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PartVI

Appendix

A Separation of Variables for Hel,holtz Equation

in Polar Coordinates

Consider the Helmholtz equation:

∆u + k2u = 0

We let the polar coordinates be

x = r sin θ cos ϕ, y = r sin θ sin ϕ, x = r cos θ

from which we express
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In the three-dimension:

u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ)

Rewrite the Helmholtz equation, we obtain
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Consider the independent variables, we write:
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= −µ2 = (constant)
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Let both sides of the equation be the constant λ:
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Where Φ is Φ(ϕ) = eiµϕ, its single-valuedness is ensured by µ = m = scalar :

Φ(ϕ) = eiµϕ, m = · · · ,−2,−1, 0, 1, 2, · · ·

Where Θ is x = cos θ such that
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=
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This is known as the associated Legendre differential equation, and which is in the

form of the Sturm-Liouville equation:

d

dx

(
p(x)

du

dx

)
+ (λρ(x) − q(x))u = 0

In the case of

λ = ℓ(ℓ + 1), ℓ = 0, 1, 2, · · ·

there is bounded solutions at x = ±1, which is expressed by Pm
ℓ (x) and known as

the associated Legendre function of the first kind.

B Spherical Function

B.1 Legendre Differential Equation
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This is called the Legendre differential equation. On the closed interval [−1, 1] the

bounded solutions exist at ℓ = 0, 1, 2, 3, · · · . The solutions to the equation are the

polynomials, and they are known as the Legendre polynomials. The characteristics

of the polynomials are described in the followings:
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An expansion of the generating function is also valid:
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B.2 Associated Legendre Differential Equation
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)
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This is known as the associated Legendre differential equation. The solutions to

the equation are obtained through the solutions Pℓ(x) of the Legendre differential

equation:

Pm
ℓ (x) = (1 − x2)
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B.3 Spherical Function

Here, we define the spherical function Yℓm as

Yℓm(θ, ϕ) = (−1)
m+|m|

2

√
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(ℓ − |m|)!
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There are some relations the above spherical function satisfies:

• Orthonormality

⟨Yℓ′m′|Yℓm⟩ ≡
∫

dΩY ∗
ℓ′m′(θ, ϕ)Yℓm(θ, ϕ) = δℓ,ℓ′δmm′

• The action of ladder operator

L±Yℓm = ~
√

(ℓ ∓ m)(ℓ ± +1)Yℓm±1

• Addition theorem

Yℓm=0(cos 0)Yℓm=0(ω) =
ℓ∑

m=−ℓ

Y ∗
ℓm(θ′, ϕ′)Yℓm(θ, ϕ)

where ω is the angle formed by (θ, ϕ) direction and (θ′, ϕ′) direction such

that

cos ω = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − phi′)

To rewrite the above, we have
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C Spherical Bessel Function

C.1 Spherical Bessel Function

Spherical Bessel equation:{(
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}
R(x) = 0

has two independent solutions, which include a canonical solution at origin (spher-

ical Bessel function) jℓ(x) and a non-canonical solution (spherical Neumann func-

tion) nℓ(x). The two solutions can be further expressed as
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(
1

x

d

dx

)ℓ(
sin x

x

)
x→0−→ xℓ

(2ℓ + 1)!!
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In some cases, the Hankel function of the first and the second kinds are defined by

h
(1)
ℓ (x) = jℓ(x) + inℓ(x)

h
(2)
ℓ (x) = jℓ(x) − inℓ(x)

in which two linearly independent solutions exist. The asymptotic forms for large

arguments especially, one obtains:
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The two important formulas obtained by the above are

eikr cos θ =
∞∑

ℓ=0

(2ℓ + 1)iℓjℓ(kr)Pℓ(cos θ)

eik|r⃗−r⃗′|
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ℓ (kr>)Pℓ(r̂ · r̂′)




