PartVI

Appendix

A Separation of Variables for Hel,holtz Equation in Polar Coordinates

Consider the Helmholtz equation:

$$
\Delta u+k^{2} u=0
$$

We let the polar coordinates be

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad x=r \cos \theta
$$

from which we express

$$
\begin{aligned}
\Delta_{3 D} & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \\
\Delta_{2 D} & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \\
& =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}
\end{aligned}
$$

In the three-dimension:

$$
u(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

Rewrite the Helmholtz equation, we obtain

$$
\begin{aligned}
\Delta u+k^{2} u & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
& =\frac{1}{r^{2}} \frac{\partial R}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \Theta \Phi+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Phi}{\partial \phi^{2}}+k^{2} R \Theta \Phi=0 \\
& \sin ^{2} \theta\left(\frac{\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)}{R}+k^{2} r^{2}\right)+\sin \theta \frac{\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)}{\Theta}=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}
\end{aligned}
$$

Consider the independent variables, we write:

$$
\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=-\mu^{2}=(\text { constant })
$$

$$
\frac{\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)}{R}+k^{2} r^{2}=-\frac{1}{\sin \theta} \frac{\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)}{\Theta}+\frac{\mu^{2}}{\sin ^{2} \theta}
$$

Let both sides of the equation be the constant λ :

$$
\begin{aligned}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left(k^{2}-\frac{\lambda}{r^{2}}\right) R & =0 \\
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left(\lambda-\frac{\mu^{2}}{\sin ^{2} \theta}\right) \Theta & =0
\end{aligned}
$$

Where Φ is $\Phi(\phi)=e^{i \mu \phi}$, its single-valuedness is ensured by $\mu=m=$ scalar :

$$
\Phi(\phi)=e^{i \mu \phi}, \quad m=\cdots,-2,-1,0,1,2, \cdots
$$

Where Θ is $x=\cos \theta$ such that

$$
\frac{d}{d \theta}=\frac{d x}{d \theta} \frac{d}{d x}=-\sin \theta \frac{d}{d x}
$$

, giving

$$
\begin{aligned}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right) & =\frac{d}{d x}\left(\sin ^{2} \theta \frac{d \Theta}{d x}\right) \\
& =\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d \Theta}{d x}\right)
\end{aligned}
$$

Thus,

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d \Theta}{d x}\right)+\left(\lambda-\frac{m^{2}}{1-x^{2}}\right) \Theta=0
$$

This is known as the associated Legendre differential equation, and which is in the form of the Sturm-Liouville equation:

$$
\frac{d}{d x}\left(p(x) \frac{d u}{d x}\right)+(\lambda \rho(x)-q(x)) u=0
$$

In the case of

$$
\lambda=\ell(\ell+1), \quad \ell=0,1,2, \cdots
$$

there is bounded solutions at $x= \pm 1$, which is expressed by $P_{\ell}^{m}(x)$ and known as the associated Legendre function of the first kind.

B Spherical Function

B. 1 Legendre Differential Equation

$$
\begin{aligned}
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d P_{\ell}}{d x}\right]+\lambda P_{\ell} & =\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d P_{\ell}}{d x}\right]+\ell(\ell+1) P_{\ell} \\
& =\left(1-x^{2}\right) P_{\ell}^{\prime \prime}-2 x P_{\ell}^{\prime}+\ell(\ell+1) P_{\ell}=0
\end{aligned}
$$

This is called the Legendre differential equation. On the closed interval $[-1,1]$ the bounded solutions exist at $\ell=0,1,2,3, \cdots$. The solutions to the equation are the polynomials, and they are known as the Legendre polynomials. The characteristics of the polynomials are described in the followings:

$$
\begin{aligned}
P_{\ell}(x) & =\sum_{n=0}^{\ell} C_{n} x^{n},\left(C_{n}=\prod_{j=0}^{n-1} \frac{\ell(\ell+1)-j(j+1)}{2(j+1)^{2}}\right) \\
& =\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d x^{\ell}}\left(x^{2}-1\right)^{\ell} \\
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
P_{2}(x) & =\frac{3}{2} x^{2}-\frac{1}{2} \\
& \vdots \\
\int_{-1}^{1} d x P_{\ell^{\prime}}(x) P_{\ell}(x) & =\delta_{\ell \ell^{\prime}} \frac{2}{2 \ell+1}
\end{aligned}
$$

An expansion of the generating function is also valid:

$$
\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}=\sum_{\ell=0}^{\infty} P_{\ell}(\cos \theta) \frac{1}{r_{>}}\left(\frac{r_{<}}{r_{>}}\right)^{\ell}
$$

B. 2 Associated Legendre Differential Equation

$$
\left\{\left(1-x^{2}\right) \frac{d P_{\ell}^{m}}{d x}\right\}+\left(\ell(\ell+1)-\frac{m^{2}}{1-x^{2}}\right) P_{\ell}^{m}=0
$$

This is known as the associated Legendre differential equation. The solutions to the equation are obtained through the solutions $P_{\ell}(x)$ of the Legendre differential equation:

$$
P_{\ell}^{m}(x)=\left(1-x^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d x^{m}} P_{\ell}(x)
$$

which satisfies the orthogonal relation:

$$
\int_{-1}^{1} d x P_{\ell}^{m}(x) P_{\ell^{\prime}}^{m}(x)=\delta_{\ell \ell^{\prime}} \frac{2}{2 \ell+1} \frac{(\ell+m)!}{(\ell-m)!}
$$

B. 3 Spherical Function

Here, we define the spherical function $Y_{\ell m}$ as

$$
Y_{\ell m}(\theta, \phi)=(-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2 \ell+1}{4 \pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} P_{l}^{m}(\cos \theta) e^{i m \phi}
$$

There are some relations the above spherical function satisfies:

- Orthonormality

$$
\left\langle Y_{\ell^{\prime} m^{\prime}} \mid Y_{\ell m}\right\rangle \equiv \int d \Omega Y_{\ell^{\prime} m^{\prime}}^{*}(\theta, \phi) Y_{\ell m}(\theta, \phi)=\delta_{\ell, \ell^{\prime}} \delta_{m m^{\prime}}
$$

- The action of ladder operator

$$
L_{ \pm} Y_{\ell m}=\hbar \sqrt{(\ell \mp m)(\ell \pm+1)} Y_{\ell m \pm 1}
$$

- Addition theorem

$$
Y_{\ell m=0}(\cos 0) Y_{\ell m=0}(\omega)=\sum_{m=-\ell}^{\ell} Y_{\ell m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{\ell m}(\theta, \phi)
$$

where ω is the angle formed by (θ, ϕ) direction and $\left(\theta^{\prime}, \phi^{\prime}\right)$ direction such that

$$
\cos \omega=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\phi-p h i^{\prime}\right)
$$

To rewrite the above, we have

$$
\begin{aligned}
P_{\ell}(\cos \omega) & =P_{\ell}(\cos \theta) P_{\ell}\left(\cos \theta^{\prime}\right)+2 \sum_{m=1}^{\ell} \frac{(\ell-m)!}{(\ell+m)!} P_{\ell}^{m}(\cos \theta) P_{\ell}^{m}\left(\cos \theta^{\prime}\right) \cos m\left(\phi-\phi^{\prime}\right) \\
& =\frac{4 \pi}{2 \ell+1} \sum_{m} Y_{\ell m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{\ell m}(\theta, \phi)
\end{aligned}
$$

C Spherical Bessel Function

C. 1 Spherical Bessel Function

Spherical Bessel equation:

$$
\left\{\left(\frac{d^{2}}{d x^{2}}+\frac{2}{x} \frac{d}{d x}\right)+1-\frac{\ell(\ell+1)}{x^{2}}\right\} R(x)=0
$$

has two independent solutions, which include a canonical solution at origin (spherical Bessel function) $j_{\ell}(x)$ and a non-canonical solution (spherical Neumann function) $n_{\ell}(x)$. The two solutions can be further expressed as

$$
\begin{aligned}
& j_{\ell}(x)=(-x)^{\ell}\left(\frac{1}{x} \frac{d}{d x}\right)^{\ell}\left(\frac{\sin x}{x}\right) \xrightarrow{x \rightarrow 0} \frac{x^{\ell}}{(2 \ell+1)!!} \\
& n_{\ell}(x)=-(-x)^{\ell}\left(\frac{1}{x} \frac{d}{d x}\right)^{\ell}\left(\frac{\cos x}{x}\right) \xrightarrow{x \rightarrow 0}-\frac{(2 \ell-1)!!}{x^{\ell+1}}
\end{aligned}
$$

In some cases, the Hankel function of the first and the second kinds are defined by

$$
\begin{aligned}
h_{\ell}^{(1)}(x) & =j_{\ell}(x)+i n_{\ell}(x) \\
h_{\ell}^{(2)}(x) & =j_{\ell}(x)-i n_{\ell}(x)
\end{aligned}
$$

in which two linearly independent solutions exist. The asymptotic forms for large arguments especially, one obtains:

$$
\begin{aligned}
j_{\ell}(x) & \xrightarrow{x \rightarrow \infty} \frac{1}{x} \sin \left(x-\frac{\ell \pi}{2}\right) \\
n_{\ell}(x) & \xrightarrow{x \rightarrow \infty}-\frac{1}{x} \cos \left(x-\frac{\ell \pi}{2}\right) \\
h_{\ell}^{(1)}(x) & \xrightarrow{x \rightarrow \infty}(-i)^{\ell+1} \frac{e^{i x}}{x} \\
h_{\ell}^{(2)}(x) & \xrightarrow{x \rightarrow \infty}(i)^{\ell+1} \frac{e^{-i x}}{x}
\end{aligned}
$$

The two important formulas obtained by the above are

$$
\begin{gathered}
e^{i k r \cos \theta}=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta) \\
\frac{e^{i k\left|\vec{r}-\vec{r}^{\prime}\right|}}{\left|\vec{r}-\vec{r}^{\prime}\right|}=i k \sum_{\ell=0}^{\infty}(2 \ell+1) j_{\ell}\left(k r_{<}\right) h_{\ell}^{(1)}\left(k r_{>}\right) P_{\ell}\left(\hat{r} \cdot \hat{r}^{\prime}\right)
\end{gathered}
$$

