Thus, 5
do
0) = —
76) =5
53
_ L S5
tand, = iS¢+ 5 +2
54
- 1 20+1 fem — ¢/(ka)
tan e e Y I /()
1 kaf}" -/

_ 2041
R TS VTG Ay Iy e

x (ka)? ¢=0(ka)**t ¢>1

55This does not apply hor the hard sphere.
56

o) = > (204 1)(Se — 1) Py(cos )
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The Hard Sphere Case

Suppose we have a hard sphere of radius » = a we can assume R(a) = 0 when

r = a, and written

in

¢ =
Based on the above, we can write
o(ka
tan 6, — Jje(ka)
ne(ka)
Here in particular, we consider the low energy case where ka << 1, and using the
asymptotic form, which gives 57
a2+
tand, = — (ka)

20+ D)I1(20 — 1)

2.4.4 Jost Function and the Bound States

The equation for the partial wave of the radius part in terms of
R(r) =rR(r)

can be written as we discussed earlier,

((0+1)

r2

R’ — (U(r) + )R = k'R

The first order differential terms are absent in the equation above, and that
the Wronskians for the equation will become the conserved quantity. Now, let us
consider the solutions, which satisfy the three different boundary conditions.

e Solutions in physical term

Require the regularity at the origin to have normalization
R =y (k,r) =t (r—0)

This is the solution, which we have been discussing expect for the normal-

1zation.

57

z—0 Z‘Z

7@ = G

z—0 (20 —1)!
ne(z) — _(le)



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugai51

e Jost solution

R = fi(k,r) — e  (k>0, r— 00)

Here we calculate the Wronskians among these solutions, which giving the con-

served quantity for all. Thus, solution is independent of the coordinate systems

58

W(fe(k,r), fE (k) = —2ik

Now, let us write down

W (fik,r), ¢ (k,r)) = [L(k)

in which we call
JL(k)

the Jost function.

Given the function is the second order, the solution for the physical terms can

be multiplied by the Jost solution. Whose coefficient can be given by the Jost

function in the form,

W) = S L) = LR £ )

Furthermore, we consider the asymptotic form of the solution in the physical

terms, and which bein compared with the definition of the scatterin matrix to give

59
FLR) = () f (k)=o)
Note that
oL
Se=(-1) E

58

eikr
W(FL (), £ (k) = det( ﬁ f{ )Zdet( ikeikr

59

_ il v
wﬁ(k,7 T‘) _ Z-Zz(k> (ff_eikr _ e—ikr)

The definition of the scattering matrix gives

f
S = (-1

Thus,
FL(k) = () £ (k)e 10

efikr
—ike kT ) = det (

(r — o0)

ezkr

2iketkr

e

—ikr

0

) =it
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We consider carrying out the analytic continuation of the wave number & to
reach the comlex number with the real energy, we have [J

k=1ik, KkK>0
Whose physical terms solution can be

Glin,r) = fL(iR)e™ = fL(ir)e
As long as we have
filk =ir) =0

The solution can be normalized in the whole space thus; the solution represents
the bound state. the above equation also indicates that the
scattering mtrix possesses the polar in the bound state energy.

1

S(k =ik) =0

Since the potential is real, the following symmetric properties are being also
obeyed.

o Yk, 1) = (—k,r) =" (k,r)
o fi(k,r) = ft(—k,r) thus giving f(k) = fL(—k)
o [U(k,r) = fik,r) giving f7(k) = f(k)

In our discussion of carrying the analytic continuations of the Jost function and
the phase shift on the complexplanes, we can observe that
the number of the bound states is defined by the phase shift analysis. This we

call, Levinson’s theorem.

The S-wave Scattering in the Three-dimentional Square Well Potential

Now we consider the function that the wavefunction R = rR satisfies, and
consider especially the case for the s-waves ¢ = 0.

R'O0 (K> -U(r)R =0

For the square well potential we suppose

U <
U(g‘) _ o T's>sa
0  otherwise
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and we define
K? =k - U,
Which gives ¢
, 1
o= E(KacotKa - 1)

Thus, %
kacotka — Kacot Ka

ka + Kacot Kacot ka

Under the low energy ka << 1, we can write 2

1 —av/—Uycotay/—Uj
ar/—Up cot ar/—U,

For the hard sphere, we have Uy — oo, which gives

tan (50 =

tandg = ka

tan dg = —ka

This matches with our first result. Generally speaking, we may expand the equa-
tion above about a\/—U, if we have the potential that is very weak. So, we have

60Require the boundary condition
R|r:0 = TR|7‘:0 =0

Thus, we write

R = CsinKr
dlogR  dlog(r'R) 1 KCOSKT
dr N T or sin K'r
- 1dlogR 1
o= — =—(K Ka—-1
0 Fodr | ka( acot Ka—1)
61
) _sinz _ wcosx —sinw coszT , _ wsinx +cosw
jole) = E, () = LTI ng(a) = - 25E () = TEREEEET

From the above, we let x = ka, and write

. ; . = 1 . —al
O

no(z) fi" — nh(x)  —<21(Kgcot Ka — 1) — £sinafeose

sinztKacot Ka —xcosr  kacotka — Kacot Ka

—coszKacot Ka—zsinz  ka+ Kacot Kacot ka

62

Ka ka=0 ay/—Uy
ka 1—av/—Upycotay/—Uy
ar/—Ug cot ar/—Uy

ka—0
—

tan dq
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63
Uoka3

%50

tan dg — —

In other words, the gravity may give oy > 0 while the repulsion may give dy < 0.
In order to discuss the bound states by the method using the integral equation;
that is inndeed the main focus of our present section, recall that we define k, which
isdeﬁnedbyE:gQ—finE<0t0beaskD k — ik, (k> 0):

R~ Sh W (kr) + B (kr) = ShY (ikr) + B (i)

o (s S _ o L@ s o _ r
o (ikr) = jo(ikr) + ing(ikr) — g (ikr) = jo(ikr) — ing(ikr) s
This clearly tells that we need

Sg — OO

for the wavefunctions that are not being normalized. We ensured that the energy

in the bound state indeed gives the polar of the scattering matrix. In our specific

case, we have 64

tan5g—|—i:O

3 Time-dependent Scattering Theory

3.1 Lippmann-Schwinger Equation

In this section we aim to understand the scatering theory in the time-dependent
forms, which contrasting with the scattering in the stationary states from our ealier
discussions. The Schroedinger equation can be written

0
tho [¥(t))s =H[Y(t))s
H=Hy+V

63

1
cotr=——-x---
z 3

Thus,

1 3
tan g — k:ag(a\/—UQ)2 = —UO:I;G

64
etdo cot g + ¢

So=—+ = :
e~ cotdy — i




— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugaibh

To be careful with the formal solution at V' = 0, and we write

[U(t))s =e~ R (L))

This gives, (|¥(¢)) is called the interaction representation) %

(1)) =V (1) (1)
V(1) =eiHot/hy =itfot/h
Given that we write
(1)) =U, (1) W(—00)

Thus, 96

Especially in our case, we let
[W(+00)) =5[¥(—00))

be given, and have S = U, (+00) thus,

Szl—l—%/ dr V(1)Ui(1)
¢ —0o0

65

(1)) = Hoe™ H M (1)) 4 = o i D (1)) = (Ho + V)em 0t ()

(1)) = ot Y e R g 1)

0
iho [ (t) =V ()[¥(t)

V(t) :eiHot/hvefngt/h
66

Uy (—o0) =
In the integral form we have

t

Ug(t) =1+ %[ dr V(r)U(7)
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We now consider a case where the interactoin vanishes adiabatically at ¢t — £oo
to have H — H,. For that we suppose

V(t) —>V(t)e*0‘t|/h =V(t)

Under such condition, we take the eigenstate |®;) = —~—ei®T for H, for the

NEoR
initial state. 57 % Which we write

W (—00)) =|®;)
(@] ®j) =1ij = 0(ki — kj)

We write the transition probability W;; at ¢t : —oo — 400 as
Wi =[(®;]SP;)* = |S;il”
Here we define
T=5-1
which gives
i# g, Wi =Tyl
Ti=s | dr@VinUse)
1 [

== dr BTN (@ |V e HoT/he Ol ()| @;)

Thus, we can write

WOE) = [ dreE e iy, (),

—0o0

This equation yields,

1
Tji == (2, V W7 (E))

67The wavefunction for the interaction representation at V = 0 will be the wavefunction for

the stationary states.
68

(@] @) = /dr e kDT — 15 = 5k — ky)

1
(2m)?
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The integral equation for U, gives % 7

69
|\II(+)(E)> :/ dTei(EfHo)T/hefo|'r|/h‘(I)i>

1 o0 . T
+ %/ dr eZ(EHO)T/heolT/h</ dr’ Ve(T/)U_T_(T/)) |D;)
:/oo dTei(EfHO)q—/hefolrl/h‘(I)ﬁ
+ %/ dr’ / dr el(E_HO)T/he_OlTl/hVE(T')Uj(T’)|<I>i>
— 00 7—/
:/OO dr B H)7/g=0ITl /b .
n i > dr > dr ei(E—HO)T/he—0|T|/he—O\T/|/h€iHo-r’/hVe—iHo-r//hUi(7_/)|q>i>
th J_o -

:/OO dTei(E_HO)T/he_OlTl/h‘¢i>
)

1 > , o . ) , ) ,
E [m deefo\r |/h /;/ dT670|T|/h ez(E'fHo)'r/hezHo‘r /hvele[)T /hUj.(T/)|‘I)z>
:/OO dTei(E—HO)T/he—OIT|/h‘¢i>
_~_%/Oo gy’ o0l 1/ /Oo dre 0|/ GHE=Ho) (=) /by i (B—Ho)T' Ihre (11|,
:/oo dTei(EfHo)-r/hefolTl/h‘(I)”

1 o0 , o0 . ) ,
n %/ dr' e~ 07 |/h /0 dre 0TI/ B o)/ (B HO) [hyre (10)| )
—o0

_ /OO i 1 E—Ho) /00l /B g

]. o0 : o0 !’ . !
+ ﬁ i dTeiO‘TI/h el(E*HO)T/hV/ dTleiolT |/h ez(EfHO)T /hUi(T/)|®’L>
:/OQ dT€i(E_H0)T/h€_O|T|/h‘q)Z‘>
—00

1 [ )
+ EA dTefor/ﬁ ez(E'fHo)'r/hV“Ijg-i-) (E)>

70Recall the definition of the delta function

1 1 1 1 1
5 = —\ — — :—I
(z) 2mi <x+i0 x—iO) =0
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|‘1/(+)(E)> _ /oo . ei(E—Ei)T/h6—0|T\/h|q)i>
1 [ '
+ E O dTe—OT/h ez(E—Ho)T/hv|\II§+)<E)>
1
=27hS(E — E,)|®;)) + —— Vo' (B
"hS(E — B)|%0) + 5V W ()
We can write the eqution above in the form
(U(E)) =2rhé(E — E;)|w") (+)

This enables us to derive the Lippmann-Schwinger equation

1

D7 SRAY], i . —
v >|>+E+m—m

Ve
Note that (x) is ™
e—iHot/hU+ (t)’q)f» :e—iEit/h"Ijl(-i—))
The left-hand side of the equation above represents the wavefunction for the

Schroedinger representation, while we regard |\I/§+)) as the wavefunction for the

stationary states. 2

0 ) > o h 1 h 1
dr e~ 07/ hti(B=Ho)r/h :/ dr i EHi0—Ho)yr/p N L g —ind(E — H
/0 Te , e B _H o i\ TEom )
71
W) = [ dre® iy ()

:/OO dr ei(E*Ei)T/h|\Ij§+)>

e—iHOT/hU+ (7_) |(I)7,> :e—iE‘,:r/h|\I,Z(_+)>

"The relationship between the state vector |¥(¢)) in the interaction representation and the
state vector |¥(¢))s in the Schroedinger representation gives

eI ()| ;) =e T U (1)) = | (1))s = e FH @)

In our last discussion, we let |W;(t)) prossess the same energy E; of |®;). Precisely, we consider
the system in the box with the length of each ede to be L. The interaction is adiabactically
applied slower than the energy resolution occurring the same time. We assume the interaction
to take the limit of L — oo knowing that the interaction may give the energy hift of about 1/L3
from the fact that the potential is much local.



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugaib9

3.2 Optical Theory

We further write ™3

Ty = — 2mid(E; — E;)T j;togive
Tj: =(;| V|

The scattering probability for i« — j per unit of time can be written ™

2w
wjs == 0(Ei — E))| T
If the equation above is approximated by |\IJZ(+)> ~ |®;), which will be called the
Fermi’s golden rule.

We write the Green’s function first;

1
+ -—
Co E 410 — H,
1 1 ~
+ _ _ _ -1 _ 111 _ o+ 1-1
Eri-H Erio-H_v WG V" =[1-VG)G |
=Gi(1-VGH ' =G + GI(VGH + G (VG + - -
=G§ + (GIV)GE + (GEV))GE+--- = (1 - G{V)'Ge
73
(0 (B)) =2mho(E — E;)| 9
1
Tji = (®:| VW (E)))
= — QWi(S(Ej — Ei)TjigZ'U(’,S
Tj; =(@,|V]e")
T4

Wji :471'2 (6(E2 - Ej)>2|Tj7;|2

1 ® BB
4wt 8(E, — BT3P ) [ dr el BBt
2 (oo}
:ié(Ez—EJ”TﬂP/ drl
h —o0
Wj' 21

= = —§(E; — E;)|T;i|?
W f,oodTl 7 ( )T jil
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Here we rewrite the Lippmann-Schwinger equation:
077) =1@3) + Go VITY) = (L+ GV + GV )P +--)|®:) = (L+ G V)| @),
Go, = G§(E:), Gf =G (E)

VW) =V (1 + GHV)|@;) = T(E)|;)
T(E) =V (1+G+(E)V)
WY =(1 4 G (E)T(E))|®;)

Since |\I/£+ ) and |®;) are linked by a unitary transformation, we can write
(7 10) =(@[2)
While we can write
Tje =(®;|V 0 7) = (®;|T:] ;)
which yields to
([ 077) =01} + (@5 |GET ) + (@517 G| @3) + (83|T G 5G, T @)

Thus, ™
—Im Ty =n Y _0(E; — Ey)| Ty
k
75
0= g (BT e (@[T ])
TE-E;j+i0 Y TR R
+ 3 (@, T; G2 B0) (1] G T )
k
e (BT + e (@[T )
E;—E;j+i0" 77" B — B —
1 1 .
DD e 3oy e L A LIL LY
k J
1

1 1 1
T} Th
+Ej—Ei—zoz(E — Ej, +10 Ej—Ek—zO) ki ki

1 ; *
<PE,L — Ej — ZW(S(EZ' — EJ)> (sz - le)

1 1 1
—_— P - P —im(6(E; — Ey) +0(E; — E T7. T
+Ej—Ei—i02k:( Ei—Ey ~ E;j—E in (3(Bi = B) + 8(E ’“))) ki e

1 ) *
<PE,L — Ej — Z’/T(S(Ei — EJ)> (sz - TU)
1 1

_ (PEiiEj — ind(E; —Ej)> Z <PE -P — i (3(B; — Ey) + 0(E, —Ek))>T,’:kai
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This equation in fact is equivalent to STS =1. 7

The optical theorem written below takes the same value as the equation above.
7

Im £(0) :j—; / 4| £ (61

Thus,

. 1 1 ) x
(Ty; —T7;) = z,; (PEi o PEj o ZW(a(Ei ~ k) + 0B, Ek)))Tijki

Let us have ¢ = j, and we obtain
26ImTj; =y  —2im6(E; — By )| Thil?
k
76
(1+THA+T) =1
—(T+T" =TT

2mid(E; — E;) (T — T1) = — (2mi)* > 0(E; — Ey)o(Ey — E;) T3, Th;
k

27T25(EZ — E])(T” — T;kl) :4’/T25(E2 — E]) Z (5(El — Ek)TlekJ
k

wherei = j,weobtain —ImT;; =n Z S(E; — Ep)|Tu)?
k

T
Z&a—mb/%%&i@hﬁnfmk

k
2m 5 1
2m (27)3

F0i) == 55— T4
2m 1 K2 Ax
I e _ 2 2
mf(O) ™ 72 dkk 21%(()‘(/{Z kk)kk2m (27T)3 /ko|f(9k)|

ki
— [ a0
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PartlIl
Relativistic Quantum Mechanics

In order to discuss the spin of an electron, the effect arising from relativity must
be fully considered. In the following series of sections we sill discuss this important
theory of relativity.

4 Special Relativity (Classical Theory)

First, we begin by reviewing the classical relativity theory. We use the following
notation:

o = (2% 2h 2% 2® = (ct,z,y, 2)
We write the metric tensors (will be discussed later) in special relativity

Juv = Guu :diag (1,—1,—1,—1)
9" = ¢ = (gu) = diag (1,-1,~1,-1)
gul/gyp - 5Mp

The indices can be raised and lowered as below:
v
a, = Gua

This yields

a = a, a1 =—a', a= —d?, a3 = —a®

Which gives

a bt = at’ —a-b=agby—a-b
For

s _ 0 (100 00

B ozn \cot’' oz’ Oy’ 0z
we can write

1 02
00" = w75 —A=-0
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4.1 Lorentz Transformation

We call the Lorentz transformation for the real linear transformations (coor-
dinate transformations) that conserve the norm |z|*> = g, a*2”. (We denote the
coordinates of the fixed points in space time, which we measured by another frame
to be z#, 2"

= QF
(Q'u‘/l/)* _ Q'u‘/l/
[P = |z
gL/V/xlulx”/ == gluux'ul'y

g/u/ = g;w: dlag (17_17_17_1)

From which, we can derive the conditions below. & ™ 80

e = g;/ley’)\an
on = gh=Q"PQ, = ()

K

78

vA _SA
Juvd _6M
A
79
/H/ ;/ v
T = OF x
AN '
(Q 1/) = O,
!’ ’ 7’ ’
g'#,l,/x/” = G U A 2t = gaea z gives
’ ’ ’
g)\,{ = g/.l/l/’Qu )\QV K
A
Thus, 6’ = 9" gxs
_ PN/ Q;/ QV'
- g gy’y/ A K
’
= QPO

80For the arbitrary quantities X,Y, we write

XMy, :XHQH”YAQM = XKY)\gN)\ =X, Y"
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The inverse transformation can be written 3!
1K K __ K
Q) = x

The following relation is also valid: 8

0,0 = 4

All together, we can express &3

81

K v v
V9 = gou¥rt =Qpu
x’“gM,Q’”v = QQ,a

I K _ KV _ K
Q" = v =2
82
Yo _ v P K __ vk
Gor’T" = gpex 0,727 Q" =g, x

ganupQu"i = QunQuﬁzguu
Q,,.00"

|
s}
<
=
<
b
B
Il
=
SEY

83Let us put

This gives

(1), 0 (), = 5
0, (7)Y, =0,0," = b

and furthuer we can write
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The Example pf the Lorentz Transformation

e Rotation phi around z— axis

ct” 10 0 0 ct”
x | 0 cos¢p sing 0 x
Yy | 0 —sing cos¢ 0 Yy
Z 0 0 0 1 z

e Special Lorentz transformation with velocity v = ctanh ¢ in direction of z—

axis: 8
ct’ cosh¢p —sinhg 0 0 ct
' | | —sinh¢ cosh¢ 0 0 x
y | 0 0 10 y
2 0 0 0 1 z
Tensor

Under the coordinate transformation x — 2’ , the physical quantity O(P) in
space time p, which follows the transformations described below are called in each
name below. (A point in space time P({z*}) defined by a coordinate system is
{z#}, while it is defined as P({z'"}) by another coordinate system of ’. This gives
the functional relationship z/* = 2/*({z"}).)

!
ox'" , ,
57 =z =Q",
x 9
ox” 5 ,
o' = = Qu
‘1. 9
!
/J/ v 8.’]3,“ a.TV “/
Iv’/xyﬁ’ - axy a 1K = 6 K
X
!
v 837” 8I/V
ot =———— =¥,
N T 8[[‘”/ 8:6/4
84FQr this we let z = 0 and write
' = tcosh¢, a2’ = —ctsinhg
/
x
— = —ctanh¢

t/
This above implies that the system z’ is i uniform motion with the velocity —ctanh ¢ to the
system x
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Scalar

T = T
e Contravariant vector
™ = (Zf TV =T = Q' T"
e Covariant vector
T, = %Ty =0T,

e Contravariant of the 1st order and the 2nd order (examples)

1K1 P1 P2
T/,ul _ ox 83: ox ™ — QM (). PIQ). P2 T/V1
R1R2 axl,l 8];/,‘-@1 ax/fw pP1LP2 V1="K1 K2

p1p2

e The contraction A*B,, , for example, of the contravariant vector and covari-
ant vector is the scalar.

e What contracts with the contravariant vector to become a scalar is called
the covariant vector.

e The second order covariant tensor is g,,,. %
85
AMB, = QM A, B, = 0", Q, A B, = g0, gm0 AYB, = Q, OP"AYB, = A'B,
86
2 ’ g vy oz dx'" K
ds'" = g, dx'""dz"" =g Wwdx” e dz
ds® = Gprdr’dx”
giving ds = ds’ thus,
, 02" ox’
T gge ggn — Ie%
, Oz Ox2"
Jw = WWQPH
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4.2 Effects of Free Particles

The action integral is defined as:

b ty
S = —mc/ d3:/ Ldt
a ta

ds® = g,.dz'dz”

I dxt dxv 2 1 vz dr
= —mc\/ gu———— = —mc -, U=—=7
I "t V' 2 dt

The Lorentz transformations z/* = Q2" gives ( ¢ = g ) , and the line element
stays invariant ds = ds’. This fact implies that the action is being interpreted as
Lorentz invariant.

In the non-relativity limit:

1
L — —mc(l—==)=-mc®+ §m02

where the kinetic energy is indeed being given, while excluding the constant values

in the limit. The momentum can be written

3L_8L_ mu

P = o= = e
or  0U 1 _ o2

M =

and let M be the relative mass. The Hamiltonian A and the energy F can be
defined as:

Therefore, in the non-relativity limit, we have

2

E — m02(1+§z—2):m02+§mv

2

which naturally gives the rest energy mc? . The following relations can be derived
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between the energy and the momentum: 87
U
cpg = —-F
c

H = FE =c\p?+m2c

Especially where super-relativistic v = ¢, ® the relation with E ~ cp particularly

with light can be
E=cp

The canonical equation can be written %

- . O0H ¢

T = V== —
o5  E

- OH

D = ——:0

P oF

which giving p'= f—f = M7 by the first equation, we may make a substitution into

the second equation to write

87We can use

E*(1-—=) = m%
(1-%)
2 0 P 2 4
E(l—cﬁ) = m°c
E? = m2t 4P
88
P m__
E ~ - 2
1-2z ¢
E =cp
89
by OH _ 2 _
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This in fact is an equation of motion.

To discuss the Lorentz invariance in more explicit form, we can use the variation
principle to write the differential of the curve ' s parameter 7 with /. Rewrite the
action of the curve with common parameter 7, and write the Lagrangian of the

common parameter as L (S = / Ldr ). * Thus,

Ta

oL oL doL _  d( gwr” N _,
Szt Oxt dr Oxr dr \ \/gpr?’z )

We take parameter 7 as ds = cdr,( 2*'z,/ = ¢*) that gives (proper time) 9 2

Az

dr? =0

From this, we can now consider the free-particle. If we have 7 = ¢, the relational
expression for the components of u = 0 can be written %3

d_me
dt 02 dt
\/ T2

indicating that the energy is being conserved. The conservation of momentum can

=0

90

dzt dx?
L = —mey | Guv P —mey/ gt zv’!
oL oL d OL d (guz”’
— = —— = — —— = —MmCc— =0
oxk Ozt dr Ox™ dr /

2 ) and write

m v
s = ds—/ \/gwdf dd;v / N x, dr

ds :\/:cl":ry dr = cdt

91et parameter 7 be ds = cdr,( 2"z,

M, =c?
92
””(;L—LM = = fmcg”“%g,wlliw = —mc5”ud;_x; = fmcd;f: =
93
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be given by =i =1,2,3: %

d mer -
— " =0
dt /1 2
CQ
When we let four-momentum be p, = g as we will cover it in our next section,
T
we have %
po = —Mc=——

mr
Pi = Pzyz=—
_v/;

which giving the covariance of vectors for the Lorentz transform.

4.3 Particle Motion in Electromagnetic Field (Lagrange

Formulation)

Let us describe below as the action integral:
S = So+ S
b Th ty
Sy = —mc/ ds = —mc/ dt /gt v’ :/ dt Ly
a Ta ta
Ly = —mey/guara”

Th tp
S, = —e/ Aydxt = —e/ Aﬁx”’dT:/ dt Ly
Ta ta

dx* 57
Ly = —eAME =—ep+ter-A
94
d —zh 0
dt cy/1— Z—;
95
.I"l/
Py = —mcL,,
v/ GuvTha?
c
p9 = —mc———=-—-Mc=——
cy/1— Z—i ¢
—z" mr
Pi = Pzuy,z mc = ( )
o /1-9% — v/
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The four-vector potential can be written

AO - Aozlqﬁ
C
A = —AL A=A, AP = A, A= A,

. dzt .
Where 2t = 5 s the four-velocity.
Note that the Lorentz invariance of this action is obeyed by the covariant vector
A,. The covariance of A, is obeyed by the observation given by the Maxwell * s
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equation as well as by the conservation of the electric charge. %

In those actions, we use the variation principle in which the equation of motion

96The covariance of A, is obeyed by the observation because of the Maxwell ' s equation and
the conservation of the electric charge. From our later discussion, the Maxwell * s equation can

be defined by B = div ff, E= —%—‘f — ﬁ(b , which are equivalent to the two equations below:

04 = AA-— 0%?927? = V(div A + C%%f) — poJ
Ap = —%div/f - %
Under a condition called the Lorentz (gauge) condition
- I
wds 10O
The two equivalent equations we described above can be written
04 = —pof
06 = —c’pop
Here we let the four-current j* be
jo = cp. 3 =Gus 3° =Gy 50 = U
which giving the Maxwell ' s equation
0A" = —poj”

For the conservation of electric charge

- Jdp
0 = divyg —_— = L.IL
1Vj+8t ]

which is (experimentally) understood to be the Lorentz invariant. This gives the contravariant
vector j* and A*. Note that the Lorentz condition 9, A" = 0 in fact expresses the relation for
the scalar, and remains invariant to the Lorentz transformation,

00, A" = —pedyj* =0
This is compatible with the field equation. Now, the gauge transformation

EHXZA’—FVX
¢

can be written
Ay — Au = A, +0ux
To write E, Bin four-form, we let the second order covariant tensor be

fuww = 0,A, —0,A,=—fu
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We may write down

(104, 196 1

= A — Ay = P 7Ea?
fOl 30 1 al 0 c 8t Cax -
1
= -FE
fo = B,
1
fos = -E,
c
0A 0A,
f12 = 81A2—62A1:_7y+ - B,
3$ 8y
0A 0A
= Ao — O Ay = ——Z2 T _
Ji3 0143 — 034, o + o B,
0A, O0A
f23 = 82A3—63A2:— +7y:_Bz
Jy 0z
Organize the above and rewrite
0 E, Ey E.
E < ¢ c
_ —=r 0 -B., B,
f/u/ = 7&}4 BZ 0 7Bx

These indeed stay invariant under gauge transformation:

fuw = 0,4, -0,A,
a,u(Au + auX) - au(Au + aILX) = fl“’
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97 takes the proper-time parameter. In the Lorentz invariant form, we can write

AP d:v
— v pup
md7'2 f
0 E, By E.
E Cc Cc Cc
-2 () -B, B

Rewrite the above as

PP )
dr?
dz
FP—=_ v fvp
€ dr /

We call F? the four-force. This equation of motion embodies the all four forces

97

% = mci ( g/il"ry/ )
dxH dr /gagxo"xﬁl
0L dA,

- —e€

6$u, ( /‘ W)
= e( L (Ak m”/ —2v'9,A )
= e( ""6 A, —x”'@ A )
(OuAy — 0, Az = *fWIV/ = fvuxul

In which we take proper-time parameter, and written

= —e

d?xv dx” B
M 2 e dr Jon 0
d?zv
maP* —  _egPH
9" 9w~ g
md2xp _ dx? p_ _edﬁyfup
dr? dr dr
We define 7 = t, so that
d  gud” -
m——— = ez
= fun
c2
dm, . . .
o et” fue, (mutakesthetimet forthecommonparametert;thatiswhent = t)
iy
Ty = m% = Mg, t" =Mz,
V1i—-&=
2. s 202 .2
meg, & m=(c® —v
7TM7TM © _ ( ) — m202

v2 v2



— Quantum Mechanics 3: Relativistic Quantum Mechanics — 2005 Winter Session, Hatsugai7h

that are not independent but has a linear relation among them: %

u, F" =0
dx
=g

Where u* is the four-velocity, we can write

2

dt _dt

C%, UE)

utu, = c
ut = (

99

With time ¢, this equation of motion can be written 1%

dm
l,t .
a T e
¥ .
T, = mgL2 = Mz, = mu,
v
V- &
Tt = m2c?
98
d dx,, dz, ) .
%F"’ = —e%dif““ = 0; antisymmetricof f**
T T dr
99We can rewrite
dt
0 _ -
v _CdT
i da?
T dr
dty2 1 ,dt -2
\/(dr) - () =1
02
dty/1 — 2 =dr
Mk =" B m_dzt d“ﬂ:muu

100
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For each component we can write in the forms '

d(Mc?*)

i = ¢i-FE
d_’\ — —
d—: — o(E +7 x B)
M202 7?2 — m202

Now let us rewrite the above:

Mo m
B

T = Mu= (7r1,7r2,7T3) = (—my, —mg, —73)

vo= 7

We can also confirm the equation

dm - dMc?
v-— =elb - U=
dt dt
101
-1
T = me = Mc
)2
-
™ = ;m:—Mdc:fwlzfﬂz
2
-z
Ty = —My—7'r2:—7ry7 71'3:—M2';:—7r3:_772
The zeroth component gives
dm dM . e, . .
dito = ¢ =ek for = E(a:Eg,c +yE, + 2E,)
d(Mc? ~
M) - _ et E
dt
While the first component gives
dmy d(Mz) .
— = - =ei"fin=¢e| —-E,—yB.,+:B
dt dt fin=e YBs+ 25y
dr, L
% = e(FE+7xB),
. . dmy, oo e s odm. o
Lilewisewewrite e e(E +7x B)y, prai (E+7x B),
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Thus, only % —e(E+7

x B) remains independent for the equation of motion. 12

4.4 Particle Motion in Electromagnetic Field (Hamilton

Formulation)

We now discuss the
forms. Where (7 =1) ,

Pu

particle motion in electromagnetic field by Hamiltonian

the canonical momentum is defined as 03

102

103

Pu

oL
e
ma
" .
- — —eA,=—Mz,—eA
= p I i
T2
eE - v
dM _, dv
il RN V7 St
dt U
dM 5, 1 dv?
el R ) Skl
dt 2 t
d v? 2
£ v 1. dv
dt c? 2
_dtE e
"o - 2y’ oM
vi+ (1 - %)02 d v? m dv?  dMc?
nmn—————— = — =
21— %)3/2 dtc? 21— %)3/2 di dt
dm - dMc?
0. — e E-_’:
U VT T
0L
I
= mc%—ez‘lu
\/W
ma .
= — , “Ug—eAM——qu—eAu
e
= —m,—eA,

po=—Mc—elAy=—-Mc— E(b

C
pP1 = —M.i'l —eAl = —‘rMﬂ?—‘r@Am
P2 = —Mioy —eAy = +My+6Ay
p3 = —Mig — eAs = +Mz +eA,
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Each component can be written in the forms:

€
po=—Mc——-¢

c
plei"i_eAprx
p2 =My +eAy =p,
p3:M2+eAzEpz
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The Hamiltonian H can be defined as 104 105

H = Y pi'-L

n=1,23
= VT2 +m2c2 + e¢
= C\/(ﬁ— eA)? +m2c + e

104Giving

We may write

More precisely we can write

(F—eA? = M?*?
2,2 2 2 v?
- m v v +c - =3
(7 —eA)? + m?c* = — +m?? =m® ( — =)
T2 T2
2
— 2_¢
c2
\/(ﬁfef_l')2+m202 = me = Mec
1— 22
c2
Thus,
M = C\/(ﬁ— eA)? + m2e2
105
H = > pi'—1L
p=1,2,3
= Z puit —poi’ — L
pn=0,1,2,3

2
v
= —poi’ — Mz,i" — eA,i* — (—mc*y /1 — - —eAui”)

2
v
= —poi® — M(c* —v?) +mc? 1-—
c

= —poi’ = Mc? +ep
= VT2 +m3c + e

= 0\/(‘5’7 eA)? +m2e? + e
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In the non-relativistic limit % << mc? the Hamiltonian can be defined as
106

(7 — eA)?

H ~mdc® +
2m

+ e

Recall our initial discussion is to formulate a Hamiltonian description of particle

motion in electromagnetic field. The canonical equation can be given 17

7=

. T
/l) —
M
P o= eV(A-7-9)
Now given p'= 7 + eff, the canonical equation we described above may give the

equation of motion which we described earlier:

106

-,

1
H :mcg\/l + W(ﬁ_ 6A)2 =+ €¢

S o2
~mc*(1 4 l(ﬁf eA)?) +ep = mc? + —ed?

D T

107The canonical equations are written

. OH
o= 78}5’
. OH
P or

we direct our attention to the first equation of Mec = VA2 + m2c2,7 = j— eA = M¥ and write

_ ., OH
T = 7F=—
oy
T
= C———
/72 & m2c2
7
M
Given @ = M7, te second equation is written
L oOH
N or
eV(7- A) > -
= ¢—————— —¢eVo, (Note that V does not dif ferentiate .
Ve Ve i1 )
= e(ﬁ( 1. v) — ﬁ(;ﬁ), (Note that V does not dif ferentiate v as we express normally.)
= eV(A-T—0¢)
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d7 oo dA
a = €V(A’U—¢)—€%
Lo oA Lo
= eV(A 27—@5)—6%—6(’17 V)

Thus, the non-relativistic limit of the above equation speaks for itself. 1°®

—

108\We consider v is being independent of 7, and given that we have A x (B x C) = (A-C)B —
(A-B)C = B(A-C)— (A- B)C we can write
(V x A)
A)—(7-V)A

UxrotA = X
-

< =

or

(17 X rot g)z = Gijk’l}jeklmalAm = (5il5jm — 5im5jl)vj81Am
= vjé)iAj — ’Ujain
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5 Dirac Equations

5.1 Deriving the Dirac Equation

Based on the relativistic Hamiltonian we obtained in the previous section, we
continue the procedures of quantization. We first write the classical Hamiltonian

H, = C\/(ﬁ— efT)Q +m2c2 + e

to which we make replacement p — —ihV and consider the quantum Hamil-
tonian. Knowing that the root sign included in above equation being somehow

difficult, we may write
Hpay = cd-(p— e/f) + Bmc® + ep
and use the formal equation of
Hy = Hpe

from which we try determining the Hamiltonian Hp . that includes no root
signs. To explain further, we would like to determine the expansion coefficients &
and ( which satisfy

2
62{(17— eA)? + m202} = {062' (F—eA) + ﬁmcz}
To obtain such coefficients we need to have

=== = 1
{CYZ',CY]‘} = OéiOéj+OéjOéi :O, 27&]

{0, 8} = af+PBa; =0

The coefficients @ and [ that satisfy the above may be considered the matrix of
forth-order. In our case, the Dirac expression described below is considered to be

« 0; o =m®
i = = 0
o, O, P1

I, O
g = ( ’ 2)503@)12

convenient:

O, —I,

where ¢ and g are the Pauli matrices

0 1 0 — 1 0
Og = y Oy = . y Oz =
1 0 1 0 0 —1
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They satisfy the following relation %

005 = 1€ijk0k, (Z # j)
0'7;2 = _[2
[UZ‘, O'j] = 2ieijkok

Tro, = Tro,=Tro,=0
deto, = deto,=deto, =—1
(G-A) & B) = (A-B)I,+iG- (A x B)

Here we use the sign ® when we describe 4 x 4 matrices from a set of 2 x 2
matrix. (Tensor Product):

(A ® B)iajb =AijBap
i,j=1,2 a,b=1,2
(i,a), (4,0) =(1,1),(1,2),(2,1),(2,2)
Recall the multiplication of the block matrices, we may write
(A® B)(C® D) =(AC ® BD)
In another way, we may also understand from the equation

{(A ® B)(C ® D)}z’a,jb :(A ® B)ia,kc(c ® D)kc,jb
:AikBachchb - (AC)U (BD)ab

:(AC & BD)ia,jb
Furthermore, 10
109
L oL = 1
(0’ . A)(O’ . B) :O'iAiO'ij = i{aiAinBj + O'jAjO'iBi}
1
:i{Z(GinAiBj + O'jO'iAjBi)} + Z(ginAiBj + O']‘UiAjBi)}
i=j i
1
i i#]
|
=A-B + iieijkgk(AiBj — A]Bl)
:/T~ é + ieiijkA,;Bj
=A-B+ig-Ax B
110

TrA®B=Y (A®Bigia = Y AiiBasa=Tr ATt B
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TTAR B=TrATrB
A ,BRC]|=AB®C —-BA®C=[A,B|®C

The quantization p — —ihV via H D, 18 what we call the Dirac Hamiltonian
Hp such that the Schroedinger equation is called the Dirac equation and written
h

1

Hp = c@-(=V —ed) + fmc® + e

L0 .
Zﬁa\ll(r,t) = HpV(r,t)

Here we bring the Dirac matrix v,, p = 0,1,2,3 into the Dirac equation and

rewrite which in !

7, %)

—~

o=

—

Y = (Vo) =Ba= (7,7
"y = 29"

=)
> X

Note that the Hermitian for @ and § can be written
T
of _ 40

it i
Y= =7

We may simplify this in the form

P = 404y

H1Eor example,

M = BagBay = —fBogo, = —1
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Given that we can write the Dirac equation 2

{ihv“(@u + i%Au) - mc}\ll =0
(thy"D,, — me)¥ =0
€
DN = au + ZﬁAN

Note that there are four components in the wave function. For ih%\lf = HpV ,
we can write

Hp =7°(—ihcq - V + mc?)
ihC@()\I/ :HD\I/

5.2 Symmetry of Dirac Equation
The Conservation of Current

Consider now the Dirac equation and whose Hermitian conjugate, which gives
113

p = UV
= cUTay

o

112

H3The Dirac equation

ih%—\f = ¢(—ih0; — eA) ;U + (Bmc® + ep) ¥

whose Hermitian conjugate gives

t .
—ihaait = ¢(ihd; — eA) Ul + U (Bmc? + eg)
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Thus, the equation of continuity

dp

o +divi = 0

can be written.

In the covariant form we have ¥ = W40 ; the following relation for the conser-

vation of current can be obtained: 14115
o' = 0
Jo=
Thus,
m%(\w\p) = (T 4+ D)
= —ich{(aitlﬁai)\ll + \I/Tai(ailll)}
= —ichd; (¥, W)
and
p = Uiw
j = cUlau
Hence
% +divy = 0
H4Given
iy (0, W) — ey AU —me¥ = 0
the Hermitian conjugate may yield
fz'h(a#qﬁ)wf - e\I!Tfy”TA# —me¥T = 0
Let us have U = W40 and write
—ih(0, V)Y — eUy" A, —mel = 0

Therefore the following relation of the conservation of current can be given

9" = 0
o= vy

15Ty order to show the Lorentz invariance we must first show that the current j* is the invariant
vector. Vice versa, we can say that the Lorentz invariance is being retained by experimentally
identifying this conservation.
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Conservation of Total Angular Momentum for Free Particles

Here we consider the free particles A = §, ¢ = 0 in Dirac representation 16

H = cd g+ Bmc* =cp @ oip; + psmc?

where we have

L = Fxp
L; = e€juripr
we may write
h, -
[50‘ + L, H] = 0
Thus,
[H’ j] =0
J = L+8
- h
S = =0
2
116FOI‘
H = cd-p+ Bmc® =cp ® oip; + psmc’
in which
L = Fxp
L; = €7Dk
we may write
[Li, H = cp1 ® oyleijinriPr, ve] = thepr @ 00€ijijepi

ihepr ® €35x05pK = ihepr @ (6 X P);

[AB,C] = ABC —CAB
A[B,C]+[A,C]B = ABC — ACB + (ACB — CAB)

while we write

loi, H] = cp1 ® [oi,00]pe
= 2icp1 ® €ik0kDe
= —2icp1 ® (F X D);

Thus,
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where we call S the spin, and therefore the total angular momentum J becomes
the conserved quantity.

Conservation of Energy and Momentum for Free Particles

For the free particles A* = 0, we can write

Hp =cp1 ® o;p; + psmc?
[Hp, Hp| =0
[Hp, 7] =0

5.2.1 The Lorentz Invariance

The Lorentz transformation

't = QHF x¥

x/.u‘QMIi — xﬁ/
gives D,,, which is transforming as the covariance vector thus, ''" (D, = D',Q",)
Y=Y
giving 118

(ihy" D, — me)¥(x) =0

117

ox¥ y
3/H == axﬁ&, == QN 8V

9 _i_ax”’ 0
B g Qxk 9z

while the covariance of A, gives

= 07,0, = 0,9,

() = 9,7 A, ()
AL (2 = QA (2) Q4 = 9,07 Ay (2)g* Qs = 6,7 PV AL (2) Q1
=OPYA,(2)Q,, = 0" A, (x) = Ag(z)

118

0 = (ily"D,, — me)¥(x) = (ihy" D, Q" ,, — me)¥(x)
(ih(QY ") Dy, — me) ¥ ()
(ih4" D, — me)¥ (z)
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Now let us have 9

(3,47 = 29"

which indicates the existence of the regular matrix A, and for all © we know that
there is A that satisfies

%u — A‘W”A

For the in depth explanation, which is covered in our later discussion, and given
the fact, the Dirac equation forms the Lorentz covariance as described in the
following: 120

(ihy" D, — me)¥'(z') = 0
Thus,
U'(2") = AU (x)

SO, we can write

Therefore,
U'(2) = (L) (') = (LY)(Lx) = AV (z)

A specific structure of the transformation matrix Here we elaborate on A used

in our discussion for a specific construction. First, consider the infinitesimal
Lorentz transformation

Qr, =g*, + 0Q",

119

Ay = Qunﬂyp{’yﬁa’yp} = QQHKQUpng

120

(i(RA™'y"AD;, —me)¥ =0
(ily*AD;, — meA)¥ = (iln" D), — me)¥' (') = 0
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Given that we have up to the degree of first-order 2, u/\ = g/ for the infinitesimal

quantity, 2! we can write
5Q)W - — 6QV/\

Now, let us rewrite A~1v*A = Q#,~v". To do so, we begin by writing down

QF, =g", + 00",
QA" ="+ 0"
A =1+ 0N Towhich,wemaywrite
(I = A" (I + 6A) = — [0A, "]

Therefore,

59#1/7” = - [5A> ’7#]
59#1/71/ = [6A7 ,-)/#]

and

SA = — iawmw

Given the antisymmetric property of 6€2,, we suppose

P —— ]
without losing the generality, and being aware of the antisymmetric property, we
can write

14 /i RV
5Q;u/’7 :Z[a 77}1]5QHV

(0™, 3] = = 2i(gp7" — g,7")

93\ :(guu + 5QHD)(9/L)\ + 59“)\)
=g} + 60, + 00,0
0 =60, + 69,0
0 =6y, + 0y
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We can show that the following relation for o#* being satisfied: 122

v /L v
o =5[]

By integrating the above we obtain 23

Q =e,

— W

w

For the above equations we may write down (w: real antisymmetric)
124

122
o =2,y
YAt = A = Aty
=Y (=" +29") — Hy"y
== 7" + 20 g — 4
= —2g""y" + 29"g""
[V 771" = = 299" + 29" g™ — (=29"7" + 29" ¢g"")
4y 4 gy g
[V 9" ) = — 495" + 49" g,,
1

[2 V5 ) vl = = 2i(g57" — ¥ g;)

123

Q =e%
Q0 =Igives
w=—-w
To express the components, given
(@, ="
which yields
(QQ)F, =" Q" = 6",
(Q_l)ﬁy :QVK
@)%, =t = —wh,
() (e2)," =(e)F ()", = ()" ()", = &%,
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1
A —e_Zo—ij“V
While 12°
AT _,yOA—l,yO
and
it it
IR 77 7 _ v,
At =e 47 B g0y
to give
it it
+—0o, W,  ——0, W,
R(t) =A@) Y Al) =e 4" Are 4
61—% 7' - v K 1 — KAV KV
o =12 o AW, = SATH (g - g™ ) A,
1 KTW RV 1 v K K 1 vV, K K
=5(giT" = g™ T’y = S (MW", = Tyuwh™) = S(T"w", — THw,")
1 vV, K K K
25(1“ w®y, + MW, = W™, I*

Where t = 0, note for T'*(0) = v#, the solution of the simultaneous differential equation is given

D =(e)" "

While ¢ =1, the solution is given

125

. 1 .
ot (Y v _ _Yrvt out
o 2[7,7] 2[7 ]

i
_ 0 v 0
=y oy
i

AT :ez (JMV)TWHV
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For this Lorentz transformation, we can write the current
] :A_l\IJ/ _ ’)/OAT’}/O\I//
ju :q;,yu\p
=0Ty w
=010 A0 (10 AT
:\I//T’}/OA’}/MAil‘I’/
=0/ AyFATIT
Recall our discussion in the previous section, we can express
QL :A_17“A
QAP AT =~k
QM"‘Q“VAWVA_1 :gﬁAw”A_l =Ay"AT =
:Quﬁ,yu — ,y,uQMH

Thus, 126
j/K/ :QK»H]M
j/,U« :\Ijl,y,ug[l

This implies that the current is capable of transforming itself into the invariant
vector such that the conservation d,j* = 0 can be regarded as the Lorentz invari-

ant.

5.3 The Plane-wave Solutions for the Free Dirac Equation

In this section, we consider the solutions for Dirac equation where A* =0 . Let
us write the Dirac Hamiltonian

—

\Y S
H =cd - — 4 Bmc® = cp1 @G - P+ psmc?
7
such that the Dirac equation can be written

thcOy U =HW

=" "
Qg = = gl =
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Rewrite the above and give

T (1) =~ ku"y (k)
T (z) =ethuy (k)

—ktat = — k020 + Kiat = E-7—wt
(kx7 ky7 kz) :(kla k27 k3> - <_k17 _k27 _k3)
ko =k0 = ¢
c

Thus,

H? =(*p? + m*ch)1,

Note the above, and obtain the following relation for the solutions of the plane
waves: 127

PO = £ pku™®
HU® =+ pg@®
Hu=+4 FEu
Hv=—FEv
E =chko = chk’® = hw
hko =\/ Bk 2 + m2c
mc\ 2
Kk :(?)

127

H? =c*p* ® (3 - 1)° + p3m>c* + 2mc*(p1ps + ps3p1)d - §
:(02}72 +m204)14

or

H =1"(—ihe7 -V + mc?)
H? =1*(=ihe7 - ¥ + me*)y*(~ihey - ¥ + me)
= — W20 09 (V)i(V); + m2et — ihmc? (7170 +~4'7°) (V)
== K2 (=7 )Y (V)i(V); + m?c!
2

= - RB2AV? + m2ct = Pt + mPd

h h -
POE) =ZVOE) = Z(Fi0) (ky, ko, ks)UE) = £R(EL K2 E2)TE) = £pk0E)
1

1
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While we let (ihy"0,,u —mc)¥® = 0 given by the Dirac equation } = k,y* such
that 128

(Al — mc)u =0
(hf 4+ me)v =0

5.3.1 In the Case of m # 0

If we take the inertial system ¢ = 0, k* = (%¢,0,0,0) which stays stationary,

« o — : 129
the complete system u,, Vg, = 1,2 can be given

1 0 0 0

0 1 0 0
uiest = O ) u?est = 0 ) Ul}est = 1 ) v?est = O

0 0 0 1
au” =00, 798 = —0a, av” = =0

@ 0
«a _ rest «a _
urest - 0 ) vrest - o
X rest

From which we determine the general solutions for the plane waves via Lorentz

128

(= me) ) () =0, =
(Al — mc)u =0
(hf + mc)v =0
129
0
o 0
mc(v - 1)urest =mc _9 Urest = 0
-2
2
0 2
me(y” + 1) vrest =mce 0 Vyest = 0
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transformation. We begin by the equations '3°

dp = —ia,b,0" + a,b”
Wi =k, k" = K
which gives
1
mc

_L (hk‘g + mc) fést . L (% + mc) roést
mc Vihkiwfést mc (63 ’ mw?est

5.4 The Non-relativistic Limit

ut =

(h’% + mc) u(r)iest

The four components spinor can be written by the two components spinor
and y:

Let us write the Dirac equation in the forms

'hg (0 [ m+eg cP 0
Y % B cP —mc? + e X

-,

P = a-n=0d-(p—eA)
In steady states, we obtain

V@) = G
X(x) _ e—iEt/hX<,r—,»)
yielding
(mc +ep)y +cPx = Ev
cPy+ (—mc® +ep)x = Ex

1 1
#p =ay"by” = S(auby"y” + @by ") = 5 (apby" Y + avbu(—2"y" +29"))

1 1
=5 (auby = abu)y" " + aub” = Saubu[y", 7] + aub”

o . v v
= —idaub,0" +a,b

v 7: v
ot 25[’7M77 ]
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To consider the non-relativistic limit
2

2 P 2

ep << mc, 2—<<mc, E ~ mc*
m

we transform the Dirac equation into a much more convenient form
W = E-—mc
Thus, given the second equation we can write down

c 1
X 2M' 2 v 2M'c v

2M'®> = E+mc® —ep=2mc* +W —ed
1
M = m—l—@(W—egb)

From these equations the Dirac equation can be accurately rewritten in the form
131

1
2M’

(PP ted)y = Wy

The Lowest Order Approximation
For the lowest order approximation we suppose
M = m

This gives (Schroedinger approximation)

Hshw = W@/)
1

Hsh = _P2+6¢
2m

Here note that 32

P2 = @ _¢hd-B, B=rotA

1
? P—Py = E
(me® + e + PoisPy = B
1
P P =
(PP ted)y = Wy
132

P2 — (3.7)2— i =2 1 i_j
= (6 -7)° = (oyn)(o;m?) =7 Jri(aiajfcrjai)ﬂﬂ

= 7?2 —+ ieijkaﬂrjﬂk = 7_1"2 + Z'Gijk(fi(pj — eAj)(pk — eAk)
. ) B ) h
= 72_ ie€; k0 (pjAx) = 72— zeeijkaiz(@Ak)

= 72 —¢hd-B, B=rotA



— Quantum Mechanics 3: Relativistic Quantum Mechanics — 2005 Winter Session, Hatsugai98

Thus,
—eA)2
Hy = (7= ed) +ep+fi-B
2m
. eh
= ——o0
a 2m
< ~ h
= —gupS/h, (S =70)
. eh
W hereBorhmagnetonis upg = —
2m
,andsocall g factoris g = 2

The Approximation to Z—;

In our next step, we raise the order of approximation '3 to

1 1 1
N g (W )

m - 2m2c?

Here we make an estimate of W — e¢ ~ mv?, where we take the value up to Z—z

such that we can write

1 P? 1 e
P = —- WP? +

2M’ 2m  4m?2c? 4m?2c?

and which gives

PoP

P ° _peply = w(Q P
<—m+€¢+m ¢ >¢ = W(l+ )

2 Am?2c?

Now we consider the normalization condition such that
X = —Py
For this we can write

1 = /d3r\IfT\If:/d3r (¥ + xTx)

133

Q
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Therefore if we let the normalized wavefunction ¢y in two components to be

Yy = W
1 = / Pr iy

then we may also have

1
Q =1 P?
* 8m?2c?
The equation for ¢y can be given 3% 135
P? P4 e
- _ _ -
<2m + e 8m3c2  8m2 CQ[ [P ¢”>¢N YN

When we look into the degree of order, the below indicates that there are the

2
v,
values up to %:

somlPpa) = Pl e (1)

8m?2c? m2c? 2
1 mu)? 1 v?
— P~ (mo) =—mv? | =
8m3c? m3c? 2 c?
134Given {A2, B} — 2ABA = A2B— BA? —2ABA, [A,|A, B]) = A(AB — BA) — (AB — BA)A =
A%?B — 2ABA + BA? we may use {A?, B} —2ABA = [A, [A, B]]
135
p? -1
T+€¢+ P¢P Yy = Wy
[ P? 0!
Q T+6¢+ P¢P vy = Wiy
P2 p4 2 2

2 4 e
<P+ ed— — [P,[P,ebn)wN — W

2 8m3c2  8m2c2
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136
P* = [ —eh(G- B)]?
[P.¢] = [oj(p; — €A;),d] = 0;(p;¢) = —iho;0;¢
In the stationary electric fields, which is given by E= —§¢ , we can write
[P,[P,¢]] = R*ivE +2hd-E x 7

The approximation (Pauli approximation) can be made to the degree of order

we obtained in the above so that we write

Hpaulin = W¢N
Hpauli = Hsh+Hc

1 = 1 h =
Hy = o (@ —chd- By +eo= o7 +ed— = 5B
(72 — eho - B)? eh? | = eh , =
He = - 8m3c? B SmQCQdWE T am22’ Exa

Now we consider the non-relativistic limit for the classical Hamiltonian, we can

=2
H, = C\/ﬁ2+m202+6¢:m02\/1+7;62—i—egb

write

1 72 1 7t
~ 2
R eptme (1+§m202_§m4c4)
—9 —4
= e¢+m02+l— T

2m  2m3ct

where we define @ — 72 — ehd - B, which includes the effects by the spin, the
first term of H. can be regarded as the correction term for the relativistic kinetic
energy. The second term of the equation is called the Darwin term.

136

PY = [@® —eh(- B)>?
[P¢] = [oj(p; —eA;), 8] = 0;(p;j¢) = —iho;0;¢
[P,[P,¢]] = —ihloi(pi —eA;),0;0;0]

= —h?[0,0;,0;0;¢] + iehlo;Ai, 0;0;¢)]

= —Nh%0,0;0;0;¢ — h*0;0;(0;0)0; + W°0;0:(0;0)0; + ieh[o;,0,]A;0;0
= —h’A¢ — h?[04,0;](0;0)0; — 2ehe;jrorAi(0;0)

= —hA¢— 2ih2qjk0k(8j¢)3¢ — 2ehe; 014, (0;9)

= R2divE —2ih%6-E xV +2eho-Ax E

= RAdivE 420 E x (§— eA)

= WdivE+2hé-E x 7
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For the last term of the equation, when we consider the central force field,
137

edp(F) = V(r), A=0

eh - h 10V
Hps = —W&-Exﬁzm;ﬁaﬁxﬁ)
_ (L 1V s
B (2m2c27’87’)8
- h
s = 50’
7= XD

and is called the spin-orbit interaction.

The Time-dependent Case (The Lowest Order)

- e—imCQt/h 1/}
X

Recall our discussion for the steady states, and we direct our attention to the slow

Given

mode in energy mc? periphery:
me*) +ihdp = (mc® + ep) + cPx
meiy +ihdyx = cPy 4+ (—mc* + ed)x
which gives
o) = edwh+ Py
ihdyx = cPy+ (—2mc® + ed)x

We define mv? << mc?, e¢p << mc? , the second equation may give

cP
X = (0

2mc?

Thus, we can derive the Schr?dinger equation

o

hs = H,

t ot Y
P? 57— eA)? L o=

Hg = P medr +ep+i-B
2m 2m

137

A A

_Er_ r@rr
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PartIII
Quantum Mechanics of
ManyParticle System

6 Second Quantization and Interaction

In this section, we discuss an effect of interaction in many-fermion systems by
second quantzation approach. We begin with problems of single particles, followed
by the discussion of many particle problems of free (no interaction) N- particles
then we finally discuss the interactions.

6.1 The Classical Equation of Motion for a Single Particle

To begin with, recall Newton’S equation of motions for a classical particle having

a mass m in one-dimentional potenital V'(z).

mi = —QV(x)

ox

IN analytical mechanical perspective, the Hamiltonian formulation shows the equiv-
alent canonical equation of the above:

S
Halw,p) = 5—+V, p=mi=mi
OH, .
or P
OH, |
op o

Note that the Hamiltonian H(z,p) is enpressed as a pair of canonical variables
(,p).

138 The state of the classical system is specified by each point (z,y, 2, ps, Dy, D-)
in phase space.

Likewise, we can express the three-dimension:

138Show this.
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In the Hamiltonian formulation we can write

ﬁQ .
Hy(r,p) = %‘FV, p=mr
chl o .
07} - pi
OH. ) .
- Ti, 1=21,Y,%
Op;

6.2 (First) Quantization of a Single Free Particle

A first quantization bases its discussion on the Hamiltonian formalism of ana-
lytical mechanics, in which a pair of mutually conjugate canonical variables (z, p)
being replaced by an operator in the equation called Schroedinger equation for
the wavefunction. In our one-dimensional case, for example, we let [0 z,p be the
operators which requires the commutators between the two; i.e., commutation

relation:

A A A

[z,p| = @p—pr=ih

Having completed this procedure of replacement, we formaliza the quantum me-
chanical Hamiltonian operator H. The following Schroedinger equation for the

wavefunction W(¢) can be given

A2

HYQ —= r- Vi
5 T V(@)

ihgz/J = H"%y

ot

Note that the wavefunction ¢ forms an inner product space (-,-), and contains a
complete description of physical reality of the system in the state. We let Hamilto-
nian be the Hermitian in terms of this inner product H = HT. 13 In these settings,
if the physical quantity corresponds to a Hermitian operator O, the expectation
value for the observable physical quantity at time ¢ having the wavefunction v (t)
to describe the physical state of the system can be written

Theexpectationvalue = (Y(t), OY(t))

139For the arbitrary state vectors W, ®, we suppose the operator @ and whose Hemitian conju-
grate Of to satisfy the relation below:

(T,00) = (0T, )
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The Schroedinger equation defines the time expansion of the state vectors of our
case. In a concrete representation that is very often used, a basis of ( square
integrable ” ) function space and the inner product are formed:

(f.9) = /_ooda:f*<x>g<x>, /_Oodx|f<x>\2<+oo, /_Oodx|g<x>rz<+oo

[e.9] (e 9]

so that

=
|
8

SH
|
|
|

Under such expression, we can write

h 0?
Hl’Q = —%@—f—‘/(l‘)

The treatment of H, — HY? is called the (first) quantization.
Likewise, the three dimensionsformalism can be given

HY? = —h—262+V(f)
- 2m ’

ih%lp(t, F) = H"“Wy(t,7)

In our specific case, the Hamiltonian is independent of time (9,H%? = 0) thus,

in the stationary state, we suppose a solution of the separation of variables to be
written

Wt = e ()
The Schroedinger equation is then regarded as the eigenvalue problems:

H'YC¢(7) = [— %A + V(W)] o1 (7) = exgr(7)

Note that in general cases, a certain kind of boundary condition is imposed to the
eigenfunction. For the wavefunction which being orthonormalized such that

/ 0 G(7) e (7) = b

We further formalize a complete system

/ Pr (PP = 87— )

Example of Free Space
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To provide a more concrete example, we suppose V' = 0 with the system being
put inside a box having each edge the length L. If a periodical boundary condition
ox(x+ Ly, 2z) = ox(x,y + L, 2) =pr(x,y, 2 + L) =pa(z, vy, 2) is required, we let k
be the label to obtain k = (ky, ky, k.) thus,

L9
) k= fﬂ-(nxany7nz>7 Mgy My, My :07:l:17:l:27

1 s B H2k2

= \/?6 s EE

2m

6.3 First Quantization of Many Particle Systems

In the system of N-particles, we let the coordinates of jth particle be 7; =
(xj,9;, z;). If there is the potential V (71, - - - , y) existing in the N-particle system,
the classical equation of motion can be written

-

mr; = —V;V(7,-- Py

Whose corresponding Hamilton’s equation can be written

p;?
Hy = 2j_m+V(Fl>"'7FN)
0H, )
L = Pi, a=1z,y,2

87”;?‘
0H, o

— g
@p}l J

In the case with no interactions between the particles, we can express
V(Fly"' 7FN) = ZU(’F})
J

In our continuing discussions, we consider no interaction cases followed by discus-

sions of the interaction cases. !

1408how the orthonormality and completeness.
141Tf we consider in general up to the two-body force, the potential can be written

., ., . 1 -
V(- TN) = ZU(TJ')JF?ZQ(?%W)

J i#]
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In the cases with no existing interactions, the (first) quantization can be per-
formed as:

N
HY? = > iy
j=1

R - - o 0 0
h, = ——V?2 7. (=
J vaj +U(r])7 v] (8x]7 8y]7 azj>
WD, 7, Py) = HYCO(, 7, Fy)

Here h; is regarded as the operator that acts only on jth particle coordinates and it
is called the sinple-particle Hamiltonian. Now we consider for the stationary states,
and solve the Schroedinger equation of the N-particle system for the eigenfunction
O, (7,7, -+ ,Tn) and its eigenvalue Ey of the N-particle system: (We denote the
name label of the eigenvalue in N-particle system by A.)

H}V’Q(I)A(FLF%"' ,FN) = [ EAq)A(FhFQ,"' 7FN)

This equation in fact is a partial differential equation such that the solution can
be written (by using the method of separation of variables)

N
Doy ko, oy (Fl’ RPREE 7FN) = On (7?1)925]@ (F2> Dk (FN) = H qbkj (FJ)
j=1

N
Brykoreky = 6y ey Tty = e,
j=1

The eigenfunction label A takes the paitrs from ki to ky; ie., ki, ko, -+, ky 00
0 O note the order). Each ¢, (7) is called the wavefunction of the single-particle
state O k;, which is the eigenfunction having the eigenvalue ¢, known as the
single-particle energy of the single-particle Hamiltonian h;0 labeled by k;). In
short, this can be written h;¢y, (7;) = €, ¢r, (7;)0 1+

Note: for a reshuffled state of ki, ko, -, ky, we will generally have a different
state but the energy will stay the game.

6.4 Many-particle Quantum Mechanics and the Symmetry
by Particle Switching

To begin, let us consider a point in the generalized x-coordinates obtained by
symmetry operation R, which we suppose to be moving to a point in the coordi-
nates Rx. In this, let symmetry operation Og for the function phi(z) be defined
as:

142Confirm the energy of many-particle system is given by the above equation.
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Oro(Rz) = ¢(x)
Org(z) = ¢(R™'x)

Here if we define ¢(z) = H(x)¢(z), we can write

Op{H(x)¢(x)} = Ori(r) =¢(R™'x) = H(R™'x)¢(Rx)
Op{H(x)¢(x)} = Or{H(2)03'Oré(x)} = OrH ()0 ¢(R ')

Thus, the transformation for H(x) as the operator acting upon the function can
be given

H(R'z) = OgrH(z)O%'

This indicates if H(x) is invariable under the symmetry operation R, expressed in
the form

H(R'z) = H(z)
H = OrHOR'
[H,Op] = HOgr—OrH =0

we can use the fact to further discuss the symmetry by the particle-switching
in many-particle quantum mechanics. Since it is clear to all that the Hamiltonian
H ]{;Q in N-particle system is invariant against the switching of the particles, we can
express that by letting the switching operator between the ith and Jth particles
be P, (i,j=1,---,N):

[H,P;] =0, P;HP;'=H

The above indicates that the many-particle wavefunction of having the simultane-
ous eigenstate for the energy and the particle-switching such that

HO®), = E\®,
Py®p(-e Foyeee Fjyeee ) = Bp(oe Ty e )
= ng@A( 77:;7“' 77?]'7'“ 7)
Switching the particle twice enables the particle to switch back to the initial po-
sition, and therefore the eigenvalue p;; for P;; satisfies p?j = 1 contrasting with

Pj = 1; ie., p;j = £1. The particle system under p;; = +1 is called a boson
system (B) while under p;; = —1 is called a fermion system (F). This switching
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characteristic is regarded as one of the fundamental characteristics of the con-
stituent particles. The each wavefunction for boson (B) and fermion system (F)
has the characteristics described below:

@A(...7f;.’...’f}.7...) = —|—(DA(777]”77;’) (Boson)

®A( ,77;’... ’Fj’...) = —@A( 777}7... 777;:’...) (Fermion)

The wavefunctions we obtained for the many-particle system does not satisfy the
symmetry described in above. Now we use the linear combination of the degenerate
states we noted earlier when we talked about the degenerations, and make the
valid wavefunctions that satisfy the symmetry by performing the symmetrizing
and anti-symmetrizing of the wavefunctions. The results can be written

(I)?kl,kz,--- ,kN}(Flv T 7FN) = ¢k1 (Fl)(b/w (7?2) T (bkzv (FN>

[Boson] iy (1) Paey (72) + -+ Ppoyy (Fe) + -+ -
= ) O (7)), (75) -+ Dy (7

All possible exchange of
ki, kN

Oty ko ey (Lo TN) = Ok, (T1) Oy (P2) - -+ iy (Fiv)

[Fermion] — Ok (71) Py (72) -+ - Dy (Tv) + — -+
= > (—1)P b (71) D1a (72) - -+ iy (Fv)

All possible exchange
P of ki, kN

Note that the wavefunctions do not depend of the order ky, ko, - - - , kn (except for
the scalar multiplications). In the fermion system, the existence of the same single-
particle states may give the wavefunction to be 0 because of the characteristics
of the determinant. In other words, the consistent wavefunction with no-zeros is
free of superposition of single-particle states. This is called the Pauli’ s exclusion
principle.

6.5 First Quantization of N-Free Particles System

.. . . . . 1
In summarizing our discussions up to this point, we denote Hy as H N’Q to

simplify. The complete system of the orthonormalized eigenfunction of the single
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free particle Hamiltonian h(7) can be written in the form 43

() r(F) = ergn(r)
Z or(F)Pe(F) = 6(F—7") completeness
k

/dgr Op(M)p: () = Opw  orthonormality

The Schroedinger equations of each fermion and boson system for the (first quan-
tized) Hamiltonian Hy of the N-free particles can be given by

N
Hy (7, 7)) = ) h(T)
i=1

HN<F17"' 7FN>®§’B(F17H' 7FN) - EAq)i’B(Flv"' 7FN)

Whose eigenfunctions satisfy the symmetry condition to the following commuta-
tion:
cpf(... Ty Ty ) = +<I>f(--~ Ty T3+ ) (Boson)

@i(,ﬁ,7’f‘;7) = _CI){(7F]77FZ7) (Fermion>

143For the completeness, we can write

giving

1 1 i
Z%(F)QSZ(F’) = m((;k)szﬁem.(r_r)
%

- (27lr>3/dVeik'(Fm63(FF')
\%4
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In each equation above, we introduce the normalization constants to write
Oy 70) = Cod 0070 (7) 6 (1)
Fu1)6(73) -y () + -+ |
- CB Z (bkm (Fl)(bkpz <F2> e (kaN (FN)
P

CBper D(¢k1 ¢k2 o Qka)

DN hy s iy (1o TN) = OF{ﬁbkl(ﬂ)%g(Fz)"’¢kN(FN)

— 1y (1) D1y (T2) + -+ Pheyy (TN) + — -+ }
= Cr Z(_l)P¢kP1 (Fl)qbkpz (FQ) T gkaN <FN)

3
= Cpdet D(¢p,dr, - - Gry) Slater determinants

{D(¢k1 (ka T ¢kN>}i:j = (bkz (FJ)

N

EA = Zeki

=1

The normalization constants C'z and Cr will be defined later. Let us use to label
the eigenfunctions of N-particle systems; the wavefunction is independent of the
order ky, ko, -+, kn (except for the scalar multiplications). Now, we organize the
overlapping parts in ky, ko, - - - , kn as to change the method in defining the state of
N-particle systems from our initially used method of:* defining the single-particle

states which being occupied by particles” to,” method of defining the number of
overlapping occupations for each single-particle state which is defined by the label
k of the single-particle states.” Further, these overlaps are called the occupation
numbers of a single-particle states k. The states of N-particle systems can be
determined by defining all possible occupation numbers of the single-particle states
k. Therefore, we obtain the occupation number n; for the single-particle states k,
and give {n;} to finally determine the states. In the boson systems, the occupation
numbers can be n, = 0,1,2,3,--- while it can become n,[0 = 0,1 for the fermion
systems. (Pauli’ s principle) We use this occupation number representation to

write the Schroedinger equation and the energy of N-particle system:

HOOPE (R, in) = By @l (F - 7)

E{nk} = ZDeknk
k
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6.6 Second Quantization

We now consider a new form of Schoedinger equation through the following
procedures:

HN — H:ZDEkﬁk, ﬁk:dzdk
k

o7 ) = =TT = [T o= )

The negative sign 7 is used for Bosons (commutation relation) while the positive
sign + is used for Fermions (anti-commutation relation) in equation [A, B]; =
AB F BA. Thus, we understand that dL and dj, are the creation and annihilation
operators which satisfy

[deL}:F = 07 [dkadk’]q: = 07 [dk, dL’]:F = 5kk’

Take notice of ng|ng) = ng|ng) 0 |ng) = \/T%(dL)”k |0) which are derived from the

eqquations above, one can write the Schroedinger equation that corresponds to H:

Hitned) = Epuy{med)
E{nk} = ZDEknk
k

The form of energy can be written in the same form that was given before. Here
note that the vacuum |0) is being defined by

Yk, di|0) =0
0|0y =1
These procedures H — H are called the second quantization.

We can express [{n;}) in which tha label of k£ decides the one-dimensional order
where we denote the order by < and obtain k; < ko < k3 --- such that

an}) = |nk1ank27nk3>"'>
1 n n n
= ]I ,(dL) b (df, )™ (df, )™ - - |0)
k1<ko<k3-- Tk

The normalization of this state is written

{t{ni}) = dpuring
- H(S"kl,k/lénkQ,ké

In the following discussions, let us express only the non-zero ny, found in [{n;}).
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Field Operator

We use the operator which is defined by the so called field operator

b(r) = dilr)dy
k

and write
W), 017 = o(F -7
(), b)) = 0
[W1F), 01 (7)), = 0

The Hamiltonian of the free-particle systems can be written

H:/ﬁﬂ@(hVWM

This equation represents the first quantization of energy such that the wavefunc-
tion corresponds to the operator in the form; the reason why we call® second
quantization. ” It should be clear to most of us by now that the Hamiltonian for
the general single-particle can be discussed in the same manner. The general
treatment for the operators will be discussed later yet; we can still obtain the
Hamiltonian that corresponds to the energy based on the knowledge we have ob-
tained up to this point.

In our next step, we consider how to treat the state vectors. The relation between
the state vector [{nx}) by second quantization formalism and the many-particle

wavefunction in first quantization can be written 44

q){nk}<F1’ 7FN> = <F1a"' 7FN|{nk}>
L 1o .
[P, ) = ﬁW(T 1) wT( VN1 1:[

14Eor fermions:

<771,...71?N|{nk}> = \/i«)‘?/)( ) 7/}(771)‘nk1,nk27"’7lk1\,>

= W Z d)uv(F ¢11( )<0‘d1N .di1|nk17nk2’...nkN>

= ) B ) () = et 00, 5)
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The normalization constants Cr and C'g are given

1
Cp = —
F VNI

1

\/N'Hknk'

Cp =

The normalization can be given by 4

(/fn~JWWMﬂ~fMF:1

For bosons:
<F1’ t 7FN|{nk}> = 7<O‘w(FN) t w("?l)‘nkl’nkw o >

D Gin(N) - biy (F)(Oldiy - - diy [k 1y -+ )

- 3-3-

Z Gin (TN) + - b4y (F1)<0| T (dkz)nkz (d’ﬂ)nk1 |nk17nk27 )

i1,

’I’Lkl ’I’Lk2

{il,“-iN}:{kl,kl-~-k1,k2,]€2--'k2,-~'}7 as a set

1 . B
= i Z Gin (PN) - Piy (F1) /Mgy Mgy -

1 —
= Wnlﬁ'nkg Z(b’bpzv '¢iP1(T1) n/ﬁ!nkg!,"'

We cannot find the overlapped values by the substitution in the form of natural free sum. Thus,

I
—

Ty Ty

A /N!nkl 'nkQ' ZP (z)iPN (FN)¢1P1 (?1), {il,i2,~~- ,ZN}:{ k'l, kl A kl,kQ, kQ tre kQ,-“ }
145Consider the noemalization. For the fermions:

1
[l @ i = 5 )R [ @y 6, (7)0k () - G ()i (72) -
p3
1 3 3 * = = * — —
:jﬁz/mrdmmJM%wwmgmmwﬁwﬂ
P

‘While for the bosons:

[ i R = e }j/d%l PN b, (7010 (1) 67 (7)1 72)

Nk

{iv, - -iny ={ ki, ki ki, ko, ko ko, -- ),
1 * [ — — * [ = —
=;E@IiZ/f“~ﬁw%mwmmy%wwmmwwﬂ
P

Nky
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Further, the orthonormal condition can be given by

" L 1 L L
(PNl TN ) = ﬁZ(i)P(S(rl —7p1') - 0(Fy — Tpn’)
P

6.7 Operator and the Interactoin in Second Quantization
Formalism
Now we consider the second quantization approach and the form of operator that

can be introduced to the given single-particle operator F' and to the two-particle

operator GG, which we defined in first quantization earlier:

N

F o= ) f()
=1

G = %Zg(f;ﬂ:})

i#j
146

First, we need to confirm the complete system Iy of N-particle systems: 47

1461 first quantization, the kinetic energy can be an example of the single-particle operator F:

w22
F= 72 2m

?

For the two-particle operator G, the Coulomb interaction can be of the typical example:
1 e?
227
i,
147y the fermions cases:

Iy = /d37"1"'d37“N |7, PN ) (L, - TN

_ Jé' Z S dldl 0)(0d;, - diy

1y 5IN

/ dry - dPry 65, ()00 (71) - 6, (7y) i ()

= ﬁ D Ay mag ) (i, i

i1, N

= g [Py, - My ) (N4, - iy | Note that there are only non-zeros.
==
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148

P _LTF...ATF - W7,
1, aN> m (1) 77ZJ(N)|0> WH¢(J)|O>

<>

1 N

=1

<

Nay - 'naN><n041 o 'nOéN’

L, 7o
— Z =

a1, ,aN

= Z My Py~ ) (Mg My~ |

o <o =<

Calculate the matrix elements of the operator below for the arbitrary N-particle

states @ = {ng, - ,Nay t and = {ng, --- ,ng,

F = [ @it @i

(a|F|B) = / d*r / Bry - Pry_y (QT@)|F, - o) P T P |OF)]8)

= N/d3T1"'d3TN1dST <CY|7_"17"' 7FN7177:‘>f(F)<F17"' 7FN71>F‘5>
N

_ /d3r1---d3rN SO @ ) FF) (T T
i=1

— /d3r1---d37“N @Z(Fh"' ,FN)F(I)B(FI,"' fN)

148For the bosons:
Iin = Bry - dPry |7 FN L N
N ™ N |T1, s TN )T, s TN

B % Z Z dj;"'djgv|0><0|di1'--dw

/ s/
ety

x [ oy 65 )6 () 8 (P ()

= Z ?\“ ‘nklankw"'><nk1’nkzv"'|
ki,ko-- .

Tk

{ila"' 7iN}:{klakl"'k1;k27k2"'k27"'}
= Z |nk1ank¢2)'"><nk17nk27"'|7 anw:N

k1<ka-

Nky
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The above indicates that we can use calF' to correspond to the single-particle
operator F. 49
In the same way, we consider the two-particle operator:

_1 7

G=35 / dird'r GO ) g (7 TG, glrisrs) = glrs, ), (07 )

Calculation for the matrix elements of the above yields

(alG|B) = %/dgrd?’r' /d3r1---d37‘N—2
(@ (P (PR, F)g (B ) (7, - Pr—al ) D()8)
- %N(N — ].) /d3’l"1 s dSTN_ng’I"dS’f‘,

X AP, - g, B TV (F P (L - Py, 77 B)

= /d?’rl e dPry

N
1
Xézq)Z(Fla e 77?N)g(ﬁaﬂ)¢,@(?17 T aFN)

= /d3r1~~~d3rN O (7, -+, Tn)GPs(T1, -+, TN)

This indicates that we can use calG to correspond to the two-particle operator G.
150 We can summarize that in the form:

F

s F
G & ¢

Second Quantized Example

e Particle density operator

307 = 7) — () = 1 (F)(7)

149WWe put the complete system In_; of N — 1 particle system into the equation:
SHF)FL - Tve) = (DN TWNIF e, )
and
QL (71, TN)Pp(TT, - TN)

Note that the commutation of arbitrary r; and r; is symmetric.

15011 our typical case, we used g(r1,r2) = g(ra, 71 in the equation; however, in general cases, we
will obtain G = § [ [ d®r d*r'" g1 (F)gT (7")g® (7, 7 )b (7 )3p(F) when we use G = 332, . g(ri, 75) =
% Zi,j gs(ri’ Tj)
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e Total energy-momentum operator 5
—Z ¥ = [ it v = [ o (heie) (i
2m 2m 2m \ ¢ l

e Density-density correlation operator 152

151Jse the integration by parts.
152
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7 Single-particle States and Mean-field Approx-
imations in Fermion Systems

Generally speaking, to obtain the eigenstates of many-particle systems with in-
teractions is considered much complicated. Among the different types of approxi-
mation methods performed effectively to solve the many-particle problems, we fo-
cus our discussion on the most fundamental and essential of which; the mean-field
approximations and the single-particle approximations. We begin our discussion
by considering the simplified spinless fermion systems. Following our discussion
in the previous section, we let one-body of potential be v(7) and let the inter-
electronic interaction be ¢g(7 — 7’). In such case, the Hamiltonian can be written
as

H = /d3r @DT(F)(_Z;VQ +U(F))¢(F)

The Coulomb force can be written

g<F_F/): |

Let us now consider a problem of determining the ground state |G) of the fixed
number of particles NV in the system:

N

(GIN|G)
N = / Fri(®), af) = 9 (F)

In fact, this is commonly known to be insoluble for N ; 2 (many-body problem).
In our following subsections, we will consider the certain types of approximated
solutions to solve the many-body problems.

7.1 Single-particle Orbit and Unitary Transformation of
Fermi Operator

Let us consider the following trial function for the ground state in the many-

particle system: %3

G) = clch---c}lo)

153The wavefunction in such form is called the single-particle wavefunction.
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Note that ¢; can be transformed in applying the unitary transformation U;; to the
annihilation operator d; of the fermions used in second quantization: (Vacuum |0)
is the invariable)

di = ZUijij Cj :deU;:]
J J
U, = {U};UlU=UU'=1

SO — S0~
k k
The field operator can be written in correspond to the above transformation:
() = > 6Py = er(Pek
j k
oe(P) = Y 6;(AUjk
J

Now we can demonstrate that ¢;(7), j = 1,2,--- formulates the following or-

thonormalized complete system: !5

/ dr gi (i) = b
S e = o— 1)

While contrarily in the arbitrary orthonormalized complete system {¢x(7)},
each function of this complete system can be expanded over the complete sys-

tem {¢;(7)}:

or(r) = Z ¢; (T Ujp,

The expansion coefficient in the above can formulate U;;, by which the unitary

154

[Ereie® = [ @U@t = Ui, = b,
B S = o6 (7 = o) = 50— )
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matrix is formed. '*® Hence, the new operator {c;} defined by this unitary matrix
also satisfies the anticommutation relation of fermion. % Based on which we

write
<F17F27'” 7FN|G> - CFdet{ng(F])}

This may give us a act that to consider |G) analogues to having ¢ (7) for the
single-particle orbit which takes oart in making the ground state. We use the

variation principle for o (7)
(GH|G)

In our following discussions, we will consider the mean-field approximation that
takes the smallest value in the above. We will now demonstrate a step-by-step
calculation of each term that makes up (G|H|G).

7.2 Total Energy of Single-particle States

The equation {(7), c;} = ;(7) gives 1[1(77)0; = —cj@(f’) + ¢; (), which further
giving:

DG = {=cld(P) + (7))l ey ]0)

N
= =) (“1ei(Mel -l ycf iy cy[0)
j=1

A one-body energy term can be written

6l [ it (e

1) = [ @ 6509 - g9+ 0 ) 507

2

n v<f>)zz><mc> -3 1)

[Erei@em = [Era@uie@us = vit =
U = [ droime
[ s [ @romenm = [ drormem = b,

*
UlkUjk;
156

{Ci,C;{} = {de]j?,d;Ul]} = U;:iUkj = 6ij
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In the same way, we may write

~

SEVDIC) = DEH=eld) + o1l o)
S U VG TGO ERNRE S FEPE )

= Z<_1)j+k90k( )‘PJ() CL 1CL+1 : C}—lc;+1"'cjv|0>

k<j
+ Z 1 o (7 (") (M)ecy T 'C}—lc;+1 o 'Cl];—lc;rc—i—l T C§V|O>
i<k
= D (=1 Mon(7);(F) — 03 (7 )pr()}
k<j

T T T (A T
XCp Cp_1Cpy1 """ Cj1Cjyr -cy|0)

G| /d3 /df”r'w ()7 — 7Y E)()|C)

dr'g(F =) lek s (7) — @i (7 or (M) |*

ey
J*

dr'g(7F =) Y _{ler™)Ples (M = (™)es ()5 (7 er(P)}

k#j

ahd) = / &r [ @R ol - ) o,

— /dS /d3 /’Spk ‘ ’()0.7( )|2
47r60 =7

K(k,j) = /d?’ /d?’r G ><f ) @t (Pl
oi(7)

_ /d3 /d3 () @5 (M) pr(7)
47T€0 |77 — 7|

The total energy Fr can be given !

ZI +Z zj))

1<j

These J(k, j) and K(k, j) are respectively called the Coulomb integral and the
exchange integral of both having positive quantities. The integrals satisfy the
following relations:

157The i = j terms are canceled by the Coulomb integral and the exchange integral
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158 159 160
J(1,7) = K(i,j) = 0

Further, satisfy the following: 6

J(i,i) 4+ J(4,5) > 2J(i, j)

<
—
—_
[\
~—
|
2
—_
[\
~
I

o [ [ 2 (PR + Pl
B ealF 51 ()~ LDl (7))

1
— /d3 /d3 "' S(IZPIYP + | XPIUP - X*YZU % —Z*UXY™)
47'('60 |7 — 7] 2

1
= d3r | &>r’ XU-YZ?>0
47760/ / |7 — "’\ 2‘ |

X =p1(7"), Y =02(F"), Z =), U=p:1(7)

1597 6t us write

1— 1 3 @E'Fi—l zlgfg
P d’ke k2_VZe 2
k
160
62 3 3 3.,/ zk:
K(1,2) = WOW k* dr [ d*r 01 (7 )ipa ()3 (F)on (7)
| 3, 1 3 iR 5
= D | Thg [ EretTe@e® [ drie™ ™ o1 a7
ez 1 1 - 2
= 47%0% dgkﬁ /d37‘e 05 (7)1 (7)
161

Jsi) + 0G,3) = IG,3) = 9.0 = g [ o [
G IF (7Pl () + s Plos () = i3 (7P = s Ples(7)P)

7 Z 7 [ [are et s (1R - 1R ) (1608 s
2 2
(&

47eg v Z

X

et (P - lesR )| 20
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Expectation Value of Free Fermion System

In contrast to the fermion systems, the simplest form of many-particle states
where the single-particle states are packed to the fermi energy of Ep, is called a

“

Fermi sea” . In the second quantization representation, we can write

i#) = I o)

ez<Ep

h?k?

Let us now demonstrate the calculations for the expectation values of the second
quantized operators in the Fermi sea.

e Particle density 62

N 1
Fla(f)OF) = = = —k>
(FIMPBF) = 77 = —kp

e Particle-particle correlation function 63

i eoE) = (5) (- k= 7))

5 sinkpR — kpRcoskpR
k3R

f(krR) =

The above equations show that the particles repel each other in the real
space given by the Pauli’ s exclusion principle; the effect is known as the
Exchange hole.

162

(FIp(MOF) = (FI$T () (F)|F)
- %Ze*i<‘3f’3’>'?<F\d£d5,|F>

1 N
_ t _
- v Z <F\d,;dE|F> v
Eez<Ep
while 5
L - 1 4r? 1
N = 1=(— dk =V ——kt =V _—k}
(%) /€E<EF gr3 3 F 6r F

—

16311 calculating the interaction terms, we first write g(F—7") = §(F— BA)8(F' — Rp) to directly
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7.3 Mean Field Equations: Hartree-Fock Equations

Now we consider obtaining the basis function ¢;(7) that includes the lowest
variational energy we evaluated in the last subsection. Since the basis function
is known as the complex quantity, we write the variation of ¢} (7) while knowing
that we may take the variation of ¢} () independently of ¢;(7). Before we do
so, we consider the binding condition by introducing the normalization condition
J &r @i (F)pi(F) = 1 using a set of N Lagrangian uncertain multipliers €;, ¢ =
1,--+, N : (We will consider the orthogonal conditions later.)

s ZE@/ i 60) =
- <_ h;ZQ ol 47T60 Z/d?’ /|(pj H'\ )901(77)
(e

obtain from J — K as following:

(F|n(F, 7O F) = > /d3r/d3r’6(F— RA)6(7' — Rp)

k<kp.k'<kp

(wk( NPl (PP *(*')zzj,g,(r*'w,z,(mw,g(ﬂ)

_ T <1 L iRRp i B ik B iR Ra
V2 V2

k<kp,k'<kp
- L ¥ (1_4@—%')'(&—1@3))
4 k<kp.k'<kp
1 1 o5 N2 L
= W( Z 1)2 _ W‘ ezk-(RA—RB)‘Q _ (V) (1—f(kjF|RA—RB|))
k<kp k<kp

Here we calculate below:

N kel Ba— Rpl) = L3 e 2 1 L7 / dF ¢+ Fa=fip|coso
V V k<kp V (277)3 k<kp
1 kF eikRAB _ e—ikRAB 1 k'F k'F
= 2 dk k> = dk ksin kR
(2r)3 7(27) o ikRap 2m2Rap /0 o SIERAL
_ 3 1 sinkpRap — RapcoskrRap
For2 krR> g
_ E sinkpRap — RapcoskrRap
v kpRop

giving fo dk cos kR = + sin K R, note that we have fo dkksinkR = 75 (sin KR — KRcos KR).
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We rewrite the above:
HF%’(F) = 61‘901‘(77)

The operator Hr can be defined as:

AV lo; (7
H — o SIAR AN —
rO ( 2m +o(7 47T€0 Z/d |77 — 7" )O(T)

(e,

The non-linear operator Hr provided above can be applied to all ¢ and therefore,

the solution will be the orthogonal system. !6* This is called the Hartree-Fock
equation. Here note that the equation itself depends on ¢; of the solution thereby,
the solution must be determined self-consistently. Usually, this equation possesses
more than one solution in the N-particle system:

{wi(M}, =1+, N

However, based on the variation principle, we know the solution that contributes
to the lowest total energy can only become the ground state. We organize the

N-functions that provide the ground states to the N-particle system:

—

P1 (1), on(7)

The eigenvalue €V and the total energy of the Hartree-Fock equation can be

given by (we clarify the N-particles dependence in the form) 6
N
e = 1@+ (V) - KY(L5))
=1
EN = ZIN +Z JNZ] KN(i,j))
1<J

1641f we show a Hermitian of Hr while no degeneration being observed, we can understand that
the eigenfunctions of different eigenvalues become orthogonal. The Hermitian we show is clear
by leaving out the kinetic energy; the Hermitian of the kinetic energy is already known.

165The Hartree-Fock equation is integrated over all space after multiplied by ¢} (7):

e = 1@+ N6 - KNG)
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166 Now we consider taking away (to make travel a finite distance) one electron
in (7). To be succinct, we consider the ionization of the orbit ¢, (7). In this way,
the Hartree-Fock equation changes its form, which causing its solution to change
in accordance. So far as the degree of change being negligible, the system |G, «)
in N 7 1 particles system can be obtained as described in the below. The system
below comprises the electron configuration of excluding ,, from @Y (7), -+ | pN(7)
that attributes to the ground state in N-particle system:

|G, a) = CI T lelclﬂ --10)

The total energy of the ionization of the system within this approximation can be
written

EN-Ya) = (G,alH|G,a)
= > IO+ > (V69 - KV )

i#a i<jiita,jta
Let us define the ionization energy Z(«) (where there is no relaxation of the elec-
trons system) as

I(a) = EN o) - EB)

So, —€, gives the ionization energy of the orbit: 67 168

Z(a) = —€Y (Koopman'sTheorem)

Fermi Sea and Hartree-Fock Equations

Let us now identify that the solution of Hartree-Fock equation includes the Fermi
sea. Here, we assume the system is in a uniform positive charge background to
satisfy the condition of electric neutrality. One-body potential is therefore given

. 2 L e nrr 2 1

166Note that 4 = j terms in Coulomb integral and the exchange integral cancel each other

(cancel the self-interaction).
167

I(a) = Eijil(a) — Ep
N
= —1Va)- Z(JN(aJ) — K(a,i))
= —€

168Tn general, a stable particle-system takes €; < 0
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Here, the electric neutrality condition gives the charge density of the uniform
positive charge:

N
P+ = %
In the following, we consider the Hartree-Fock equation of the orbital function ) =
%e T First, we write the Coulomb term of the operator as (given (|¢> = ) )
e? N 1
d3 /_ /d3 rer - _
47T€0k; / V|T—T’| 4e " V|r—7 o(r)

This can be canceled by the potential term. While, for the commuting term we
may write

Y A M A
d3 / 2 : —zk T ezk~r ezk T
47r60 / V3/2 ! \

k'<kp

(e /d3r’ 3 1 1 Ernem L s
d7eg ol V|7 =7 VV

_ [ _ e? /d3r’ lei(g_k’/)'R 1 iR T
41eg V R VV

k' <kp
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This indicates that the orbital function ——e*7 becomes the eigenfunction of the

T
Hartree-Fock equation such that the eigenvalue € can be obtained by 162 17
27.2
S
ke 2m k
1 e i(k—k,)-R
egx — d3 /
A LD O
k’<kp
2 2
e’ 1 k2 —k kr + k
— Sy (N log | -£
dmeg 2k krp —k
169
ei(k—K,)-R 2 iK-R
/ Er Y G = g [ [dR RO
2 2
47T60 k,<kF 4dmeg 27 K
e? 11 ~ - o o1
= —— [ dK(2n)*6(k — k,/ +K)—
e 2 V27r2/ Gmyolk =k ) 1
K <kp
e? 1 1
4meq k'ngV |k —k’|?

170

21 - 1
= 6772/ dk/ ——
dmeo ™ Jir <k |k — k|2

1

2 1 kr - 1
= = Zor / dK'k"” / d(cos 6) .
dmeg T 0 1 k2 + k'° — 2Kk’ cos 0

2 kr t=1
- 677%/ k' k'
0

log |[k? + K'* — 2kK't |

4dmeq w2 —2kK’ —
2 kr k' k
= b [k W log| ‘
47eq 0 —
e’ 1 7 a— kr +k
= k £ I
4m07r<F+ ok 0® kF—kD
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8 The Single-particle State and Mean Field Ap-

proximation in Electron Spin System

8.1 Hamiltonian of Many-particle System

Based on our discussion in the last section, we investigate the many-electron
systems as the model of typical fermion systems with the spin. Note that the
Coulomb force is independent of the spin in the Hamiltonian, which we may write
as

H = Ho+ Hint
_hQ 2
H = 5 [ @i T o))

o=1,2

2

Hoo = 5 0 [dr [ @ aloul 7)o b))

47'[‘60 |7?— T‘_7|

o,0'=1,2

8.2 Spin-orbital Function

Except for the interaction, the term Hj forms the simple sum of the spin variables
in the Hamiltonian thus, has a single-particle state in the separation of variable
form |ju). We can describe the fact in the form

Holjp) = €ulin) (€, =€)
i) = @;(F)xu(o)ch,]0)

(o400 ) = i)

Here c¢;, is the annihilation operator of the fermions, which satisfies the anticom-
mutation relation

{cjus C;’u'} = 010> {Cjus cjrw} =0, {C;W C;’u’} =0

While x, (o) represents the orthonormalized spin function. Let us suppose s, =

B, whose eigenstate =T can be written as '™

B B
szx1) = §IXT> s:0x1) = —§|X1>

s, = Z(é _01> XT>:((1)> X1>=(?>

In this way, we have x1(1) =1, x1(2) =0, x; (1) =0, x;(2) = 1.

171
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X1(0) = Ix1)or  X1(0) = [X1)o oc=12

These spin functions satisfy both the orthonormality
(Xulxw) Z X, (o = O

and the condition for the completeness

Z Xu) (Xl = T2
qu = b0

The space coordinates 7 and the spin coordinates 0 = 1,2 are together regarded
as 7 = (7, 0), the orbital function ¢;,(7) can be defined as

Oju(T) = ¢;(Mxu(0), 7= (F0)

Note that our discussion in previous section can be applied exactly the same way
to the cases having the spin by considering the spin-orbital function.

8.3 The Total Energy of Single-particle States

We write the following single-particle wavefunction for the N-particle system:

|G> = |j1M17 T 7]NILLN> = C}l,ul o .CIN/,LN|O>

The expectation value of Hy under this state can be written according to the

discussion in the previous section: 72

N

(GIH|G) = ) 1(ja)

16y = 3 [ 7 = 3T+ ) )

n=1

172We use the normalization of the spin function: ({u|u) =1 )
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The expectation value of interaction also follows our discussion in the previous
section:

<G‘Hint|G> = Z (J(kn:umjn’Tn’) - K(knﬂmjn’Tn’»

n<n’
. e [ [ s len(T) P lm)]e; (F) P v]v)
J(kp, jv) = m/dr/d’r T
_ s s e Ples (PP .
B 47T€0/d /d |7 — 7| = Jk.J)
L s [ s )i (7)) (plv)es (7) (v ) n(T)
K(kp,jv) = 47reo/d T/d r |F—f’|
47reo F | m 0 U v

Note that the exchange integrals here contribute only to the same spin functions.
The total energy E7 is therefore written

ET—ZI )+ Y TGndn) = D K i)

n<n’ n<n'
Hn = Hn’

goon

8.4 The Hartree-Fock Equation in Electron Systems

We discussed the one-body wavefunction in the last section:

G) = ljrpun, - dinpen) = ¢l oo el 0D

Now we consider obtaining the orbital function ¢;(7) which includes the total
energy as“ stationary” in variation terms. In here, we assume that the spin
function is already given. We write the orbital function that possesses spin up
T electrons as gp} while we describe the orbital function that possesses the spin
down | electrons as gpf , and introduce them by using normalization condition and
N-undetermined multipliers. The result, which is in the form of the Hartree-Fock
equation, can be easily obtained by recalling the spinless cases:

Hipl(7) = €lol(P)
Hppi(7) = eroi (i)
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The operators H}, and H}. are defined respectively in the forms:
h2v2 |§0 —*/ |2
HLO = | - dr' =2 | O(F
F ( 2m 47T60 Z/ |7 — 7| ) (7)
¢’ A ) O(F )
_ d3 /T Jn s

pn=1

ﬁ2 0).(
Hl _ 3.1 1F g \" )1 —
+O < +/UF)+47T60 E /d |r—r )O(T’)

=/

L (R

sHn—

l

These nonlinear operators H}, and Hy are found in the equivalent forms in the
equations for the orbital functions of respective spins thereby, the solutions of the
equations can be naturally given in the orthogonal systems. One can understand
the solution of the different spins by considering the spin functions; the orthogonal
systems can be also given.
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PartlV
Electronic Structure of
Many-Electron Atoms

9 Periodic Table and One-electronic Level of Atoms

9.1 One-electronic Level Structure of a Hydrogen-like Atom

We begin with obtaining a single-particle structure of a hydrogen-like atom. The
Schroedinger equation for the Hamiltonian in our case can be written

2

h— P _
2m r
hy) = Ey
Ze?
o =
471'60
The angular momentum operator:
L=Fxp
L; = €ijiripr
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can give 173 174

[L,h] =0

Further (obeys the Pauli’ s),

— ]_ - —
M=—({pxL—-Lxp)-—

/F'
2m

RS

173We can first write

[rispj|f =rip; f —pjrif = ripjf — (pjri) [ — ripj f = +ih0;ri f = ihéi; f—ri, pj| = ihdy;
i, flg =pifg — frig = (pif)g + fpig — fpig = (pif)g = —ih(0if)g —Ipsi, f] = —iR(0if)

[pi, ™" = _ihai(Tjrj)in/Q = ih(n/z)(rjrj)inﬂ*l%i = ihmr—" "2

174

[Li, pa] = €ijk[rjPk, Pa) = €15, PalPk = th€iarDi

L B

2
[Li, ] = €iav[rapy, Pepe] = €iab(pe[ras pe) + [Tas Delpe)po = 2iheinpepy = 0 [L, 5

(i, = €iap[raPo, 7] = €iabTalPo, 7] = €iapTaihr 21 =0
Likewise, [L;,r~"] =0

Thus,
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which gives 17

[M,h] =0
So, L and M become the conserved quantities. Further, 176

2
[Ma, Mb] = —’ih—h(—iabCLc
m

(5% L — L x §)i,p?] = €ijulpi L — Lipr, pepe) = €ijn(pj[Li, p*] — Ly, p*lpr) = 0

[(Fx L= L x p)i,r~ '] = eijulpj L — Lipe, '] = €iju([pj,r~ 1Lk — Ljlpr, 1)) = ilr Segjp(r; L —

= ihr €1 (T €kabTaDb — €jabTaPbTk)
= ihr*{(0ia0jb — 6ib0ja)TjTabb + (Sia0kb — SitOka)TaDbTh)
= z‘hr*?’{(?’jripj —7§7ipi + TiDkTE — TkPiTk)
= ihr=*{rjrip; — r’pi + riperi — rr(repi + [pis k) }
= ihr 3 (rjrip; — 2r°p; + riprr + ihr;)
ri, 0% = —[p*,r ] = —r %] — [P e = 2ihr g — [p
= 2ihr‘1pi — pz[pe,?‘_l]m - [Pe,r_l]pﬂ“i
= 2ihr " p; — ihper 3rer; — ihr 3 reper;

[ril 2,7’71]7’1-

= 2ihr " p; — ih(r3pg + [pe, 7)) reri — il 3 repers
= 2ihr Yp; — ihr 3 pyrer; — ih[pe, r~ ]rm — ihr 3 reper;
= ihr™3(2r%p; — pereri — repers) — 3(ih)2r O rerer

= ihr_3(2r2pi — perer; — Teper; — 3ihr;)

Thus,

[M;,h] = 72—1717" 3(7'J7’zpj + 7iPETR — DeTeTi — Teper; — 2ihr;)
= —2—1717" 3 (reripe + ripere — perers — reperi — 2ihr;)
= —%Zhr 2 (relris pe) + [ri, pere] — 2ihr;)
= —2—1717“ 3(rilrs, pi] + s, pilri — 2ihry) =0

176

-

(Fx L— L x p); = eiji(pjLr — Lipr) = €iji(pjLe — piLj — [Lj, pr))
= €ijk(pj Lk — pr Ly — ihejrapr) = €ijr(pi L — peLlj) — 2ihogp;
= €k (pj L — pel;) — 2ihp;

= €ijk(Pj€kab — Pk€jab)Tals — 2ihp;

{(6iabjb — 6iv0ja)Pj + (0iaOkb — dibOka )Pk }TaPb — 2ihp;

= p;TiPj — PjTiDi + PkTiPk — PkTkDi — 2ihp;

= 2pjrip; — 2p;jripi — 2ihp;

= 2p;(pjri + ihdi;) — 2p;(pirj + ihds;) — 2ikp;

= 2p°r; — 2pjpiry — 2ihp;

LjT‘k)
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In the bound states E < 0, we can write

Such that we can assume:

U@ <L~ L xp)a (5 L~ L x )
=[p°ra — piPari — ihpa, P’y — PipeT; — ihps)
=[p°ra,p?re — pjpu1j — ihpy)
— [Pipari, 1y — PjpoT; — ihpy)
— ih[pa, P°ry — PipuT; — ihps]
=[p*ra, p°rs) — [P°Ta, Djpers] — iA[D°Ta, D]
— [piparis P°1) + [Pibaris PipeTs) + ih[piDaTis P)
— ih[pa, P°16] + ih[pa, ipo75] + (iR)2[Pa, Do)
={P*[ra, P’Irs + P[P, 7olra} — {0°[ras ipo)rs + Pipulp®, 7jlra} — ihp?[ra, o)
— {pipalri, P°Ire + D2[Piba, o]ri} + {Pibalri, ipo]r; + PipoPiba, Iri} + ihpipalri, po)
— ihp?[pa, 7o) + ihp;ps[pa; 7]
={2ihp®pary, — 2ihp°pera} — il{p® (a;ps + davpi )T — 20PeDjTa} — (iR)*P*6ab
— {2ihpipapiry, — ihp* (SipPa + Sabpi)Ti} + iB{pipa(8ijp6 + 6itpj )T — PiPb(Si5Pa + Sajpi)Ti} + (i7)*pipadis
+ (ih)2p*Sap — (1h)*p;Pp0aj
4 5 1 5 2

.y 2 2 2 . 2 ‘ N T 22 2
={2ihp*pary — 2ihp ppra t — iR{D* (P70 + dabP;7;) — 2P PePTa} — (47)*P“dap

4 1 6 7 7 6 3
— {2ihpipapiry, —ihp* (Pats + Sapvpiti)} + iR{DiDaPbTi + DoPaD;T; — DibbPaTs — Dabobirs ) + (iR)*pypa

2 3
23\2 2 23\ 2
+ (ih)°p=“Sap — (i1)“paps
=ihp? (paTh — pora) = ihp? (roPa — TaPb) = —ihp*(TaPp — ToPa)
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1., - = _
5[(p><L—L><I7)a,7“ ry)

=[p*ra = pipati — ihpa, v~ 'ry] = [P?ra, v re] = [pipari, v ) = ihlpa, v )
=pilpi, v )10 + [Pi, 7 rolpira — pilpa, v relrs — [piy T ol pars — ihlpa, v )
([Pa, 7 18] = 77 Do 78] + [Pas 7 H1s = —ihr ™ 50p + ihr3rars)
=ihp; (=1 85 + 13 riry ) + iR g T3y )pira — ihpi (=1 ay + 73
— (=1 g 4 r 3y pari — (iR)2 (=1 oap + 73 reTy)

3 2 1 3
1 3 1 3 1 3
ZZH{—pr Ta + Pt °TiToTa =T DoTa + 1T “TiTuPiTa +0abPiT ™ Ti — PiT ™ “TaTpT;

2 1
—N— ———

+ 1 pary — r 3 rirypars Hibr T gy — ihrfgrarb}

2 1
=ih{—ppr™ e + 17 (pary — pora) + 7T (DiTa — Pati) F0abpir T i + ihr T gy — ihr ey}
2 1

=ih{—ppr ' + 17 (repa — TaPb) + 172 Tir (TaPi — TiPa) F0abpir T 4 ihr T Sap — ihr P rary}
1
. -1 17N -3 -1 -1 =1 2 =3
=th{—pyr " ra + 17 (ToDa —TaPb) + 7 "TiTsTaDi — T ToPa +0apPit 1T + ihrT dqp — ihr T rary}
1

1

=ih{—pyrrq — v rapy + T3y raps + Sappir i 4 ihr T 04 — ihr 31Ty}

This gives

A% L~ Ex Do) + [ r (5 £ — L x 7]}
= ih{—pyr'ra + par 'y — 1 (rapy — 1opa)}
= ih{=r""pyra — [po, 7 ra + 77 Pars + [Pas 7 e — 7 (Fapy — Topa) }
= ih{r~" (=pora + Pars) — 7 (raps — TbPa)}
= ih{r~" (=rape + T6Pa) — 7 (raPb — ToDa)}
= —2ifir~ (rapy — T6Pa)

Thus,

1 . = = _
[%(pXL—LXma—OéT 17'(17

1

M, M,
[ as b] 2m

(FxL—Lxp)y—ar '

1 o
= 7722hp2 (T(Lpb - pra) + —2ihr 1(Tapb - pra,)
m m

2 [ p? 2
— —inZ (p - a)eabCLc — —ihZ ey, L.
m T m

€abeLc = €abc€cijTiPj = (5ai5bj - 5aj5bi)ripj =TaPb — TbPa
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Now we write 177

il
itl §1

I
itl §1
N
I I
o o

N

Further we can write 178

[M;, L;] =€ My,

[M;, L;] =€ My,

177
M-E: 7(5)( E—E XmiLi —Oz’l“_lTiLi

E(p% — pjpiT; — hp;)€iabTaPb — AT Ti€iabT oDt
1 .
_EGiab(pjpi""jrapb + thp;Taps)

1 .
= —Eemb{pjpi(pbwa + [1j7a, po]) + thpi (pora + [Tas b)) }

1 .
= —Efiab{pjpi [7§7a> D] + ihpilra, po]}

1 .
= *Eﬁab{pjpi((;japb + 8apra) + (ih)*pidapt = 0

L-M=(M-L)y=0
178

2 . _
[M;, L;] = aﬁjab[sz — pjpir; — hpi, TaDb) — Q€japr i, Tapy]
2
:EGjab{[p2, 71(1]pb7ﬂi + P27"a [Tia pb]
— [pjpi, ralpor; — PiPiTA[T5, DY)
—ih[pi,ralpe}
— a€japra{r [ri,po] + [r " po)ri}
2ih
:Hejab{_2papbri + p*rabip
+ (8japi + SiaPj)PbTj — PiPiTaljb
+ Z77:572(1]711}
- ogejabra{r715ib - 7"737‘;,7“,»}
_in
T m
+ €5ibP;PbTj
+ ejibihpb}

—1
- OAGjaﬂ‘a’f‘

{€aiD’ra

. 2 . _
:Zh'fija{%(pQra — pjpaTj — ihpa) — artr,} = €ija M,
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Calculate for M2, we obtain '™

179
M? :{Leiab(pal/b = Lapy) — ar‘lri}{ieicd(pCLd — Lepa) — ar~tr;}

2m m

:ﬁ(%c(%d — Sadbe) (PaLy — Lapy)(PeLa — Lepa)
a %qab{(p“Lb — Lapy)r~'ri + 77 ri(paly, — Lapy)} + o

=ﬁ{(paLb — Lapy)(PaLs — Laps) — (PaLy — Laps) (PoLa — Lvpa)}
— %Giab{(pa[zb — Lapp)r 7 + 77 i (pa Ly — Lapy)} +

First,

(PaLv = Lapy)(paLle — Laps) — (Palv — Lapy) (P La — Lvpa)
=(paLt — Lapy)(PaLs — Lapy — PoLa + Lipa)
=(paLy — poLa — [La; o)) (PaLlt — PvLa — [La,Pb] — PoLa + paLly + [Li, pa))
=(paLy — poLa — iheapepe) (PaLls — PoLa — iheapepe — PoLa + paLly + ihepacpe)
=2(paLy — pyLa — iheapepe) (Palt — PoLa — iheapapa)

=2 {paLb(paLb — ppLo — iheqpapa)
— pvLa(paLy — PyLo — ih€qpapa)
- Z.heabcpc(pa-[/b - pra - Z‘FLGabdpd)}
=2 {papraLb - paprbLa - Z‘heabdpaprai
— pvLapaly + poLappLa + itheapapyLapa

- iheabcpcpaLb + Z'i;ufabz:pcpbl/a - h26abd6abcpcpd}

=2 {pa(paLb + [Ly, pa)) Lt — papoLoLa — theqpapa (paLls + [Ly, pa))
— poPaLlaLy + py(PoLa + [La, b)) La + ih€apaps(PaLia + [La, pa))
— 522])2}

=2 {P2L2 — paPvLvLa + W €apacpacPape
+ popaLlaly + p°L? — B eqpaadcpope — 2h2p2}

22{2p2L2 — PaPoLyLg + h226acpapc

+ pbpaLaLb + h226bcpbpc — 2h2p2}

=4p> L + 4h*p* + 2paps(LoLe — Lo La) = 4p* (L + h?)
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2
M? ==h(L*+1?) + o
m

In the next step:

€iav{ (PaLs — Laps)r™'ri = €iap{par™ " Lori — La(r™"py + [po. v~ '])ri}
=€iap{ (1" Pa + [pa, ") Lori — v~ Lapyrs — iRLar ™ >ryr;}
=€iab{ (™' pa + ihr—>ra) Lyrs — v~ Lapyr:}
:eiab{rflpaLbri + ihr*?’(Lbra + ihepair;)Ti — rilLapbri}
:eiab{r_lpaLbri + ihr‘gihebajrjri — r_lLapbri}
(75, Lj] = €jab[Ts, TaPb] = €jabTalri, Pb] = th€japradiv = ihe;jaTq

=r " eiap(PaLls — Lapy)ri + 20%r ™1

By adding the two above, we obtain

M2 _ﬁ L2 h2
*mg( + )

a
— 5.7 Yeiab (Ti(paLb — Lapp) + (paLli — Lapb)Ti> + 2%} 4 o

‘While we know

€iab{Ti(Palv — Lapy) + (PaLls — Lapy)ri} = €iabiriPals — 7iLape + paLlvri — Laperi}
=€;ap{TiPale — 7i(PyLa + [La, b)) + (Lopa + [Pa, Ls|)1i — Lapyri}
=€iab{TiPaly — rippLa — ihri€qpepe + Lypari + iheapepers — Laperi}
=¢€iab{TiPal — TipyLa + Lypari — Lapyri}
=€iab{TiPa Ly — rapily + Lypars — Lypira}
=¢€iab(TiPa — TaPi) Lo + Li€iap(PaTi — PiTa)
=€iab(TiPa — TaPi) Ly + Ly€iab(riba — rapi) = 2L*

‘We can obtain

o 2

2
M? =L (L2 ) = (L2 4 ) + o

mr

2
==Nh(L*+h?) +a?
m
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For the bound states energy E < 0, we can write '8

2F
0= m«LiM)+W%Hf

At the same time, we know that

- 1 - =
- 1 - =
J=5(L - M)

and 181

[I,, I]] :Zhéwklk
[JZ, J]] :'Lheukt]k

satisfy the commutation relations for the angular momentum thereby, independent
of each other: 182

[Ii, J]] - 0

180
2F 2F
— M2 =" (L4 +
m m
2F
0=""(L*+ M? +1*) +
m

Zj((LiM) +h?) +a?

1
4
ih ~ ~ -
=Z€ijk(Lk + My + My + Li) = €11

11, = ([Mi, NI+ [WEs, L] + (Lo, 8T, + [Lz»Lj]>

[Ji, Jj] :i ([Mi’Mj] — [M;, Lj] — [Li, Mj) + [Li,Lj])

ih ~ ~ -
:Zeijk(Lk — My — My + Li) = €1 Jk
182
1
[IZ,J] :4[ +MZ,L —M]]

:1([%7%’] — [Li, My] + [M;, L) — [M;, M;])
Zihqj'k([/k - Mk + Mk — Lk) =0
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Using the half-odd integers ¢ and j, we can express
I? =R%(i+ 1)
J?=hj(j+1)

and given L - M = 0, we let n be the integers and further write 83

o ma? l
2h2 n?
Since the degeneration I =L+Mis given, the possible L for i = ”T_l can be
found in
n—1
0.1.---
) ) ) 2

The total degeneration therefore can be expressed as
n—1

(204 1) = n?

v ‘

~
Il
o

183

Thus we write

2F
0 ="—(4I* + h?) + o?
m
2Eh?
= 4i(i+1)+ 1)+
“ @i 1) +1) +a
2Eh? 2ER?
= (n=1)n+1)+1)+a?="——n?+a?
m
E:ima2 1

282 n2
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9.2 The Hamiltonian in Many-electron Atoms

We consider the following second quantization formalism as the Hamiltonian in
many-electron atoms of having the nucleus at the origin with the charge +Ze:

H = Hy+ Hyy
Hy — / dr 1 (r)h(r)o ()

ﬁ262 Ze?
B ;/df'iﬂl(?#)(— 2m _47360 r )1%(77)
Ho = 5 [ dr [ arslmpl gl = vt
= g ] O e (7))

/dT = /d?’rza:

The second quantized operator:

(1) = o (r), T =(r0)

which forms

d)a,u(T) = ¢a<F)Xu(O->

,a complete set of normalized spin-orbital function for the bound states in central
force field, and which can be further defined as in the followings:

(1) = olP) =D Gal)xu(0)Cap

{CL#’ Ca'“/} = 60‘“’ 5##’7 {Ca,,ua Ca’u’} - 07

a:nlm = {1s, 28, 2pm—1---}
AV 1 Ze? . S
(- Joun() = €unn)

om dmeg T
52¢nlm(7:‘) = hzl(l + 1)¢nlm<7z‘)

— h—»
! = 7"x =V
1
1
s:x11(0) = igth(U)
5 1.1
x11(0) = §(§+1)h2>m(0')
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Now, by using the fact that both the angular momentum and the spin being
conserved, we can express by spectroscopy notation:

9.3 Periodic Law of the Elements and the Shielding Effect

If the interaction between electrons can be ignored while the electrons move
independently then, the ground state of N-electron system can be obtained by
packing the particles of up to two for each level of the eigenstate of Hy in the
lower to the higher energy order. Let us summarize the single-particle eigenenergy
€ntm Of Hy:

e Let n be the principal quantum number, be the orbital angular momen-
tum quantum number, and m be the magnetic angular momentum quantum
number.

e We define n = 1,2,3,---, which can be also expressed as £ = 0,1,2,--- ,n
or £ =0(s), £ = 1(p), £ =2(d), and ¢ = 3(f).

e The energy degenerates for the magnetic angular momentum quantum num-
ber. (Spherical-symmetric potential)

€nlm = €Enlm/

e The energy also degenerates for the orbital angular momentum quantum
number. (Peculiarity of Coulomb force)

€nlm = €nl'm

e The smaller the principal quantum number n, the lower the energy becomes.

€nm < €nim, N <1,
(1s) < (25) < (3s) < - --
(2p) < (3p) < (4p) < ---
(3d) < (4d) < - -

In considering the interaction among electrons, the center of the nucleus is
known to have relatively large electron density, and which gives a stronger shielding
against the central force generated by the nucleus thereby, the interaction energy



— Quantum Mechanics 3: Electronic Structure of Many-Electron Atoms — Hatsugail4b

is considered to be low. There is a greater probability for the existence of inter-
action at periphery of atomic nucleus when there is smaller angular momentum.
Such effects may in fact provide us a clue for solving the degeneration problem of
the orbital angular momentum for a pure Coulomb force. Given these facts, it is
clear that the ground states of the elements in the small to large electron number
order are given by the electron configurations described in the following.

H'  (1s)*
He?  (1s)?
Li®  (He)(2s)!
Be*  (He)(2s)?
B°  (He)(2s)*(2p)"
C°  (He)(25)*(2p)?
N (He)(2s5)*(2p)’
0% (He)(2s)*(2p)*
F?  (He)(2s)*(2p)°
Ne'®  (He)(25)*(2p)°
Na''  (Ne)(3s)
Mg  (Ne)(3s)?
AlY* (Ne)(3s)*(3p)*
Sit* (Ne)(3s)%(3p)?
P (Ne)(3s)*(3p)®
S (Ne)(3s)*(3p)*
CI'™  (Ne)(3s)*(3p)®
Ar'®  (Ne)(3s)*(3p)°

Up until this point, we all understand the above with considering the Coulomb
force. Now, we only consider the Coulomb force to just pack the electron in 3d;
however, now we should further consider the shielding effect we have discussed
before, which makes (4s) energetically lower than 3d:

KY¥  (Ar)(4s)
Ca®®  (Ar)(4s)?

Therefore, the electron is filled first in (4s). After for a while, the electrons go into
(3d), which are called the transition metals. The electron in such elements found
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at the farthest from the nucleus possesses some common properties that (4s)? has,

hence the two shares the similar chemical properties.

Sc*t - (Ar)(3d)" (4s)

Ti#*  (Ar)(3d)*(4s)

VE - (Ar)(3d)(4s)

Cr** (Ar)(3d)°(4s)'  ( ewception)
Mn®*  (Ar)(3d)°(4s)

Fe*®  (Ar)(3d)°(4s)

Co™  (Ar)(3d)(4s)

N (Ar)(3d)°(4s)

Cu®  (Ar)(3d)"

(Ar)(3d)

Zn30

0(45)t  ( ewception)



— Quantum Mechanics 3: Electronic Structure of Many-Electron Atoms — Hatsugail47

10 Electron Configurations and Multiplet Struc-

tures

10.1 Multiplet Terms and Perturbation Theory

In the previous section, we generalized to understand the effects of many-electron
via the shielding effect. Now, we take a look at the Coulomb interaction with a
perspective of the perturbation theory. Before we start, it is important to note
that the Hamiltonian including the interaction takes the total orbital angular mo-
mentum as well as the total spin as the conserved quantity. We will study this in a
second quantization form. Generally, in the second quantization, the total orbital
angular momentum operator and the spin operator is given as

I - /d?’rZW GEXG
§ - / S (et (7)

More precisely, the operators above can be expressed by using a specific repre-
sentation:

7)) = —ikFxV

wy
I
|
4
q
q\

Here ¢ = (04, 0, 0,) can be understood as the matrix representations called Pauli
matrices in the following: ¥4

0 1 0 — 1 0
O-:L' == 3 Uy == . ) O-Z == I
10 1 0 0 —1

02 =1, 0,05 = —0504 (0 # B), 0,0, =i0,,- -
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The above satisfies the commutation relations for the angular momentum:

[LZ‘,LJ‘] = ZhEUkLk
[SZ‘,Sj] = iheiijk

185For example,

L, = [&rf P13 S B (P ) it B
- [ 113 SO =7 X )L al7) 60 = )} D7)
= [ 113 S OO X Db Vo) ()
b [ @ UL ih7 )i V)00
Thus,

(L Ly]

/d3r D WL A= x V), (—ihi x V1) (7)

ih [ o STl in < V). (7)
= dhL,
To give an example for the spin operator:

8.8, = [dr [ @13 S Gl 0% bo (VL) 10" ()

oo’ TT!

2
= %/diﬂr /d?’r/ZZwi(f’)g[o'w]gg,{fwi(f'/)l/}‘,/(f’) + 6(F = )05 Yo Y] 7t (7)

oo’ 1T

- % / dST / dgrl Z Z w; (F)wi (F/)[am}m’/ [Uy}TT/U)T/ (F,)d)a/(’f?)

oo’ 11!

O L G e ety

ot!

Thus,

[z, 5]

h
Y RS ST
= RS, ”
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L and S commute with Hamiltonians that include interaction. 186 187 188 189 190

186FOI‘

[Ho, L] = 0

, we understand from the following that it obeys:

B2 B ,
Hole = ~(5) [dr [ @30S 6l09, 2baliol (7)62 v ()

() / dgr/ dr' YD LAV (UL T )0 (7) + (77 Voo o (7)
_(%>/d3r/d3r/zzwl/(7zﬂ)wl(?)ﬁr 2wa(m€:y/wa’(F/)

2

(o) [ @Y w9, 2 o (7]

2
Loty = ~() [ [ Er 503 (o (P T )

(5 / & [ dr 3 S L () 4 80 Vi) ¥ 200
o) [@r [ S S P o D P )
~(5) [ @S0 T 2 ()

18TNext, we consider the interaction term. First we have
2

(5)  HiniLa = [ @ ST G T~ 7 (7 ()0 ()6 ()

oo'o!

= / dird'r'dr” Y0 WL () <f—F'>wa/<f'>(—wm")wam+6<f 73 )z Yo (i

oo'c!

= / drd®r'd*r"” Yy QLEYL g = ) (=)o (P01 (7 Vb (P oo ()

oo'oa’

+ [ dordtr DML TAOTERTA

= /d3rd3r’d37“ DR INGEVIGEE ) (1&2/:(?”)%'(77’) —o(F" - F”)(Sofa”)%(f')%”ww/ G

oo'o!!

+ / Erdr 33 T )9 = 7 () (7
= [drarate D P g~ 7 Yo (7)o (I i ()

- [ @ PILILRATE STLTAY

+ / dirdr’ S S O EL ()97 7)o (7)o (7)
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188While we can write

2
(5) Lol = / drdir'dr” Y0 Pl o (T (g (7 = 7)o ()60 (7)

oo'o!!

= /dg dS /d3 " Z 1,[;[// _’H < W( )wn”(F//)+§(F7?”)5(70”)7/13;/(7?/)9(7? 7_"/)7/10’(7?/)7/}0

oo'o!

=[S O b (7L (P 7 (7 ()

oo'o!!

s [ S il ( gl = P )

oo’

= [draran S ol w*wr( W () = 87" = 7)o (7 = ) (7

oo

s [ S ulee (66 - e )

oo'c!

= [ S L b (gl T )

oo'c!

- [ e (o= (00

oo’

s [t 3wl e (e = e (7))

oo’

[ S g 7 (Y () )

oo'o!!

+ / drd®r" Yy L (P (7 — 7 e (P o ()

oo’

I 2k SR IC T G O TG Tl

oo’

b [ S L L G~ o () ()

oo’

b [ B S ) (0 = ) ) )

oo'o!’

Therefore,

2
(%)_1[Hint;La] _ /d3 Br" Z ¢T” 11 ¢T (”')((ﬁﬂ _|_€r> (H// W))%/W')%NW")
0

We used the fact that the angular momentum is the first order differential operator. Physically,
the interaction is the internal force of the two body force such that the angular momentum is
conserved.
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189 As for the spin we can write

HoSo = [ a3 whh(r)balPIl () salaror e ()

oolc!

= e @) - e+ 56 e Ysolrorbar ()

oo'o!

— / Erd®r’ 3 WL ) PR alarer o (P ()

oo'o’

/d%zw (MA(r)[sal oo tor (7)

SuHy = / Prar’ 3 Wb saloron i (715 PR )o ()
- [eeee S v ( BT () 807 = i ()1
- / Prad’r’ 32 WO lsaloror b (7o ()
+/d3r ddr’wa,/(f‘)[sa]gfgh(r)u)o(ﬁ
Thus, :

190

(Hine: Sl = 3 / d*rd*’ g(|F - 7)) / @S W Yo (7 ) (), 05 (P [t ()]

oo'c! o'

=5 a0 [a@e0.2) [ae) [aop e @u@en).' @)

Here we have

[ (1)1 (2)0(2)9 (1), 91 (3)[s]3av(4 )] WY ) (2)w (1), 9" (3)[s]s41(4)]
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[B(2)p(1), ¥1(3)] = v(2)v(1)¥'(3) — T (3)w(2)w(1)
= p(2)(~v (3)w(1) +6(31)) — v 3)w(2)v(1)
=6(31)9(2) - 6(32)¢(1)

[ (1)01(2),8(3)] = —6(31)¢1(2) +8(32)01 (1)

[ (1)91(2),p(4)] = —6(41)81(2) + 8(42)01 (1)

Thus,
[Hint, Sal /d /d (1,2) /d (DT ()T (2) (¥ (2)[s]141(4) — (1) [s]2at(4))
+5 [ d) [ a29.2) [ A @lsnv! @) + 61 @) s OUE)
=5 [ 4) [ a29.2) [ a3 0 @@l - 60k (3)

43 [ [a290.2) [ a6/ @) @0 + 61 @) Do)

—5 [0 [ g2 [ ae

< {1 (2)1(2)07 (1)[s]13¢(3) + ¢ (1) (1) 9T (2) [s]25¢(3)
—1(2)1%(2)91(3)[s]s19(1) — ¥ (1) (1)¥7(3)[s]s29(2)} =
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In this way, we may have

(i, Lol / d(1 ¥ (2)g(12)5(2) (1), 6T (3)0a (3)1(3)]

—5 [dwae)
<AV ()l

—5 [ dmaeae)
< (U B (1 (2),BBNg120020(0) + ¥ (1! 2)g(12)[()0(1), ' (3))a(3)(3))

—; [ dmaeas

3)
x {07 (3)La(3)(—8(31)01(2) + 6(32)07(1)g(12)1(2)1(1)
+9T (10" (2)9(12)(8(31)9(2) — 6(32)1:(1))la(3)1(3)}

1
:§/anam
< {( G () (1) (2) + ¢*<2>6a<2w<1>)g<12>w<2>¢<1>

B[ (1)01(2)9(12)9(2)p(1), w(3)] + [T (1)01(2)9(12)1(2)1 (1), 1(3)]¢a(3)(3)}

+9T(1)y!(2)9(12) (20(2)%(1)1/)(1) - 1/}(1)%(2)1#(2)) }
1

=§/ﬂuam

x {=T(1)01(2)0a(1)g(12)(2)e(1) — ¥ (1)1 (2)0a(2)(12)8(2)1(1)
+uT(1)Y!(2)9(12)0a (1) (2)0 (1 )ﬂbf(l)w*( )9(12)€a(2)9(2)1(1)}

—— 3 [ awae)w @) (g )) B + 1001 2) (20012 )20}

)
—— 5 [amaewi wu e (o )w D} =0
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191

[H,L]=0, [H S =0, [L,S]=0
Each energy eigenstate can be given as a set of simultaneous eigenstates of S 2 8.,
EQ, and L. Among which, the degeneration of energy can be observed for those
having different S, = Mg and L, = M. While among the levels with different
52 = S§(S+1) and L2 = L(L + 1), there is no matrix element for the Hamiltonian
thus, the energy can be considered separately. 92

To be more specific, when electric configuration {(nf)™} (1 <n, < 2(20+1) is

1T et us have

192\When the Hermitian operator @ is commutable with the conserved quantity; i.e., commutable
with Hamiltonian, the matrix element of the Hamiltonian becomes zero among the states with
different eigenvalues of O:

[H,0] = HO-OH=0
ol1) o1]1)
0)2) = o022)

01 02

RIS

Here,
0 = (o1[H,0Olo2)
= <01HO—OH|02>
= (01 — 02){(01|H|02)

Given 01 # 09, we can write
(01|H|o2) =0
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given, the interaction terms are not made merely by the summation of the spins
such that each spin can possibly hold different energies. Under no interaction, the
levels which have been degenerating may begin splitting at each value of the total
spin. These are called multiplet terms. We will investigate the multiplet with a
few examples after some preparation steps in the followings.

10.2 Angular Momentum Operator, Spin-orbital Function,

and Second Quantization

Let us first make some preparation before we demonstrate a concrete example
of calculations. We use a particular spin-orbital function to rewrite the angular

momentum operator and the spin operator. '3
193

lidom = h/EFm)EEm+ D)pmi
Ezqsém = hm¢Zm
st 1) = Rl
s—|T) = hlD)
s = A1)
sl = —3hlD)

L= [ @ Y va)t00(7)
= Y o) [ dr Y6506y (e
! Ji’
= Z hmcilmuc”lml’«

nlm

and so on.
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.I.
E hme,,,. Crlmy

nlmpy

L, +iL,
Z h/(LF m) (I £m + 1)CLzmi1uCnlmu

nlmpu

1
Z §h(CleTCnlmT - Cleicnlml)

nlm

Z hCTnlmTCnlml

nlm

_'.
Z hcnlml Cnlm?

nlm

The operator is expressed as

Vo(7) =D ba(Mxu(0)ca, = (nim)

While one body term of the Hamiltonian can be written as

_ E T
HO - Enlmcnlm’ucnlm,u

nlm,u
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The interaction term can be written as 9%

Hiyy = E I(nl,ll;nQal2;n37l3;n47l4) E E
n1,l1;n2,l2;n3,l3;n4,1l4 £m

my, Mo, M3, My

mitm=my 3, E(lymy, Lymy) et (layma, Isms)
mg+m = mgy

T T
X cal N cag 2 COCB 2 0@4 sH1

c(Im,I'm') = ,/% JdQY ()Y e ()Y, () : real

194

2
Hint = Y [ drdr v () oo (7)o et (7 (1)

~ dmeq |71 — 7]

/ 1 * * —/ =1 =
-y / dF dF ;TOW ST 6 ()00, (7 )by (), ()

ap,02,03,004

X Z X:l (U)X:,g (OJ)XU«3 (U/)X/M (U)Civl,plc];z,ug Ca3,ﬂ«3 Ca4’ll«4

H1,H2,143, 44

2
" 1 Z . « 1= " Z
= /d d l47T60 |T 77;»] ¢a1 (F)¢a2(r/)¢a3<rl>¢a4(?) Cgl,ulcgg,pzcasyﬂ2ca4yul

ap,02,03,004 H1,H2
S [avar [a0 [0 o R 0B R () R 1)
a1 ,062,x3,004

<Y,

lml(

Q)Yizmz (Q )}/ZS"LS (Q ))/147”4 Z Ca1 Mlczf)zz M2C(XS w2 Coy

1,142
2

¢
€ r
47T€0 Z Z 2£+1 /darlll n4l4 /d’l“ Rn2l2 nglg(’rl) : =

rerl
a1,09,03,004 I >

x / 4OV} ()Y ()i () / 4 Y} () Vi () Vi s ()

§ T T
X COzl,;l,l CO(Q,I,LQCOésﬂu‘QCOéALHU’l
M2

= > I(n1,11;na, lo; na, Isina, a) Y > > lima, lama) et (Iamy, lsms)

ni,li;na,l2ins,lzina,ly £m my,mo,m3,myg 1,02

my +m=myg
m3 +m = ma

t
Xcot1 s Oéz 2 00437112 ca4,M1

4
!(Im, I'm!) 1/2£+1/dQYlm VYo ()Y, () - real
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10.3 Some Concrete Examples of Multiplet Terms and the
Method of Trace

10.3.1  (1s)(2s)

In this case, there are possibly four different degeneration states for the non-

perturbation:
(19)1(25)1) = el,;el10)
(19)1(25)") = clych,10)
(1s)4(25)T) = el chy10)
(1s)H(25)") = el e, 10)

We use the above as basis for calculating the degenerate perturbation theory. To
make diagonalization of 4 x 4 Hamiltonian matrices, the conservation of the spin
and angular momentum, which we discussed in the last subsection, should be
considered. Here, we use h = 1 in the calculations. The linear combination of the
four states above can give the eigenstate for the total spin. To demonstrate this, let

us first confirm that Sy |(1s)"(2s)") = 0 and S.|(1s)"(25)") = (5 + 3) |(1s)"(2s)")

are the eigenstates of S =1and Mg=1:
S?(19)1(25)1) = 1(1+1)|(15)"(29)")
S:|(1s)1(29)T) = 1-|(19)1(2s)")
In other form, the above can be written as
1S =1,Ms=1) =|(1s)'(25)")
Likewise, we can write
S?|(1s)'(29)1) = 1(1+1)|(1s)"(25)")
S:(1s)1(2s)") = —1-|(1s)"(2s)")

The above indicates that |(1s)!(2s)!) being the eigenstate of S =1 and Mg =
—1:
1S =1, Mg =—1) =|(1s)"(2s)")

The states for Mg = 0 can be obtained by linear combination of |(1s)(2s))

and |(1s)*(2s)), and among which the state for S = 1 is proportional to 1%

195Demonstrate this.
196 Demonstrate this.
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S_1(18)1(28)) = (cly a1 + lyyenst + - )l(15)1(25)")
= 1(15)"(25)") +1(1)"(29)")

Consider the normalization we have

S =1,Ms=0) = %(Kls)wzsm T 1(15)'@5)))
Loy

_ T T
- E(CLSTCZ?T + ClsTCQSl)‘())
The rest of the states we know from general theory of angular momentum for

S = 0 can be written as an orthogonal form of the above:

S=0,Ms=0) = ——(|(1)'(25)) - |(15)(25)"))

-5

_ A Tt
= _(Cmczsl - 0131025T>|O>

S

We obtained the eigenstates without conducting diagonalization of the Hamil-
tonian matrices. This, in fact is one of the important features of the conserved
quantity. We can easily understand how this may take place by the figures below
that describe the dimension of the basis using the orbital angular momentum M,

and the spin angular momentum Mg:

My

NN

(D)—2)>—2) V]
S
-1 0 1

Abbreviate the negative parts, we have
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M L
M S

In general, the state for the total angular momentum L and the total spin S
is expressed as 2L (S(L = 0), P(L = 1), D(L = 2), F(L = 3) ). The triplet
degeneration state for S = 1, for example, we have 35 while for S = 0 we have 'S.

The energy for 35: 197

E(*S) = (*S|H['S) = ((1s)!(25)"| H|(1s)"(2s)")
I(1s) + 1(2s) + J(1s,2s) — K(1s,2s)

While the energy for 1S be 1%
E(*S) = (*S|H|'S) = I(1s) + I1(25) + J(1s,2s) + K(1s,2s)
'S) = %( |(15)1(2)") = |(1s)'(25)") )

In the above, we directly obtained the energy for 1S. We now reconsider the
above from different view. The Hamiltonian matrices are diagonalized by unitary
transformation of the basis as we have demonstrated, and the traces of matrices
are known to be invariables. The z-component of the angular momentum M is the
conserved quantity so that the diagonalization procedures can be taken by each
M since there is no matrix element found among the blocks that have different

Ms. Hence, the trace is same for the before and after diagonalization. In our

197Using the degeneration, we have |(1s)(2s)T) for 3S.
198

b (7o (P (15) (25)1) = (—1)(<P15(7')|T)a'@zs(7)|l>a—s02s(77')l>o'<ﬂls(F)T>a>0>
b (7o (P (15)25)1) = (—1)<<P1s(F/)|l>a'<P2s(77)|T>a—sﬁ2s(77')T>a’80ls(777l>a>0>
Thus,

(YS|Hint|'S) = =(2J(1s,25) — 2K (1s,2s) + 4K (1s,25)) = J(1s,25) + K(1s,25)

1
2
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present case, for example, the block of M = 0 is the 2 x 2 matrix having the basis
(1s)1(2s)! and (1s)}(2s)!. After we make diagonalization for them, [consider the
multiplet terms which will be given by this block] we have 1S and 3S. So, we can
write

((Ls)'(2)' [ H[(L1s)"(28)") + ((1s)'(25)'|H|(18)(25)") = ('SIH|'S) + (S|H[’S)
Thus,

E('S)+ E(S) = E((1s)', (25)") + E((1s)", (2s)")
=2(I(1s) + I(2s) + J(1s,2s))

For the block of M =1 we have

E(*S) = E((1s)", (25)")
= I(1s) + 1(2s) + J(1s,2s) — K(1s,2s)

Hence, we obtain
E('S) = I(1s) + 1(2s) + J(1s,2s) + K(1s,25s)

We call the above,the method of trace. Further, we determine the wavefunction

for the coordinates ' representation:

@357Ms=1(7_1’177?2) = <T1772301702‘35>
_ U b en(@)xi(on)  eus(i2)xi(02)
2! | @as(T1)x1(01)  p2s(72)x71(02)
_ L ©01s(T1)  ¢15(72) - o
B 2 ()023(_)1) 9023(_'2) XT( I)XT( 2)
= LQ (9015(7“1)(,025(7”2) - 9028(7?1)%018(772)) X1 (Ul)XT(Uz)

1
= E (@15@25 - @23@13)XTXT

In the same way we can write
Vagares (Fa7) = (solsmms(fz) - so2s<ﬂ>sols<f2>>m(al)xl(az)

(90139023 - 90289015) X1X]

S-Sl -
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The wavefunction for 2S and Mg = 0 that are left out can be written as '*°
S 1 - - - S0\ Xa(o1)x (o2) + x (01)x1(02)
\E =071, T = —F= s\ s\T2) — s\T s\T
ssarsmalfin ) = < ((enlFpa () - () v

1 +
= = (90159023 - @23@13) M

V2 V2

Apparently, the functions which belong to S are antisymmetric to the switching
of the particles 701 <> T509; however, we should note that the space component
for the functions, the antisymmetric spin component, has symmetric property.

For 1S, the function can be obtained as

Vs ag=0(71,72) = = (9013(7?1)@23(7?2) + 9025(7?1%013(?72)) X1(01)x1(02) = xi(01)xi(02)

V2 V2

1 X1X| — XIX7

- E (90189023 + @23@13) \/§

The space component is symmetric while the spin component is antisymmetric

for the above. The difference observed in the space components of the wavefunction
creates the energy gap in physical terms.

10.3.2 (1s)(1s)
In this case, only one state is applicable to the non-perturbation state:
(1)1 (15)") = el ych,10)

where Mg = 0 is only valid. It is obvious that S = 0 therefore, 1S is the only state
we obtain.

10.3.3  (1s5)(2s)(3s)

In this case, we can consider 2° = 8 degenerate states for the non-perturbation.
To make a list of the states in terms of Mg, we have:

199

rorsonela) b = o] SANe fe
- %(‘Pls(Fl)S@s(FQ)XT(Ul)Xl(02) = #25(F1) 15 (F2)X1 (01)x1 (2))
1

(r1,72;01,02|(15)"(25)") (p15(71) 025 (P2) x1 (1) X1 (02) — 25 (1) 15 (F2) X1 (01) X1 (02))
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Mis | Mas | Mas | Mg
1 1 1 3
2 2 2 2
1 1 _1 1
2 2 2 2
1 _1 1 1
2 2 2 2
1 _1 T S R §
2 2 2 2
S U I R I R
2 2 2 2
_1 1 T S R §
2 2 2 2
1) 1 1 _1
2 2 2 2
_1 _1 1] _3
2 2 2 2
Therefore,
Mg | Number of states
3
5 1
1
2
M
= + 2
M M
\—(:)—(:)—S \—C)—(:)—S -O—(O—
1 3
2 2

In short, we are having one S and two 2S.

10.3.4  (2p)(3p)

In this case, we can think of (2 x 3)?> = 36 degenerate states for the non-
perturbation. To make a list of the possible basis states using Mg and M, we
have:
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Mg | My, (2pe. )" (3pe, )1
1 2 (2p1) T (3py)!
0| 2 (2p1)"(3p1)*, (2p1)* (3p1)!
—11] 2 (2p1)t(3py)*
|1 (2p1)"(3po)", (2p0)' (3p1)"
0| 1 (2p1)"(3po)*, (2p1)* (3po)"s (200)' (Bp1)* (2p0)* (3p1)'
-1 1 (2p1)*(3po)t, (2p0)* (3p1)*
I (2p1)'(3p-1)", (2po)'(3po)T, (2p-1)'(3p1)!
0 | 0 | (2p)'Bp-1)" (2p0)'(Bpo)*, (2p-1)"(Bp1)*, (2p1)*(Bp-1)T, (2p0)*(3po)", (2p-1)*(3p1)!
—1] 0 (2p1)* (3p-1)*, (2po)*(3po)*, (2p-1)'(3p1)*
1 -1 ( ) (3290) (2290) (319—1)T
0 —1 (229—1)T(3po)l (2]0 1) (3]?0) (2p0) (317—1)i (2170)l(3l?—1)T
-1 -1 (2p-1)*(3po)*; (2po)*(3p-1)*
1 | =2 (2p_1)"(3p_1)T
0 | =2 (2p-1)"(3p-1)*, (2p—1)'(3p_1)!
—1] =2 (2p_1)*(3p_1)*
Therefore,

@
1@
OO
o 0O
S0 "0
020
O O
0 ~ 00 "0O0
®
O O O
O ~ o0 "0QO0
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In other words *D, 'D, 3P, 1P, 35 1S are given as multiplet terms.
According to the method of trace, the energy can be expressed as following forms
as we are given F(a, 3) = (a|H|3) and D = E(3D):

*D=((2p1)' (3p1)"[H|(2p1)' (3p1)") = E((2p1)'(3p1)")  (Ms = 1, M, = 2)
=1(2p1) + I(3p1) + J(2p1, 3p1) — K(2p1, 3p1)
'D3D=FE((2p1)' (3p)") + E((2p1)' (3p1)") (Mg =0, M =2)
=21(2p1) + 21(3p1) + 2J(2p1, 3p1)
P +°D=E((2p1)"(3po)") + E((2p0)' (3p1)") (Mg =1, M, =1)
=1(2p1) + 1(3po) + 1(2po) + 1(3p1)
+ J(2p1,3po) — K (2p1,3po) + J(2po, 3p1) — K (2po, 3p1)
°9 +°P +°D=E((2p1)' (3p-1)") + E((2p0)'(3po)") + E((2p-1)'(3p1)") (Mg =1, M, =
=1(2p1) + 1(3p-1) + 1(2po) + 1(3po) + 1(2p-1) + 1(3p1)
+ J(2p1,3p-1)) — K(2p1,3p-1) + J(2po, 3po) — K (2po, 3po)
+ J(2p_1,3p1) — K(2p_1,3p1)
'P3P+'D3D=E((2p1)"(3po)") + E((2p1)* (3po)")
+ E((2p0)' (3p1)") + E((2p0)' (3p1)")  (Ms =0, My, = 1)
=1(2p1) + I(3po) + I(2p1) + I(3po) + I(2po) + 1 (3p1) + 1(2po) + I(3p1)
+ J(2p1, 3po) + J(2p1, 3po) + J(2po, 3p1) + J(2po, 3p1)
'S5+ P+ P+ D2 D=E((2p1)' (3p-1)") + E((2p0)' (3p0)") + E((2p-1)'(3p1)") + E((2p1)* (3p-1)
+ E((2p0)' (3po)") + E((2p-1)'(3p1)") (Mg =0, M, = 0)
= 21(2p1) + 21(3p_1) + 21(2po) + 21(3po) + 21 (3p1) + 21(2p_1)
(21 3p-1) + T(2p0,3p0)) + T (20-1.3p2) + (21, 3p_1)+
+ J(2po, 3po) + J(2p-1, 3p1)
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Recast the above to have

3D

1 *
11 D *
1 1 3P_>x<
1111 p || x
1 1 39 *
111111 1s *

The equation has a solution because the left side of the matrix has 1.

10.3.5 (2p)?

There are 4C5 = 15 degenerate states for the non-perturbation. We make a list
of possible states to be the basis by using Mg and M:

=
=
~—~
)
=
&
~—
—
P

O O O = = O O = =N
S
-
=
~—
—
—~
[\
=S
(=)
~—
—
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Mg | M, |0DODO
0| 2 1
0| 1 2
0| o0 3
0 | -1 2
0 | —2 1
11 1
110 1
1| -1 1
1] 1 1
—1] 0 1
1] -1 1

Therefore,

OO+,
O O O
O "~ o0 00

In other words, 2P, 'D, and 'S are given as the multiplet terms.
In determining the energy by using the method of trace,

‘D =E((2p)'2p)") (Ms=0,M, =2)
= 21(2p1) + J(2p1, 2p1)
°p= E(2p1>Ta (2P0>T) (Ms=1,My =1)
= 1(2p1) + 1(2po) + J(2p1, 2po) — K (2p1, 2po)
LSHDHP = E((2p1) (2p-1)") + E((2p1)'(2p-1)") + E((2p0)' (2p0)")  (Ms = 0, M, =0)
= 21(2p1) + 21(2po) + 21(2p_1) + 2T (2p1, 2p—1) + J (2o, 2p0)

can give the energy. To provide with other multiplet examples and their results,
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10.3.6 pd

3F,3 D73 P,l F,l D,IP

10.3.7 pds

‘FAD*P2(*F),2(*D),2(*P)

10.4 Electron-hole Transformation and the Multiplet (nl)”
10.4.1 Multiplet (nl)”

For the multiplets which fill the electrons of the particular orbits, we can obtain
the following results:
o pt: 2P
e > :3P'D'S
3 . 4 52 D 2 P

4: 3P,1D,1S

=T ~ T~

5.2p
e d': 2D

« @:3P3PLGIDS

« @ 'PAP2H2G2F2(2D)?2P

o d*:°DPH3G,2(3F)2*D,2(3P),} I,2(*G),} F,2(* D), 2(15)
o @SS GAPADAP2I2H, 2(°G), 2(2F),3(2D) 2 P2 S

o °:°DPH3G,2(3F)2*D,2(3P),* I,2(*G),' F,2(* D), 2(15)
« &' ‘P P2H2G2F2(2D)?2P

« & 3F3P1G DS

« 2D

The above indicates that (nl)* and (nl)??*+1)~* are given by the same multiplet
term due to the electron-hole symmetry. In the following, we will investigate this

characteristic.
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10.4.2 Electron-hole Transformation

When we limit the electron configuration to the particular (nl), the angular
momentum and the spin operator can be

L,= Z Z hmciwcm“
mo o

Ly= Z Z (I Fm)(l£m+ 1)c;rni1ucmu
mo o

1
S, = §hZ(CInTCmT - ijcmi)
m
Sy = hz Cimcml
S_ = hz CjnlCmT

Let us define

U= H H(Cmu + C:rn,u)

m.p

then U and
Ulv =UU" =1
are the unitary operator. 2°° Now we write
L' =ULU",
S =USut

which giving

therefore, 20t

o 1 .
o= SWALL+ L)+ L = I

5= &

200

(c+c) (" +¢)=ccl +cfe=1

201

(c+ cNele+ ') = clect = ¢
(c+cNel(e+ch) =c
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So, for the arbitrary multiplet |G), we can write

L?|G) = AL(L + 1)|G)
S?G) = hS(S +1)|G)

This gives

Ucm“U = cmu

UCJr U = Cmpu

Thus,

L= 303 memchy,
m 14
= Zth mucmu) —L.
L/i _ Z Z h\/ l :|: m l +m+ 1>Cm:i:1ucinu

:_ZZh\/lq:m Yl £m+1)cl ChupCmEp
ZZR\/Z— (I +m+1)el, emap

m

- ZZR\/ (=m/ + 1)+ m/)cjn'—lucm’uy m' =m+1

m’

—L_

_ZZH\/(Z+m)(l—m—|—1)c;rwcm_1u
:—ZZTL\/Z—FW—FI Y(I—m )m_‘_l“cm“, m =m-—1

:—L+

1
r_ T Ty
S, = §h;(0mTcmT - lecml) =-5,
Sho= hz lecjn‘[ =-S_
m

S = hz CmTCInL =-S5

m
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So that we can write in the form: 202

16"y = RL(L + 1)|G")
|Gy = hS(S + 1)|G")
|G') =UIG)

As we can readily confirm: 23

|G> c (nl)x PN |G/> c (nl)2(2l+1)—$

2(204+1)—z

Therefore, generally speaking, (nl)* and (nl) may give the same multiplet

term.

10.5 Hund ' s Rule

Although we can determine the multiplets that are given in the way described
in the last few subsections, further calculations (integrations) are required to de-
termine the energy states for such multiplets. In considering the states which
contributes to the lowest energy level, an experiential rule called the Hund * s rule
can be applied.

Hund’ s Rule: Among all multiplets that are given by an electron
configuration, the spin with the greatest level may possess the lowest
energy. When there are more than one maximum multiplicity spins
then, the one with the greatest orbital angular momentum among them
has the lowest energy level. In the case where there are more than
one maximum multiplicities of the greatest orbital angular momentum
then, the spin which has the greatest orbital angular momentum L has
the lowest energy level.

202

UL*UTU|G) = hL(L + 1)U|G)
US?UTU|G) = hS(S + 1)U|G)

203Tp the case for d®, if we have
[6) = clyel chyl0)
then we can write

t') =Ult) = CT—mCT—QLCT—HCT—uC(T)TC:ruC;T‘0>
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Yet it is considered as an experiential rule, the Hund ’ s rule has been widely
accepted. As we have discussed earlier, in the physical terms, the spin function
indeed holds symmetric property in electron replacement for the spins with maxi-
mum multiplicity while the space part of the wavefunction is antisymmetric based
on the Pauli ’ s principle. In other words, the wavefunction becomes zero when
arbitrary two electron coordinates are the same, and from which we may assume
that the Coulomb interaction energy among electrons can be obtained. For the
orbital angular momenta of the same spin, the greater the momentum, the less
chances are for the electrons to come close to each other since they move at farther
distance away because of the centrifugal force. For the last part of the rule that
relates to L, there is a small Coulomb repulsion and the low probability for the
electrons of greater m value to come close to each other in filling out the parallel

spin.

10.6 Spin-orbit Interaction

In considering the electrons in an atom with large atomic number, the relativistic
correction will be required. The most important term can be the spin-orbit inter-
action. By following the procedures we demonstrated in our earlier discussions,

the term written below can be added after the second quantization: 2%
204
10V - h
3 _
Heo =C [ d*r S e L), 0= g
1 oV
fOZZ/drr )2 () — €l 't
nl n'l’
X Z Z Xu SUU XM ) / dQY’l:n(Q) Z}/l’m/ (Q)Cllmucn/l’m’;ﬂ
oo! pp!
=Y &'
nn'l m
1 *
5] el [ 035, @) £ Vi (@h iy
bl ) [ A0 (@) € Vi@l 1yt |
+ Z X/L|SZ|X[1 /dQ)/lm( )Ez }/lm(Q)CIleucn/lm/L:|
hQ
= Zé(nl,n/l) Z 2{\/(l + m)(l —-—m + 1) nlm lTCn/lml =+ \/ l - (l +m + 1) nlm-‘,—lTC"/lmi

nn'l m

+ m(cjzlmTcnllmT - C']:L[mlcn’lmi)}
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h
4m2c®

Hso = /d?’ S S T (), C=

oo’

—C S [ o) S dntr) — gl

nl n'l

x Z ZXN 0)850' Xy (0) - /dQY}in(Q) gY}’m/(Q)Cjzlmucn’l’m/ﬂl

oo’ !
= Z§ TLl n l Z Z lmX/J«’ ‘Yim’Xu > nlm,ucn'lm W
nn'l m

As far as the effect of the term described above is concerned with only to the
discussion of the multiplet; i.e., the eigenstate of L and S, an effective addition of
the term to the Hamiltonian is known to be able to bring such discussion:

HY = AS- L

Having confirmed with the fact above, we can easily understand that the appli-
cation of the term no longer allows to conserve the spin and the orbital angular

momentum; however,

-

(J? = §2 — [?)
L

Bl = 4

N | —

J =8

+

which indicates that the composition of the spin and the orbital angular mo-
mentum ./ is in fact the conserved quantity:

J: = J(J+1)
J = |[L-S|,|[L-S8|+1,---,L+S

Therefore, the degenerating levels other than 'S in the multiplet, which we dis-
cussed in the last subsection, are considered to further split due to the spin-orbit
interaction. The structure of further splitting of the multiplet is called the fine
structure. This fine structure can be given by

@%:Aaﬂj+n—uL+D—ﬂS+m

The interval among the levels,

AB3o = E3o — Eéal =4J
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is proportional to J within one multiplet term. This is known as the Lande’ s
interval rule. 2%

Equivalence of Hgo and HS/

Let us first define:
H,,, :/ dr wT(T)f(r)saﬁmw(T), a,m=uz,y,z
HSO =H,, + Hyy +H,,

According to [s,, $p] = ihéqpeSe, we can write
[Saa Hbm] :/ dr wT(T)S(T)[Saa Sb]gmw<7_) = iheabCHcm

for § = [ dr(T)p(T)
This yields Hy,, = Hyy, £ 9H,y,, so that

(Hazmy Hyma Hzm)
becomes the irreducible vector operator for S. In the same manner,
(Haxa Hayv az)

becomes the irreducible vector operator for L.
Now, suppose

(T2, T, T7)
satisfies
[Ja, Ts] =iheasy T,
for an angular momentum operator J. In such case,

(Ta:a Ty7 Tz)

205We first considered the multiplet splitting caused by the Coulomb interaction before we
consider the fine structures given by the spin-orbit interaction. This we call the R-S coupling.
Intrinsically, for the atoms with larger atomic numbers, only the J becomes the conserved quan-
tity. The direct treatment of the levels organized by J is called the J-J coupling.
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is regarded as irreducible vector operator of .J. 2%

The commutation relations for non-zero can be:

[J,, Ty] = £hTL
[J+,T,] — 2hTZ
[J_,T+] — —2hTZ

For the eigenfunction [jm) of J? and J,, it is written as

(ml[L., Telljm’) = = h(jm|Tx|jm’)
=h(m —m')(jm|Tx|jm’)

So that we can write
(jm|T|jm') #£0, m—m' = +1

Moreover,

Jilgm) =h/(j —m)(j +m + 1)|jm + 1)
J_|jm) =h\/(j +m)(j —m+ 1)|jm — 1)

gives

0= (jm|[J-, T ]|jm")
= /(G —m)(j +m+ 1) {jm + UT_|jm') — b/ (j + m/)(j — m’ + 1) (jm|T_|jm' — 1)

On the one hand, we have m’ = m + 2 so, we can write in the form:

Vi —m)(j+m+1)(im+ UT_|jm +2) =\/(j + m+2)(j — m — 1)(jm|T_|jm + 1)

im + 1|T_|jm + 2 m|T_|jm + 1
m+ T jm+2) _ GmiT-[ym +1) = independentofm

Vi+m+2)(-—m—-1) JGi+m+1)j—m)

206

[Ja, Ta] =0

[J2, Ty) =ihT,

[Jz,Ty] =—¢hT, 00
[J, Ty] = £hT%
[, Ty = (lJo, Ty] + il Jy, Ta]) = 0
[J+,T_] = (=i[Jy, Ty] + i[Jy, Ty]) = 2RT,
[vaTJr] = (i[JxaTy] - i[Jy7Tx]) = —2nT,
[ J=( )
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Now,

(mlJ-|jm +1) =/(j = m)(j + m+ 1)h
gives
(Gm|T_[jm +1) =c_(jm|J_|jm + 1)
Thus, we can write as

0= (Gml|[Jy, T{][im’)
=/ (j +m)(j —m+1)(im = T [jm') = ha/ (5 — m')(j + m’ + 1) (Gm|Te[jm’ + 1)

For m’ = m — 2, on the other hand, we can write as

VG +m) —m+1)(im — YT jm — 2) =\/(j — m+2)(j + m — 1)(jm|T|jm — 1)
(jm— 1|T+|jm—2> . (jm|T+]jm— 1>

Vi-m+2)G+m-1) JG+m)j-m+1)

= independentofm

Now,

(GmlJilim = 1) =V/(G = m+1)(j +m)h
gives
(m|Ty|jm — 1) =cy (jm|Jy|jm — 1)
and gives

0 = (jml|[L., T:][jm") =h(m — m)(jm|T.| jm’)
(Gm[T.]jm’) # 0, m =m'

Further, we can write
0 =(m|[J¢, T_]|jm) = 2h{jm|T.|jm)
=hy/(j +m)(j —m+1)(jm — LT_|jm) = ha/(j —m)(j + m + 1)(jm|T-|jm + 1)

—c_ b/ (j +m)(j —m+1)(jm — 1|J_|jm) — WJ— )(j +m+ 1) (jm|J_|jm + 1)
=c_2h{jm|J,|jm)

This gives

(gm|T.|gm) =c_(jm|J.|jm)
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Finally,

0 =(jm|[J-, T+]|jm> = —2h(jm|T.|jm)
=h\/(j —m)(j +m+ 1) (jm + 1T.[jm) — h/(j +m)(j — m + 1)(jm|T|jm — 1)
—cw (G = m)(G +m+ 1) {Gm+1Je|jm) = h/ (G +m)(§ —m + 1) (jm|J¢|jm — 1)
ZC+2h<Jm|Jz\Jm>

which is yielding
(m|T:|gm) =cy(gml|Jz|jm)
That is
c_ =cy

Thus, we can define the reduction of the matrix element (j||T||7) which does
not depend on m or

(m|T|jm’y =c(jm|J]jm’)
GIT|7)
ViG+D2i+1)

Cc =

We can rewrite the above as

(LSM; Mg|Hgo|LSMMg) =c(LSM;Mg|L - S|LSMMs)
(LS||Hsol|LS)
VLL+1)(2L+1)S(S+1)(2S +1)

To provide a concrete example of the above, let us suppose d" where (n < 5), the
ground state should have the maximum multiplicity spin according to the Hund ’
s rule:

S n
L, S=—
’ 2

This also gives the greatest value for the orbital angular momentum:

1 —n2 (5-
L=3n— (1424 +n)=3n— (n2—|- ) 5n2n :(5 2n)n

The states for Mg =S and M; = L:

|Ms =S, M, = L) :cg_nc;_2T . -cg_m|0)
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The above is used to calculate both sides of the equation:

1
th2§L =cSL

264
¢c=""3g

Cd =/ dr 73| ¢ri—a(1)]? > 0

Under n > 6, we may write

SleQ—n
L=—{3(10-n)—(1+24+---+(10—n)}
(10—n)(11—n) (10 —n)(n —5)

= — 1 — —
3(10 — n) + 5 5

The state can be determined as
_ _ S R B B | T T T T
Mg =S, M, = L) =C91€11C01C-11C—21C3-1C3-2] "~ CS—(n—5)1|0>

with which we calculate the both sides of the equation:

G ()@ 414+ (3 (n—5)) =€t () L) g,
2 G
c=—~h ﬁ

d6789 §

Where ¢ > 0, d"*3%5 is considered to be in the normal position while s

considered to be in the inverse position under ¢ < 0. We have ¢ = 0 for d° and

d.
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PartV
Interaction of Light and Matter

11 Classical Electromagnetic Field

In this section, we discuss the classical electromagnetic field that obeys the
Maxwell * s equation to help us understand the quantum phenomena associated
with light.

11.1 Maxwell ' s Equation

To begin, let us consider a case with a particle in vacuum, which carries an
electric charge e;, and can be found in the coordinates 7;. The Maxwell * s model

fori=1,---, N becomes
. 9B
rot B4+ — = 0
ot
. 9D .
tH—— = j
10) 5 j
divD = p
divB = 0

The vacuum permittivity and permeability are used to write in the form:

l_j = EOE

— 1 —

i = —B
Ho

For the charge density and the current density, the coordinates of the particle is
used and they are written as:

p(F) = Zeié(F—ﬁ)

.
—
Ji
Il
M=
)
N
3
(%)
~—~
=
|
33
S~—
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Note that the equations satisfy the conservation of electric charge: 2°7
dp -
— +divyj =0
ot J

As for another fundamental equation to this system, we consider an equation of
motion for a particle in 7; that obeys the Lorentz force. Here, we let m; be the
particle mass:

mr; = e, E(F) + e x B(F)

The time resolution for the particle ’ s kinetic energy T is expressed by 28
T = / dVE -j

Here we assume V' to be an arbitrary region that includes ;. The Maxwell ’ s

207

- }:@ﬁm—nﬁmw—ﬂﬁn

Further,

208
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equation provides 209
P = ExH
Eem = /dvgem
1 - .
gem = §(€0E2 + M0H2)

Hence,

d Lo
—(T+Eem)+/ dSP:O
dt oV

We understand that P denotes the momentum of the electromagnetic field while

E.., denotes the energy of the electromagnetic field. (P is known as the Poynting
vector.)

11.2 The Vector Potential and Scalar Potential

First, note div B = 0 can give
210

209Maxwell * s equation can give
ﬁ-rotﬁ+uOﬁ~ﬁ = 0
E~r0tﬁ—eOE'E = E;

We take the difference between the equations above:

L o 1d, = . -
—div(E x H) — §£(60E2 +poH?*) =E-j
= dHem IS
div P E-j=0
iv P+ p7 +L
Thus,
div(Ax B) = Oieijud;By

= €;j,(0;A;)By + €A, (0;) B
= Gkij(aiAj)Bk — EjikAj(ai)Bk
= rot/f~§—/f-rot§

210 An arbitrary vector field X can be expressed by

X=Xr+X.
divXr =0
rot)?L =0

Note that X 1 and XT are respectively called the longitudinal and transverse components.
When the vector field described above is definable in all region of space, we may express the field
by the potential:
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Xr = rot A
Xy, = grad¢
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211 212
B =rot A

211The Fourier expansion for the arbitrary field is written as

which yields

divX =

2
E

rot X = Zilgx)?,;e“;"?
k

we obtain

>
)ﬂ
Il
—~
<
B
=t
q
N2
N
Q
[+
-
Bt
=
Il
7 N
<
El
|
—
<
o~ |7
[\v]
Syl
NS
]
~_
ms
=
il

k o=12 i
o Kok ik-7 > > k-7
(Xr)o = D (Bap = =557)Xpe™ " =3 (D (&, ), )p) Xpe™
i k o=12

N N kakﬂ - -
D )alEr)s = ~i5 + D (€,)al@i,)s = Gas
o o=1,2
such that we write ek
- - alvp
(€5 )a(Cgo)p = Oap — =15
o=1,2
This is valid since
v = (U-é,)é,
Vo = Uﬁ(go)ﬁ(éa)a

is written for the arbitrary vector . We can further write the above as
(€5)5(€x)a = dap

A similar formula to the expansion of the function is given as

}:@@%@@U=Mx—f)
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L 9A
E+—) =
rot( + 81&) 0

Rewrite the equation above of the physical quantity:

Thus,

o 0A -
E= o Vo
2121 et us summarize the relationship between differential-form and the vector calculus formulas:
Q = f
dQ = 0;fdx; :gradf
d’Q, = 0;0;f dej Ndx; =0  :rotgrad f =0
Q0 = Adz; A
d = 0jA;dxj Ndx; rot A
?Q, = Or0jA; doy Ndxj Ndr; =0 divrot A =0
Qy = Ajxdr; = €pAidr Ndzy, - A
dQs = O Aidayx de; = 0;A; dey Ndrs Adas  :div A
d*Qy, = 0
Here we define
x1 = dxry ANdxo Adxs
xdry = dxo ANdrs, *dre = dxs N\ dxy, xdrs = dxy N dxs,
*(dry ANdxg) = dxs, *(drg Adzg) =drzy, *(dzs Adxy) = ds,
*(dry ANdxg Ndzs) = 1
giving
A = Adx;
*dA = rot A= (rot A);dx;
xdx A = divA
dp = gradp =Vo
xdxdp = Ao

divrot A = xdx (xdA) = d(dA) =0
rotgrad f = «d(df) =0

For the integral formula, we can write

/dﬂ2 - / 0y /divA’dV:/ A.dS
1% oV 1% ov
/dQ1 = /Ql : /rot[f-d§:/ A dr
S oS S oS

/dQO - /QO : /gradf-dfzf(f)yff?“?
L oL L T Tini
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by using the vector potential A and the scalar potential ¢.
Note that the physical quantities E and B stay constant even though the gauge
transformation is conducted under the arbitrary space-time equation x (7, t):

I = A=A+

Ix

, p— —_— —

6 - d=0-2
E'=E, B =8B

We must note that there are certain degrees of freedom left in the potential

expression. The Maxwell’ s equation is rewritten by using such potential. rot H—

ﬁzjgives
213
— o 1 5 — — . — 1 . -
—0A = ?A—AAZ—V(dIVA-FgQﬁ)—FMQJ
1
2 —

While div D = p gives
5 1
—Ap=divA+ —p
€o
Let us have a particular Coulomb gauge
divA =0
and by which we obtain two relational expressions of the Maxwell * s equation:

—D%T = = ,uoj
1
—A¢p = —p
€0
Note that the equation for the scalar potential
j: ;— 606@3

can be easily integrated: 24

1 €;
o) = 4rey Z |7 — 7%

213The equation irot rot A — eg(—A — V) = j gives VdivA — AA+ = (E+ V(b) = poj

214The solution for
~Af(7) = 8(7)

is
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Hence, we can further rewrite the first equation into the form:
> 0 = €;
J = — = V—— 4T
zi: ( ot 4r|r — 73| (= ))

Note that 2

divJ =0
Let us now suppose that the system is in a box with the volume V' and the edge
length of L. We conduct the Fourier transformation of A under the periodic

boundary condition:
216

r 1 ik
A = WZ Eek

E - _(nmnyanz)a ni:"'7_2,—1,0,1,2,---

-

The vector potential can be written in the following form by using k- _'E = 0 which

is given by div A=0:

217
k+éro=1 =0,k o= =0, €k -€ra=0
giving
A 7 t) = € E v
( \/EO_V Z 0212 kaqka'
We can use the fact that A is being real to express €_p_ = ez . This allows us to

use A = A;%. Therefore,

215

L7 0 .= 0 o=
dlez—EeoAcé—&—lej:ap—l—lej:O

216

1 - o
Ap=— [ AVA(F)e ™+
¢= o [ Vi

217

ET:Z 4%y
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Given the information above, we now move on to discuss 04 = uof. The longitu-
dinal components (components in k direction) can be expressed by using div A=0:

eik?py — k-jr=0
By time-differentiating the Poisson ’ s equation, and further using the continuity

equation, we write:
GQAgbz —p: Vr ]

And from which, the Fourier components are written as —k2¢;, = ik 5}5 and there-
fore, the relational expression for the longitudinal components is automatically

satisfied. Now, for the transverse components:
218

.. 1 2 ik
Gy + Witi, = € / dvj(r)e ™

This is the equation the vector potential must satisfy, and which is in fact equiva-
lent to the Maxwell * s equation. The equation describes the forced oscillation for
each polarized light € _.

218

€Ty ( - D[f(ﬂ) = €z, - Elov ;0_1,2 _,EU(C%(.].EU " quEU)eiE-F _ 610V ; (C%(.].EG n kquU)eiE'F
&, o (F) = & -j(F) = MOLV oo - Z ?Eeﬂ?r*
E
Thus,
Sir, +Kqz, = pHoveoly, iz = “i/\%% /dVe*,;gf(F)efig'F
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11.3 Classical Field Equations

First, we consider the energy of the electromagnetic field by dividing it into two

partS' 219 220

Eem = 1/dv (eo(fﬂ Vo)? + l(rot E)Q)
2 Ho

= Erad + Ecoulomb

Erpa = 1/cﬂ/(eofp—ki(rot A')2>

2 Ho
1 oo - -
Ecoulomb = 605 /dv (QAV¢ + V¢ ' v¢)

_ _60% / v (2¢ div A + ¢A¢>

=~ 5 [av e

1 €i€j

2 Z 47T€o‘7:; - 7:;7‘
ij
€;€; . . .

= Z ————— + (expansiontermsofthesel f — interaction)

— 47T€0|’l“i — ’l“j|
1<
Note that Eepuoms is the Coulomb interaction (we do not consider the expansion
terms of self-interaction here) while F, .4 is the energy of radiation field. If we have

219
/dVdiv(fﬁg):/dvﬁfﬁﬁ/dvmg:/ dS- Vg
oV

The boundary terms are cancelled due to the periodic boundary condition thus,
/dvﬁfﬁg = —/deAg: —/dV(Af)g

220

/dW(M):/ S - ¢A =0
oV
Thus,

/dV¢div/T: —/deT- )
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then we can write

A7) = 2 g (e
( ) \/EO_V zﬁ:al? k‘aqka< )
A(rit) = > ioPis (e
€V 5 o=12

We substitute the above into E,.q: 22

Erad = %Z Z (pEUp_Eg + Czkzqﬁoq—ﬁa)

ik o=12

189

By adding the kinetic energy T = %ZZ 7'7'2, the classical energy is expressed in

the form:
H=T+ Erad + Ecoulomb

We let g;_, pg,, of radiation field and 7 of the particle system be the canonical

variables, while we let whose conjugate momenta be
P = myr; + eig(ﬁ) = myT; + e, 4;
The Hamiltonian is therefore given by:

H = Hpart + Hrad + Hcoulomb
1 =4 T
Hpart = Z m, (Pl - eiA<Ti)>2

%

—

(2

1 21,2
Hrad = +§ Z (pEapEa +ck qEO'qEO')
k o=12
€i€j

D
coulomb 47TGO|FZ‘ _ 7_’3|

1<)

221For the energy of a magnetic field:

div (A xrot A) = rot A-rot A —

A.
= rotff~rotff—ff-

graddivA+ A - AA

which cancels the surface terms thus using div A= 0, we can write

/dVrot/Ymot/Y = f/dVA'~AE

1 (= 1 S\ 2
— Pz — e > L kT
Z 2m ( € feoV EZ koo )

rotrot A, (V-(AxB)=V xA-B-— B

)
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The canonical equations are given by:

OH
A4z,
OH
g,
OH
87“%0 ko
OH
oP: o
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Therefore, the equation of motion for the particles is written as 222
mt; = e;(E () + 73 X B(77))

The Maxwell ' s equation is also written as

222For the particle system we can write

. OH
T =
: opPe
— o (Pr - A7)
- m; i ) 7
. OH
_px =
¢ ors
1 — — —
= E(Pi — € A(T3)) - (—€i)0a A(Ti) + €i0ad(73)
= e} 0a AP (F;) + €i0a ()
Here note:
B) o 1 1
— H =
o outomb Ore dmeg ;) (P — 75|
R 1
T ore 4 -
or dweg frarr! |7 — 7]
= 0a€;(7;) = Oa€ith;
1, = A7)
d - dA(7) .
ZA = Ve A
dt 1 dt F:T_“l + TZ V’I’} 1
Hence,
miiy = P — e AR — e VAT ()
= e 0 AP (F)) — €00t ()
—e A (7)) — eir 0347 (7)
= ei( = 0a0(F) — AL (7)) + 1) 0. AP (i) — r] 05 A (7))
Further,
(Fxrot A)y = €apry TP €yneOn AS
(Bandse — Oagldan)i’ 0y Avi
= 0,A4° —iP9sA”
Thus,

mit, = e;(E(7;) + 7 x B(F%))
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223

1 . N

. 21.2 . > = ik-T;

4 %o + 'k 4 ks = § :ei<ri ’ eko)e ’
7

vV Eov

Therefore, we must note that the velocity for a gauge invariant particle is

Finally, we write the quantity by using the canonical variables:

Fe— A-%¢
1 = —ikT
=— = e "=V
oV

B =rot A

11.4 Field Momentum

The momentum of the electromagnetic field G is calculated with the Poynting
vectors as described in the followings:

223For the radiation field:

. OH
—Pr, =
: 04,
1 /= 1 T 1 o
27.2 ~ ik — ik-T;
= ckq_z + — | P —e €p qr ) (— e €y e
q—ko ; m; < m EZ kcqua > ( \/607‘/ ko )
L 3 Y L o ks
= C2k2q EG—’_ZE(P’L_G,LA,L) (_ez EOV Egek 1)
1 P
_ CQqu_ka = Z 61‘(7:; —»I_C‘U)ezk 7
qka’ - ap];g p—ka’
iy = DP_jy
1 S o ik T
= cszq_,w + N Zel(ri io)e k
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G = 2 dVP——/dVExH
11 S =
= —5— dV(A+V¢) x rot A
C” Ho
= Gopt G
=0 11 5 -
Gep, = ——5— [ dVAXTOtA
€ Ho
- 11 . .
Gen = ——5— [ dVV¢ xrotA
€ Ho

The momentum of the pure radiation field égm can be described using canonical

variables: 224

= —iy. k Do dis
o

We further rewrite the terms that are given due to the existing particles. (Note
that the boundary terms are cancelled due to the integration by parts and the
periodic boundary condition. Note also the Coulomb gauge conditions.):

11

G = - AV V x (¢rot A) — ¢rotrot A
€ Ho
11 11 -
= ——— [dVeAd=—S— [aV(A¢)A
€ Ho € Ho
1 1
= dV pA = e; A
% oo P Z !
224
égm = —%i de;fxroth
" Ho
11 1 1 > -
= _CQNO\/agg ﬁeﬁaplzox(z}cx;elza/ql;a’)
= _ZZ Zpkaqko" eko’ E _’1::‘0 )
i oo’
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Therefore, the total momentum Gr is given by the sum of the momentum of
the particle system and the momentum of the radiation field:

—

GT = Z mﬂ?j + éem
J
- S,
J
11.5 Angular Momentum of the Field
Let us calculate for the angular momentum fem of the electromagnetic field:

- 1

Jom = 5 dVFxﬁZE dVix (E x H)
11 R L = -
= ——5— dVFix (A+V¢) x rot A
C* Ho
= o+ Jim
= 11 5 e -,
Jom = ——— [ AV x (A xrot A)
¢ Ho
, 11 e .
Jom = ——— [ AVi'x (V x 1ot A)
¢ o

We divide the angular momentum J?m of the pure radiation field into the following

two parts: 2%

225

(A x rot A); =¢ijnAjerimOAm = (5:18jm — 6im0j1)A;01 A,
=A;0,A; — Aj0;A; = A;0,A; — 9;(A; 4) + %(8JAJ)Ai
=A;0;A; — 0;(4;4A;)
(7 x (A x rot A)) g =€apers A;0:Aj — €aperyd;(A; Ay)
=€abery A0 A — 0;(€aberv Aj As) + €ape0 (15)05 (A, Ac)
= €abe"pAj0Aj — 0j(€apervAjAc) + €apcApAe
= A;(0A)) 0 — 9 (€apervAjA) + eapcApAc

Leave out the boundary terms to obtain

/d%f’x(/lxrotff):/dBrAijjJr/dBr;fx/f
v v v
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J, = —— [ &®rA;tA
HoC
1 5
Jo=—— | $rAx A
HoC
= - Z(gka X gka/)pkUQka’
k,oo’!

If we conduct the integrations by parts to the terms which arisen from the
existence of the particles for a number of times then, we can rewrite the angular

momentum into 226

T=—eo [avaorsci= [avprx =35 x (e,
J

The angular momentum Jr is therefore given by the sum of the angular mo-
mentum of the particle system and that of radiation field:

Jr =7 x (m;r); + Jom = ZL+

J

Lj =7 x (mFy + e;A;) = 7y x P;

226

Ve x rot A =V x (¢rot A) — ¢rotrot A = V x (¢rot A) + ¢AA

7 x (Vo x rot A) =7 x (V x (¢rot A)) + 7 x ¢AA
[ x (V x (¢rot A))]; :Eijkrjﬁklmaz(mo ) = (88m — Simb5)r;0u(grot A)
=r;0;(¢rot A) 0 (¢rot A);
=0,(r;p(rot A);) — p(rot A); — 9;(r;é(rot A);) + 3 (rot A);

=i (rjp(rot A);) — 8;(rjp(rot A);) + 2¢(rot A);

[1" % ¢AAL =€k T 00101 Ay
=0 (€790 Ay

( — €ijkP0; Ak — €ijir; (O10) 0 Ay,
=0 (€i;x7; 901 Ak

(

(

— €1j100j Ay — 01 (€117 (010) Ak) + €11 (0;0) Ak + €557 (01010) A
— €100 A — 01 (€117 (010) Ar) + 0 (€ijdAr) — €ijud(0; Ar) + €k (0,019).
— O (eijir; (019) Ar) + 05 (€ijudAr) — 2¢(rot A); + (Ag)(7 x A);

=01 (€ikT;90 Ay,
=01 (k901 Ar) —

~— — —

jZmzfe()/dVAngX A’I:/dV,DFX /Y: Z'Fj(ej xAj)
J
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12 The Interacting Particle System and Electro-
magnetic Field as Field Quantity

12.1 Lagrangian Density and Equation of Motion

According to our discussions from the last section, the Maxwell * s equation is

— — — 1 . —
OA = V(diVA + C_2¢> — HoJ
1 1 -
-A¢p = ——gdiVA — Hocp
c c ot

227 The Maxwell * s equation can be written in the covariant form to the Lorentz

transformation:
DDA — 5 A") = o
O f™ = poj”
227
Lo 1
04 =V(divA+ c—2¢) — loJ
1 10 ..
EAqb = _EEdWA — locp
Note:
.- 10¢ s
leA + ga = aHAl

the first equation is then rewritten as
—0, 0" A = —0'0, A" — pgj’

While the second equation is rewritten by

1. 196 18 19
Oo- T = [ —
c¢ * e3 ot c Ot <8”A c? 8t¢> pocp

—0,0"A° = 99, A" — 11o5°
By organizing the above, the Maxwell ' s equation can be written as

Ou(D" A — 0" A) = "
O™ = poj”
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Recall our earlier discussions:

Ay= 0

C
A =—A' = A,
Ay=—A2 = _A,

The actions derived from the least-action principle, including the actions caused
by the particle systems, can be given by the followings. (7(;) denotes the eigentime

of the ith particle. (dr; = dty\/1 — Z_j)

&m=&+5m+ﬂdz/fx@¢m+gmw+ﬁﬂw)

d r = daldxtdz?da® = cdtd3

da: da: () 4
ZmZ / AT\ Guw dT ) @ —=0(
Zm C/dm g,w d7’ () dT Zm C/dt v gw,x(l )

S I

'Crad (ZE) =

4,u c
_ 3 v
St =~ / s £ f
Lo(x) = —j"(x)Au ()

Sel:/d x Loz Z:/dteZ Z/dt@l o(75, )—l—'r%lwff(ﬁ,t))
Jj*(x) = Zcei/dr()é‘l(x — ) () 26153 7Y, €500 (F — 7))

The equation of motion for the radiation field is:
0L vad 1 0

= L, A, — 0,A)(0AP — O A"
0A,(x) 4u08 88VAM(8 p = OpAn)( ’A)
= o,
Ho
0L, _
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We have already discussed the equation for the particle system.

12.2 Energy-momentum Tensor and the Conservation Law

If we multiply the Maxwell * s equation (field equation) 0, f* = poj” by fa

along with a further calculation, we obtain: 2%

a#Tu)\ = fawi”

1 1
TM/\ = (fﬁﬂfHA - _5M/\fmjfm/)
Ho 4
T*, is called the energy-momentum tensor of electromagnetic field. Specifically,
it is TH = g\VTH, -

1 1
™ (gA”gmgmf”“f o —gA”é"Af"”fW)

7% 1
1

_No

K au_l WY fRY
(gnaf f 49 f fm/)

What we described in the above is symmetric to 7" = T"* and therefore the

228

f)\Vauflw = a,u,(fkuflw) - f””(?ufM
= aﬂ(f)\l’flw) - 1f’uy(auf)\l/ - anAH)’ fwj = _f’/“

2
= 8M(fkufﬂu) - %flw(aufku + al/fu/\ + 8>\f1/u) + %fﬂuakfuu
= 8;t(fx\uflw) + %f‘uua)\fuu
= u ™) = 0N Fun) = Oul ™) = JONS™ fu)

= ulfru f) = 3050 f )

= O£ 0 = 3058

Thus,

aﬂf)\u + auf,uA + a)\fuu = a,u(a)\Au - aVA)\) + au(apA)\ - aAA;L) + a)\(auA,u - a,uAl/) =0
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energy-momentum tensor is expressed in the form: 22

1 o .

T = —§(€0E2 + poH?) = —Hem
]_ — — — —

Tko:—E(P)ka P=ExH

1 . —
T" = o EyE; + poHyH; — 5kl§(60E2 — poH?))
Note also:
0T = ™ jy

drréL

199

If the equation of motion for ith particle is written by dti) = €Ty fH", then

we can write:

229
o = —? 0 -B. B,
" = B. 0 -B
£ o B 0
c nv
faﬁ = ga#gnuﬁfuu
1 0 0 0 0 £ & E 1 0 0
B 0 -1 0 0 -£ 0 -B, B, 0 -1 0
1o o -1 0 B p o _p, 0 0 -1
0 0 0 -1 _% 0O B, 0 0 0 0
0 —E. _E, _E.
£ 0 -B., B,
=1 E
B 0 -B
= -B, B, 0 B

which gives

2 - ﬂ
FP fap = — 5 E* + 257
(&

T - 1B, P—Bxi

C

Further, Tkt = L (C%EkEl + BpB; + 5]@1%(—6%52 + B'Q))

Ho

= e EvE; + poHpH; — 51@1%(6052 — uoH?))

L
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Having mentioned the above: 230

3 0
dtz% /drT“

The expressions in each component:
Z M;c? + / d®r Hepm () = const.
P v
Z M,;v; + / d*r P(F) = const.

which represent the conservation of momentum and energy.

13 Quantization of Electromagnetic Field and the
Charged Particles

We conduct quantization of the system as we follow the classic canonical equa-
tion we obtained in the previous section. For the operators, we have the canonical
variables in the radiation field gz and p;_, and the canonical variable of the par-
ticle system 7; and its conjugate momentum }32 = mzﬁ + eiA'. The commutation
relation is imposed between the operators:

Y55 PRrgr] = 10750000
[T’?,Pjﬁ] = ih5z~j5a5

To clarify more, we use a differential representation for the particle system:

P = —ihV,

230
d H 3 v

1 ,
0 / dPr T + / T
Cat \%4

1 |
4 d3rT0“+ / dsS; T = 1o / d3r TOH
T cot g cot Jy
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For the radiation field, we express in boson representation:

_ T
qEJ - Q_C%(CL—EU + aEa)
B,
pEO’ = 1 T(CLEU - a’—EU)
lag, a%al] = Opploor
[GEU7 afl‘c’/a"] =0
T T _
[GEU’ a_E/O./] - O

The vector potential can be written by using the representations above: 23!

o 1 I h o o,
o - T —ikF ik
A(F) B vV €oV ; 2wk BEU(aEae + aEUG )

231

Il
5-
<
>t
it
q
—
IS
.
=
Q
+
S
=1
q
SN—
3

Il
-
<
i\
[N} DO
£ &
B ES
ml
Q
—
Q
l_l'
)
]
J
=
=
+
Q
E)
q
)
-
=
=
S~—

201
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Commutation Relation of a Field Quantity

Here, we calculate for the commutation relations of the field quantity: 32

[Aa(), A7) =0
[Eoz(f‘)a Eﬁ(F,)] =0

[Bol), By(™)] =0

(a7, A7) =it 01507~ )

13.1 Hamiltonian

The Hamiltonian of the classical system therefore can be rewritten by the oper-

ators we have defined: 233

232

[Aa(7), Ag()] =0
[Ea(7), Es(7')] =0
[Ba(7), Bs(i"")] =0
. . 1 . o ik (F—7"
(a7, A5(7)] == 5 3y o Fpy)olpi g le ™ )
Fo
ih > > ik-(F—7"
= o7 2o )l 7o )pe™ T
Fo
_ _ kaks ik
7€0V (5045 k'2 )

233
1 hwi,
5 g (pED'pEG' + wquO’qE0> = ; T < - (CLE‘U - a’ffg‘g)(aT_Ea - G’EU) + (a’T_EG_ + G’EU)(G%U
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234

H coulomb

203

= Hpart + Hrad + Hcoulomb

_ 221 (—ih¥, — e, A(7))?

) \/?Z\/>

= Z Z hwk(nl?o + 5)

§ oo=12

zE-ﬁ L ik
+ ag ™)

S
= g a,m,

e
-3

Z_Tj

13.2 Momentum

Here, the field momentum is written as

235

= Z hE ng,
ko

234

235

em

—

Note that we have (k «

1 h & _ikr k-7
): \/WZ ka Ea(aﬁae o +a]-€‘0€1 7)
oV =
ko
—izkaoan
ko
1 -
Eth(ai —a_g)a . +ag,)
ko
1 Tt oot f f
3 Z hk(algga,g[, —a_j, 05, tap ap, —a ggailgo_)
ko

ZFLE agoa,;o_ (k < —Fk)

-

—k) in the last form above.
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The momentum of the particle is added to the equation above, and we further

write

—

Gr = G,+G°,

—i—thnk

Il
M O]
SID?‘

<l

C_jp - Z;_)

We can also show that the commutators of the momentum and the Hamiltonian
to be defined as 236
[H,Gr] =0

14 Interaction of Electromagnetic Field with Mat-
ter

We now consider the terms A and A? as the perturbation Hamiltonian since the
absence of the terms causes the particle system and the radiation field to be sep-
arated from one another. In our following discussions, we apply the perturbation

theory in considering the issue here. The two terms are in the Coulomb gauge: 237

P A7) = A) - P

236

[eiE FJ7 _’]} _ —’L./;:@“; 7
[a,aTa] = a
[aT,aa) = —af
— — 1 h o= h - —
o - ~ T —ikT
[(A(T)a, Gr] = N ; m( o) <[aEJe , ;Vz + hkng, |
ik-T; he T
Hago e 39 g |) =0
[Hpart7 éT] =
[H, éT] = part + Hyqd + Heoutomb, G + GSWJ

rad + Hcoulomby G + Ggm]

0
[H,
(H
[ coulomb,G +G%.]
(H.

('oulomba } =0

237
[P, A(7)]% = A; - Pi(x) + (P - A;) x —A;(-Pyx) = —ihdiv A(7) = 0
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Having aware of the fact above, separate the Hamiltonian in the system:
H = Ho+ Hi

Here Hj is the Hamiltonian described in the following with the particle system
and the radiation field being separated:

HO = Hp_l'Hrad

2
H, = _ZZ_WAi+Zﬁ€jjﬁ|
Hrad - szk nkg+%>
L o=12

While H;,,; denotes the interaction between particle system and the radiation field
due to the vector potential:

H,, = HY + H®?

B = 3

m;

h(e;)? 1 h(eg, - €pyr) B
DI Oy L IR L

The non-perturbation basis set can be written by the eigenstate W,,({7;}) and
eigenenergy FE,, of the particle system, as well as by the state vector |{nj_}) of
the radiation field. (We exclude the zero-point energy in this case.):

Holm; {ng,}) = (En +an )lm; {ng, })

imi{ng, 1) = Hng, HV m({ﬁ})
Hrad|{nﬁa}> = Znﬁhwl;‘{nlza}>

Note that H") denotes the photon absorption and emission while H®) denotes
the process involving the two photons. So far, we have ignored the relativity effects
on the particle system but since we recognize the lowest order relativity correction

h =
—e—c_f -rot A
2m
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the following term then be added to the perturbation Hamiltonian:

H<S>:—Z§—a rot; A; :—Z G G-V x4
- m

Zez E e — — 7
— / etk Tiz . _ k
R /Eov Z Z 2mz _'_ aka’ o <6ko' X )

14.1 Fermi' s Golden Rule

Let us review the Fermi’ s golden rule that relates to the transition probability of
the states calculated by the perturbation theory. We consider the non-perturbation

system and its state:
Holn) = Ey|n)

Then, we suppose all system to be governed by (time independent) Hamiltonian:
H = Hy+ Hiu

We determine the probability of transition per unit time from the time zero of
non-perturbation state a to the non-perturbation state b. We assume in this case
that the perturbation is small enough while having sufficient observation time.

e Interaction representation

Schroedinger equation:
ihO W = (Ho + Hint) W
From the equation above, we let 238
U — —iHot/mgT
giving

iho, Ut = HL Q!

int
1 iHot/h —iHot/h
Hy = Mot ot

This is known as the interaction representation. Now, we write

V()= ealt)ln)

n

238Make substitution.
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and which gives:

ihé, = (nlHL,m)er

m

oK,

m

Thus, we can simply derive the conservation of probability (self-evident?):
d
&S el =0

Now, go back to our initial discussion where
ca(t=0)=1, ¢, (t=0)=0, (n# a)

and we suppose only a very little time has elapsed from the initial condition. The

successive approximate solution can be obtained by 3

i(Ey—Fa)t/h _ |

Eb_Ea

e

cy(t) = (O Hintla)

which gives
cos(Eyp — E,)t/h

les ()1 = (b Hie a) |*2 (By— E,)?

Here, if we use 240 241

1 —cosax
— lim —
0@ = i e
the probability of transition w, ., from a to b per unit time can be given by the

following: 242

1 2T
o = (O — T\ Hindla) PS(Ey — E.)

239
ihéy(t) = (b|Hingla)e! Pe=Falt/he,

240The effective range of the successive approximation will be

(0 Hintla)| << [Ep — Ei

We also know that this is time independent.
241
1 —cosax
/ dy———=m
—o0 Yy

242The validity of the substitution in the delta function can be proven by

E, — Eylt
| bl S

1
3 >
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In other words, the transition occurs between the different states with the same
energy. If the final state b, for example, belongs to the continuous spectrum with
the density of states p(E,) at energy interval dE,, there will be p(E,)dE, states,
thereby the transition probability can be

2m
[ (BB = T\l ol ol )

This is known as the Fermi ’ s golden rule. 243

14.2 Transition Matrix Elements and Dipole Transition

We now discuss the absorption and emission of light exclusively to during the
first order where we can apply the Fermi’s golden rule. To do so, we must calculate

the following matrix elements: 24

(mos {ng, ol HOllmas {ng, }o) = D My, (ko) My (k, 0)
For

ML) = = [Tlanwtan (X e, - 9) )

(2

M) = < g bltal g, + o) ng )

We use the following evaluation for the radiation field:

tn—laln) = /o

—Vn
\/%W +1lat|n) = \/g\/n—ﬂ

Now consider the matrix element M?, (ko) given by the wavefunction W, ({7;}) of
the particle system (m = a,b). We let the radius of an atom be a to estimate
the energy difference E for before and after the transition, thereby supposing the

bound energy of the atom as

2

EF=hw~

4meqga

which gives the wave number £ of the related light:

]{]:—:
A

2r w E 1 e?
e =
¢ he adrmeghce a

243The approximation.
244Consider the fermion system. For the boson system, normalization must be considered.
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Thus,

2 o' e 1 e? 1
~— -, a= N —
a a’ dreghe 1377

Note that « is the non-dimensional physical constant called the fine-structure
constant. In the region where the wavefunction of the particle system possesses
the finite values, we can only consider the wave number of the light and

k=0
Further, we write the following for the Hamiltonian H, of the particle system: %
ﬁ2
m
h2

i?(!
Since the states are the eigenstates of the Hamiltonian:
N ,e—dipol
Mbpa ~ Mg)ae rpoLe

Mpee — (5, — I, / TTarvimh( e, 7'y ) waltii)

= (B = Bl Y o, 7)o

= _Zwbaﬂa,ba
Miba = Z<b|luir|a>a hwba = Eb - Ea

%

ol-+lop= [ TLaRGERNE (D,
pl = €y Hiy [l = €Ty (electricdipole)
The approximation at i — 1 is called the electric dipole. Commonly, the

oscillator strength fp, is defined so as to express the magnitude of the transition

for b — a:

2m
fab = 2 ‘ b ‘2
e2hwp,
245
2
P P p h
= 2[p,r] = ——2(—)ih = —ip—
[Zm T] 2m [p, } 2m ( Jih lpm
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The total sum rule is satisfied by the oscillator strength of the electric dipole

transition: 246

Zfba =N
b

Some transitions particularly provide essential contributions, and those contri-
butions are considered as O(1).

If there is a zero contribution from the electric dipole approximation due to the
symmetry, the degree of order described in the following must be considered. Here,
assume eF 7 s 1+ ik - 5,

h 1 .7 — /= — —
MP ~ MP /Hdnpr (7} (Z e S ik - EJ.vi))xpa({m})

246First, confirm the double commutator in the following:

N N 1 N N N
[Zrl}aa [HP’ er,ﬂ“ :%[Zri,aa [Zﬁlgw Z rjﬁ”
i j i k j
J 1 N N J
= 2ih%[zri,aa ijﬁ]
i J

vy 1 h?
:(72lh)(lh)7N(5a[3 = —Néag
m

N N h2 h2
[Z(é} 7?1)7 [HP,Z(go . FJ)H :(é»o)a(é‘a)afN =

i J
[,[H,z]] = [v,Hx — xH]) = xHx — 2?H — H2? + xHx = 2vHx — 2*H — Hx? gives

(all, [H,])la) =2(alzHz|a) — (a]a*Hla) — (a] Hz?|a)
=2(alzHzla) — Eq{ala®|a) — Eq(a|2?|a)

—22 alz|b) (b|Hz|a) — 2E, Z alz|b) (b|x|a)
—22 Ey — E,)|(b|z]a)|?

Thus, given x = ), €, - 7, we use (a|a) = 1 and the completeness of the intermediate state:

2m 9 2 T |2
2 =2 el = 2 g P = Bl
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247
Now,

=
X
o
~
+
N}
=
=
3
o
3

which provides
P pPe—d Pe—q p,m—ds
M, ~ M, "+ M;;" "+ M,

Mg =6, B [ Tarwttn (e, - et

)

gt = [ TLanwin (3050 (56 % @) 7) alty

2

This M]“7? is called the matrix element of the double-dipole transition. The
contribution of M} [;m_dl together with the contribution of (261) is called the matrix
element of the magnetic dipole transition in the following. The contribution of
Mfczm_dz is used for handling the first-oerder contribution of H®) via ™ = 1 and
the dipole approximation:

m— Zh@l — 7 W —
My d /HdTZ {7} (Z 2m»(6EU X k) - M) v, ({7}
M=0(+¢=10+25

Before we move on to demonstrate a much more simple calculation for the
electric dipole approximation, let us take care of the calculation for the density of
states in the radiation field. Suppose the system is in a box having side length
L, the number of existing states p(E)dE found at energy [E, E + dE] then be
disintegrated into the solid angle d€) and the wave number [k, k + dk|:

247Confirm the following relation:

(E X é)(FX ﬁ) ZEijkkjekeiabTaab = (5ja6kb — 5j55ka)kj€k7"aab
:k:jekrjak — k‘jekrkaj

h2
[Hp,rirj| =ri[Hp, rj] + [Hp,milr; = —E(n—@j + 0;ri)

And thus,

1
ej(riaj — Tjai) -+ fkiej(riaj -+ Tjai)

= (Fx @) (Fx 9) + 5 [Hy, (F-7)(E-7)

(k-7)(&- V) =kirie;0; =

l\J\n—l



Quantum Mechanics 3: Interaction of Light and Matter Hatsugai 212

248

1 w?

(27)3 hed

p(E) =V

14.3 Light Emission

We consider the following transition based on our discussion in the last sub-

section:
States of atomic system Energy of atomic system Radiation field
Initial state a E, {n;}
Final state b E, v, +1

The energy of the emitted light can be expressed by the conservation of energy
(delta function of the Fermi’ s golden rule):

hw=FE, — Ej

The emission probability of the light wdf) into the solid angle df2 as the polarized
light o per unit time is determined via the Fermi ' s golden rule:

2T 1 h _
wd) = 5 X Eo—vw2|ﬂg|2 X %(nka +1) x p(E)

For the number of photons detected in the radiation field, ng, is used in the
above as the average value of the wave number k and the polarized light o. By
organizing the above, we obtain:

3

w
W = W+ Wind = mmz\z(ﬁko—I—l)
3
_ w T2
Wsp = 87T2607:L03 |/‘La| Nko
3
, w T2
Wind 8m2eghcd d

In the above equations, w;,q is proportional to ng,, and which is known as the in-

duced emission while the rest of the terms are known as the spontaneous emission.
248

dkk?dQ  _ k?dkdS

()p (23
E = hck
1 E? 1 w?
PE) = Vo5 aar =V arsne
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14.4 Light Absorption

The transition occurred by the light absorption can be considered in the same
way we did for the emission of the light so that we can write down the following
expression by use of np_+1 — ng_

W3
a 2 3
8m2ephc

Note that this representation above can be also written in another way by letting
the strength of incident light I(w)dw be 249

w, |NE|2,FL]€U

hw
I(w)dw = CTnpwdw = (velocity)(energydensity) p,dw

thus,
T

= cohi2c |tz |21 (w)

If the two-level system a and b is thermal equilibrium through the radiation
field (E, — E, = hw), we let the atomic numbers of respective level be N, and N,
to define the transition matrix elements for the particles system as A,_, = Ap_q

Wq

therefore, we obtain:
NbAb_,a(n + 1) = NaAa_,bTL

We assume the Boltzmann distribution for the particles system:

% — o~ (Bs—Ea)/kpT _ ,—hbarw/kpT
Na

which gives the Planck ’ s radiation formula:

1

n=-—-—"7
eﬁw/k‘BT _1

249

which gives
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PartVI
Appendix

A Separation of Variables for Hel,holtz Equation
in Polar Coordinates
Consider the Helmholtz equation:
Au+ku=0
We let the polar coordinates be
xr=rsinfcos¢, y=rsinfsing, x =rcosl

from which we express

0>  0* 9

fao = 5t op T oz
_ ig 22 +;g gi 92 _'_;8_2
- 2ar\ or 2sngag\ > a9 72 sin? 6 02
0? 0?
Aop = @—f—a—y?

ooy, 1o
~ ror\Cor r2 0¢?

In the three-dimension:

u(r,0,¢) = R(r)0(0)®(¢)

Rewrite the Helmholtz equation, we obtain

Au+ku = —=+ == +-

1 0 . 1 9*P 2
= _a_< a)@‘“m&(m"%> T g g T F O =0

d T2dR d (sin@de))
dr\ dr 20 o 1 d?®
sin® ¢ (% + k2r2) + sin 9% = _EW
Consider the independent variables, we write:

1 &2®
> do?

= —u? = (constant)
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d , ,dR d e

5(7' %) +k2r2 _ 1 @(Slﬂ&@) N M2
R sin © sin? @
Let both sides of the equation be the constant A:
1d,,dR 5 A
g ) (=) =0
1 d, . do >
gas M) O 5l = 0
Where ® is ®(¢) = e? its single-valuedness is ensured by pu = m = scalar :
P(p)=e", m=---,-2,-1,0,1,2,-
Where © is x = cos 6 such that
d_ded o d
d9  dfdr dx
, giving
1 d, . dO d( .,,do
Sineﬁ(smeﬁ) = %(sm 9%)
d do
= —((1=2=—=
dx (( ) dw)
Thus,

d do m?
-2 _ _
da:(< x)dx>+<)\ 1—:132)@ 0

This is known as the associated Legendre differential equation, and which is in the

form of the Sturm-Liouville equation:
d du
T (p(n) ) + o) — ge))u =0

In the case of
A=L4l+1), (=0,1,2,---

there is bounded solutions at = 1, which is expressed by P;"(x) and known as
the associated Legendre function of the first kind.

B Spherical Function

B.1 Legendre Differential Equation

d dP, d Iy
— (1 = 2% == P = —|(1—-a%)— 1)P,
dq:[( $)dx1+Ag dx[( x)dx}+£(€+)e

= (1-2®)P/ —22P]+L({+1)P, =0
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This is called the Legendre differential equation. On the closed interval [—1, 1] the
bounded solutions exist at £ = 0,1,2,3,---. The solutions to the equation are the
polynomials, and they are known as the Legendre polynomials. The characteristics
of the polynomials are described in the followings:

¢ n—1 ..
Pyx) = chﬂ <Cn _ H ((+1) -4+ 1))

— o 2(j +1)?
1 d o, '
= g
P[)(.I') =1
P(z) = x
3.1
P. = 2t =
>(7) 2" T3
1 ) 2
dzPy(2)Py(z) = Ou
[ dsPu@Pio) = b

An expansion of the generating function is also valid:

B.2 Associated Legendre Differential Equation

dPm m?

2 P£
{(T=a)— =} + (0 +1) -7

This is known as the associated Legendre differential equation. The solutions to

)P =0

the equation are obtained through the solutions Py(x) of the Legendre differential
equation:
g

PP (z) = (1= a*)% - Pi(a)

which satisfies the orthogonal relation:

[ daaPr@Pra) = s g (s

B.3 Spherical Function

Here, we define the spherical function Yy, as

mtlm|  [204+1 (0 — ! ,
e
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There are some relations the above spherical function satisfies:

e Orthonormality
<}/£’m’|}/€m> = /dQY;m’(ev gb)}/ﬁm(e» ¢) = 54,5'577””’

e The action of ladder operator

LYy = b/ (€ Fm) (€ £ 4+1) Yoty

e Addition theorem

Yim—0(c08 0)Yyn—o(w Z Y (0, ) Yom (0, 6)

m=—/{

where w is the angle formed by (6, ¢) direction and (', ¢’) direction such
that
cosw = cos B cos B’ + sin O sin 0’ cos(¢ — phi')

To rewrite the above, we have

¢
Py(cosw) = Py(cos)Py(cost’) + 2 Z (cos0) P (cos 0") cosm(¢p — ¢')
m:l

- 2€+1ZY£’”9/ Wem(9,9)

C Spherical Bessel Function

C.1 Spherical Bessel Function

Spherical Bessel equation:

{ (dd—; 4 ;d%) - W; Y }R(m) —0

has two independent solutions, which include a canonical solution at origin (spher-

ical Bessel function) j,(x) and a non-canonical solution (spherical Neumann func-

tion) ny(x). The two solutions can be further expressed as

s = () () = e
ne(z) = —(—@f(ldi)é(cosx) g (-1
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In some cases, the Hankel function of the first and the second kinds are defined by

h(@) = jo(x) +ine(x)

(@) = i) —ing(a)
in which two linearly independent solutions exist. The asymptotic forms for large
arguments especially, one obtains:

Je(z) — —sin (z — 7)
T—00 1 r
ne(x) — ——cos (z— 7)
I R

ne) E )

The two important formulas obtained by the above are

[e.9]

eihreost — Z(% + 1)i"jo(kr) Py(cos 0)
£=0
ikl &> ‘ 0 o,
7oA ik Y (20 + 1)jo(kr )by (krs) Po(7 - #)

£=0



