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PartVI
Appendix

A Separation of Variables for Hel,holtz Equation
in Polar Coordinates
Consider the Helmholtz equation:
Au+ku=0
We let the polar coordinates be
xr=rsinfcos¢, y=rsinfsing, x =rcosl

from which we express

0>  0* 9

fao = 5t op T oz
_ ig 22 +;g gi 92 _'_;8_2
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0? 0?
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In the three-dimension:

u(r,0,¢) = R(r)0(0)®(¢)

Rewrite the Helmholtz equation, we obtain

Au+ku = —=+ == +-

1 0 . 1 9*P 2
= _a_< a)@‘“m&(m"%> T g g T F O =0

d T2dR d (sin@de))
dr\ dr 20 o 1 d?®
sin® ¢ (% + k2r2) + sin 9% = _EW
Consider the independent variables, we write:

1 &2®
> do?

= —u? = (constant)
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d , ,dR d e

5(7' %) +k2r2 _ 1 @(Slﬂ&@) N M2
R sin © sin? @
Let both sides of the equation be the constant A:
1d,,dR 5 A
g ) (=) =0
1 d, . do >
gas M) O 5l = 0
Where ® is ®(¢) = e? its single-valuedness is ensured by pu = m = scalar :
P(p)=e", m=---,-2,-1,0,1,2,-
Where © is x = cos 6 such that
d_ded o d
d9  dfdr dx
, giving
1 d, . dO d( .,,do
Sineﬁ(smeﬁ) = %(sm 9%)
d do
= —((1=2=—=
dx (( ) dw)
Thus,

d do m?
-2 _ _
da:(< x)dx>+<)\ 1—:132)@ 0

This is known as the associated Legendre differential equation, and which is in the

form of the Sturm-Liouville equation:
d du
T (p(n) ) + o) — ge))u =0

In the case of
A=L4l+1), (=0,1,2,---

there is bounded solutions at = 1, which is expressed by P;"(x) and known as
the associated Legendre function of the first kind.

B Spherical Function

B.1 Legendre Differential Equation

d dP, d Iy
— (1 = 2% == P = —|(1—-a%)— 1)P,
dq:[( $)dx1+Ag dx[( x)dx}+£(€+)e

= (1-2®)P/ —22P]+L({+1)P, =0
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This is called the Legendre differential equation. On the closed interval [—1, 1] the
bounded solutions exist at £ = 0,1,2,3,---. The solutions to the equation are the
polynomials, and they are known as the Legendre polynomials. The characteristics
of the polynomials are described in the followings:

¢ n—1 ..
Pyx) = chﬂ <Cn _ H ((+1) -4+ 1))

— o 2(j +1)?
1 d o, '
= g
P[)(.I') =1
P(z) = x
3.1
P. = 2t =
>(7) 2" T3
1 ) 2
dzPy(2)Py(z) = Ou
[ dsPu@Pio) = b

An expansion of the generating function is also valid:

B.2 Associated Legendre Differential Equation

dPm m?

2 P£
{(T=a)— =} + (0 +1) -7

This is known as the associated Legendre differential equation. The solutions to

)P =0

the equation are obtained through the solutions Py(x) of the Legendre differential
equation:
g

PP (z) = (1= a*)% - Pi(a)

which satisfies the orthogonal relation:

[ daaPr@Pra) = s g (s

B.3 Spherical Function

Here, we define the spherical function Yy, as

mtlm|  [204+1 (0 — ! ,
e
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There are some relations the above spherical function satisfies:

e Orthonormality
<}/£’m’|}/€m> = /dQY;m’(ev gb)}/ﬁm(e» ¢) = 54,5'577””’

e The action of ladder operator

LYy = b/ (€ Fm) (€ £ 4+1) Yoty

e Addition theorem

Yim—0(c08 0)Yyn—o(w Z Y (0, ) Yom (0, 6)

m=—/{

where w is the angle formed by (6, ¢) direction and (', ¢’) direction such
that
cosw = cos B cos B’ + sin O sin 0’ cos(¢ — phi')

To rewrite the above, we have

¢
Py(cosw) = Py(cos)Py(cost’) + 2 Z (cos0) P (cos 0") cosm(¢p — ¢')
m:l

- 2€+1ZY£’”9/ Wem(9,9)

C Spherical Bessel Function

C.1 Spherical Bessel Function

Spherical Bessel equation:

{ (dd—; 4 ;d%) - W; Y }R(m) —0

has two independent solutions, which include a canonical solution at origin (spher-

ical Bessel function) j,(x) and a non-canonical solution (spherical Neumann func-

tion) ny(x). The two solutions can be further expressed as

s = () () = e
ne(z) = —(—@f(ldi)é(cosx) g (-1
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In some cases, the Hankel function of the first and the second kinds are defined by

h(@) = jo(x) +ine(x)

(@) = i) —ing(a)
in which two linearly independent solutions exist. The asymptotic forms for large
arguments especially, one obtains:

Je(z) — —sin (z — 7)
T—00 1 r
ne(x) — ——cos (z— 7)
I R

ne) E )

The two important formulas obtained by the above are

[e.9]

eihreost — Z(% + 1)i"jo(kr) Py(cos 0)
£=0
ikl &> ‘ 0 o,
7oA ik Y (20 + 1)jo(kr )by (krs) Po(7 - #)

£=0





