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PartlV
Electronic Structure of
Many-Electron Atoms

9 Periodic Table and One-electronic Level of Atoms

9.1 One-electronic Level Structure of a Hydrogen-like Atom

We begin with obtaining a single-particle structure of a hydrogen-like atom. The
Schroedinger equation for the Hamiltonian in our case can be written

2

h— P _
2m r
hy) = Ey
Ze?
o =
471'60
The angular momentum operator:
L=Fxp
L; = €ijiripr
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can give 173 174

[L,h] =0

Further (obeys the Pauli’ s),

— ]_ - —
M=—({pxL—-Lxp)-—

/F'
2m

RS

173We can first write

[rispj|f =rip; f —pjrif = ripjf — (pjri) [ — ripj f = +ih0;ri f = ihéi; f—ri, pj| = ihdy;
i, flg =pifg — frig = (pif)g + fpig — fpig = (pif)g = —ih(0if)g —Ipsi, f] = —iR(0if)

[pi, ™" = _ihai(Tjrj)in/Q = ih(n/z)(rjrj)inﬂ*l%i = ihmr—" "2

174

[Li, pa] = €ijk[rjPk, Pa) = €15, PalPk = th€iarDi

L B

2
[Li, ] = €iav[rapy, Pepe] = €iab(pe[ras pe) + [Tas Delpe)po = 2iheinpepy = 0 [L, 5

(i, = €iap[raPo, 7] = €iabTalPo, 7] = €iapTaihr 21 =0
Likewise, [L;,r~"] =0

Thus,
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which gives 17

[M,h] =0
So, L and M become the conserved quantities. Further, 176

2
[Ma, Mb] = —’ih—h(—iabCLc
m

(5% L — L x §)i,p?] = €ijulpi L — Lipr, pepe) = €ijn(pj[Li, p*] — Ly, p*lpr) = 0

[(Fx L= L x p)i,r~ '] = eijulpj L — Lipe, '] = €iju([pj,r~ 1Lk — Ljlpr, 1)) = ilr Segjp(r; L —

= ihr €1 (T €kabTaDb — €jabTaPbTk)
= ihr*{(0ia0jb — 6ib0ja)TjTabb + (Sia0kb — SitOka)TaDbTh)
= z‘hr*?’{(?’jripj —7§7ipi + TiDkTE — TkPiTk)
= ihr=*{rjrip; — r’pi + riperi — rr(repi + [pis k) }
= ihr 3 (rjrip; — 2r°p; + riprr + ihr;)
ri, 0% = —[p*,r ] = —r %] — [P e = 2ihr g — [p
= 2ihr‘1pi — pz[pe,?‘_l]m - [Pe,r_l]pﬂ“i
= 2ihr " p; — ihper 3rer; — ihr 3 reper;

[ril 2,7’71]7’1-

= 2ihr " p; — ih(r3pg + [pe, 7)) reri — il 3 repers
= 2ihr Yp; — ihr 3 pyrer; — ih[pe, r~ ]rm — ihr 3 reper;
= ihr™3(2r%p; — pereri — repers) — 3(ih)2r O rerer

= ihr_3(2r2pi — perer; — Teper; — 3ihr;)

Thus,

[M;,h] = 72—1717" 3(7'J7’zpj + 7iPETR — DeTeTi — Teper; — 2ihr;)
= —2—1717" 3 (reripe + ripere — perers — reperi — 2ihr;)
= —%Zhr 2 (relris pe) + [ri, pere] — 2ihr;)
= —2—1717“ 3(rilrs, pi] + s, pilri — 2ihry) =0

176

-

(Fx L— L x p); = eiji(pjLr — Lipr) = €iji(pjLe — piLj — [Lj, pr))
= €ijk(pj Lk — pr Ly — ihejrapr) = €ijr(pi L — peLlj) — 2ihogp;
= €k (pj L — pel;) — 2ihp;

= €ijk(Pj€kab — Pk€jab)Tals — 2ihp;

{(6iabjb — 6iv0ja)Pj + (0iaOkb — dibOka )Pk }TaPb — 2ihp;

= p;TiPj — PjTiDi + PkTiPk — PkTkDi — 2ihp;

= 2pjrip; — 2p;jripi — 2ihp;

= 2p;(pjri + ihdi;) — 2p;(pirj + ihds;) — 2ikp;

= 2p°r; — 2pjpiry — 2ihp;

LjT‘k)
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In the bound states E < 0, we can write

Such that we can assume:

U@ <L~ L xp)a (5 L~ L x )
=[p°ra — piPari — ihpa, P’y — PipeT; — ihps)
=[p°ra,p?re — pjpu1j — ihpy)
— [Pipari, 1y — PjpoT; — ihpy)
— ih[pa, P°ry — PipuT; — ihps]
=[p*ra, p°rs) — [P°Ta, Djpers] — iA[D°Ta, D]
— [piparis P°1) + [Pibaris PipeTs) + ih[piDaTis P)
— ih[pa, P°16] + ih[pa, ipo75] + (iR)2[Pa, Do)
={P*[ra, P’Irs + P[P, 7olra} — {0°[ras ipo)rs + Pipulp®, 7jlra} — ihp?[ra, o)
— {pipalri, P°Ire + D2[Piba, o]ri} + {Pibalri, ipo]r; + PipoPiba, Iri} + ihpipalri, po)
— ihp?[pa, 7o) + ihp;ps[pa; 7]
={2ihp®pary, — 2ihp°pera} — il{p® (a;ps + davpi )T — 20PeDjTa} — (iR)*P*6ab
— {2ihpipapiry, — ihp* (SipPa + Sabpi)Ti} + iB{pipa(8ijp6 + 6itpj )T — PiPb(Si5Pa + Sajpi)Ti} + (i7)*pipadis
+ (ih)2p*Sap — (1h)*p;Pp0aj
4 5 1 5 2

.y 2 2 2 . 2 ‘ N T 22 2
={2ihp*pary — 2ihp ppra t — iR{D* (P70 + dabP;7;) — 2P PePTa} — (47)*P“dap

4 1 6 7 7 6 3
— {2ihpipapiry, —ihp* (Pats + Sapvpiti)} + iR{DiDaPbTi + DoPaD;T; — DibbPaTs — Dabobirs ) + (iR)*pypa

2 3
23\2 2 23\ 2
+ (ih)°p=“Sap — (i1)“paps
=ihp? (paTh — pora) = ihp? (roPa — TaPb) = —ihp*(TaPp — ToPa)
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1., - = _
5[(p><L—L><I7)a,7“ ry)

=[p*ra = pipati — ihpa, v~ 'ry] = [P?ra, v re] = [pipari, v ) = ihlpa, v )
=pilpi, v )10 + [Pi, 7 rolpira — pilpa, v relrs — [piy T ol pars — ihlpa, v )
([Pa, 7 18] = 77 Do 78] + [Pas 7 H1s = —ihr ™ 50p + ihr3rars)
=ihp; (=1 85 + 13 riry ) + iR g T3y )pira — ihpi (=1 ay + 73
— (=1 g 4 r 3y pari — (iR)2 (=1 oap + 73 reTy)

3 2 1 3
1 3 1 3 1 3
ZZH{—pr Ta + Pt °TiToTa =T DoTa + 1T “TiTuPiTa +0abPiT ™ Ti — PiT ™ “TaTpT;

2 1
—N— ———

+ 1 pary — r 3 rirypars Hibr T gy — ihrfgrarb}

2 1
=ih{—ppr™ e + 17 (pary — pora) + 7T (DiTa — Pati) F0abpir T i + ihr T gy — ihr ey}
2 1

=ih{—ppr ' + 17 (repa — TaPb) + 172 Tir (TaPi — TiPa) F0abpir T 4 ihr T Sap — ihr P rary}
1
. -1 17N -3 -1 -1 =1 2 =3
=th{—pyr " ra + 17 (ToDa —TaPb) + 7 "TiTsTaDi — T ToPa +0apPit 1T + ihrT dqp — ihr T rary}
1

1

=ih{—pyrrq — v rapy + T3y raps + Sappir i 4 ihr T 04 — ihr 31Ty}

This gives

A% L~ Ex Do) + [ r (5 £ — L x 7]}
= ih{—pyr'ra + par 'y — 1 (rapy — 1opa)}
= ih{=r""pyra — [po, 7 ra + 77 Pars + [Pas 7 e — 7 (Fapy — Topa) }
= ih{r~" (=pora + Pars) — 7 (raps — TbPa)}
= ih{r~" (=rape + T6Pa) — 7 (raPb — ToDa)}
= —2ifir~ (rapy — T6Pa)

Thus,

1 . = = _
[%(pXL—LXma—OéT 17'(17

1

M, M,
[ as b] 2m

(FxL—Lxp)y—ar '

1 o
= 7722hp2 (T(Lpb - pra) + —2ihr 1(Tapb - pra,)
m m

2 [ p? 2
— —inZ (p - a)eabCLc — —ihZ ey, L.
m T m

€abeLc = €abc€cijTiPj = (5ai5bj - 5aj5bi)ripj =TaPb — TbPa
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Now we write 177

il
itl §1

I
itl §1
N
I I
o o

N

Further we can write 178

[M;, L;] =€ My,

[M;, L;] =€ My,

177
M-E: 7(5)( E—E XmiLi —Oz’l“_lTiLi

E(p% — pjpiT; — hp;)€iabTaPb — AT Ti€iabT oDt
1 .
_EGiab(pjpi""jrapb + thp;Taps)

1 .
= —Eemb{pjpi(pbwa + [1j7a, po]) + thpi (pora + [Tas b)) }

1 .
= —Efiab{pjpi [7§7a> D] + ihpilra, po]}

1 .
= *Eﬁab{pjpi((;japb + 8apra) + (ih)*pidapt = 0

L-M=(M-L)y=0
178

2 . _
[M;, L;] = aﬁjab[sz — pjpir; — hpi, TaDb) — Q€japr i, Tapy]
2
:EGjab{[p2, 71(1]pb7ﬂi + P27"a [Tia pb]
— [pjpi, ralpor; — PiPiTA[T5, DY)
—ih[pi,ralpe}
— a€japra{r [ri,po] + [r " po)ri}
2ih
:Hejab{_2papbri + p*rabip
+ (8japi + SiaPj)PbTj — PiPiTaljb
+ Z77:572(1]711}
- ogejabra{r715ib - 7"737‘;,7“,»}
_in
T m
+ €5ibP;PbTj
+ ejibihpb}

—1
- OAGjaﬂ‘a’f‘

{€aiD’ra

. 2 . _
:Zh'fija{%(pQra — pjpaTj — ihpa) — artr,} = €ija M,
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Calculate for M2, we obtain '™

179
M? :{Leiab(pal/b = Lapy) — ar‘lri}{ieicd(pCLd — Lepa) — ar~tr;}

2m m

:ﬁ(%c(%d — Sadbe) (PaLy — Lapy)(PeLa — Lepa)
a %qab{(p“Lb — Lapy)r~'ri + 77 ri(paly, — Lapy)} + o

=ﬁ{(paLb — Lapy)(PaLs — Laps) — (PaLy — Laps) (PoLa — Lvpa)}
— %Giab{(pa[zb — Lapp)r 7 + 77 i (pa Ly — Lapy)} +

First,

(PaLv = Lapy)(paLle — Laps) — (Palv — Lapy) (P La — Lvpa)
=(paLt — Lapy)(PaLs — Lapy — PoLa + Lipa)
=(paLy — poLa — [La; o)) (PaLlt — PvLa — [La,Pb] — PoLa + paLly + [Li, pa))
=(paLy — poLa — iheapepe) (PaLls — PoLa — iheapepe — PoLa + paLly + ihepacpe)
=2(paLy — pyLa — iheapepe) (Palt — PoLa — iheapapa)

=2 {paLb(paLb — ppLo — iheqpapa)
— pvLa(paLy — PyLo — ih€qpapa)
- Z.heabcpc(pa-[/b - pra - Z‘FLGabdpd)}
=2 {papraLb - paprbLa - Z‘heabdpaprai
— pvLapaly + poLappLa + itheapapyLapa

- iheabcpcpaLb + Z'i;ufabz:pcpbl/a - h26abd6abcpcpd}

=2 {pa(paLb + [Ly, pa)) Lt — papoLoLa — theqpapa (paLls + [Ly, pa))
— poPaLlaLy + py(PoLa + [La, b)) La + ih€apaps(PaLia + [La, pa))
— 522])2}

=2 {P2L2 — paPvLvLa + W €apacpacPape
+ popaLlaly + p°L? — B eqpaadcpope — 2h2p2}

22{2p2L2 — PaPoLyLg + h226acpapc

+ pbpaLaLb + h226bcpbpc — 2h2p2}

=4p> L + 4h*p* + 2paps(LoLe — Lo La) = 4p* (L + h?)
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2
M? ==h(L*+1?) + o
m

In the next step:

€iav{ (PaLs — Laps)r™'ri = €iap{par™ " Lori — La(r™"py + [po. v~ '])ri}
=€iap{ (1" Pa + [pa, ") Lori — v~ Lapyrs — iRLar ™ >ryr;}
=€iab{ (™' pa + ihr—>ra) Lyrs — v~ Lapyr:}
:eiab{rflpaLbri + ihr*?’(Lbra + ihepair;)Ti — rilLapbri}
:eiab{r_lpaLbri + ihr‘gihebajrjri — r_lLapbri}
(75, Lj] = €jab[Ts, TaPb] = €jabTalri, Pb] = th€japradiv = ihe;jaTq

=r " eiap(PaLls — Lapy)ri + 20%r ™1

By adding the two above, we obtain

M2 _ﬁ L2 h2
*mg( + )

a
— 5.7 Yeiab (Ti(paLb — Lapp) + (paLli — Lapb)Ti> + 2%} 4 o

‘While we know

€iab{Ti(Palv — Lapy) + (PaLls — Lapy)ri} = €iabiriPals — 7iLape + paLlvri — Laperi}
=€;ap{TiPale — 7i(PyLa + [La, b)) + (Lopa + [Pa, Ls|)1i — Lapyri}
=€iab{TiPaly — rippLa — ihri€qpepe + Lypari + iheapepers — Laperi}
=¢€iab{TiPal — TipyLa + Lypari — Lapyri}
=€iab{TiPa Ly — rapily + Lypars — Lypira}
=¢€iab(TiPa — TaPi) Lo + Li€iap(PaTi — PiTa)
=€iab(TiPa — TaPi) Ly + Ly€iab(riba — rapi) = 2L*

‘We can obtain

o 2

2
M? =L (L2 ) = (L2 4 ) + o

mr

2
==Nh(L*+h?) +a?
m
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For the bound states energy E < 0, we can write '8

2F
0= m«LiM)+W%Hf

At the same time, we know that

- 1 - =
- 1 - =
J=5(L - M)

and 181

[I,, I]] :Zhéwklk
[JZ, J]] :'Lheukt]k

satisfy the commutation relations for the angular momentum thereby, independent
of each other: 182

[Ii, J]] - 0

180
2F 2F
— M2 =" (L4 +
m m
2F
0=""(L*+ M? +1*) +
m

Zj((LiM) +h?) +a?

1
4
ih ~ ~ -
=Z€ijk(Lk + My + My + Li) = €11

11, = ([Mi, NI+ [WEs, L] + (Lo, 8T, + [Lz»Lj]>

[Ji, Jj] :i ([Mi’Mj] — [M;, Lj] — [Li, Mj) + [Li,Lj])

ih ~ ~ -
:Zeijk(Lk — My — My + Li) = €1 Jk
182
1
[IZ,J] :4[ +MZ,L —M]]

:1([%7%’] — [Li, My] + [M;, L) — [M;, M;])
Zihqj'k([/k - Mk + Mk — Lk) =0
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Using the half-odd integers ¢ and j, we can express
I? =R%(i+ 1)
J?=hj(j+1)

and given L - M = 0, we let n be the integers and further write 83

o ma? l
2h2 n?
Since the degeneration I =L+Mis given, the possible L for i = ”T_l can be
found in
n—1
0.1.---
) ) ) 2

The total degeneration therefore can be expressed as
n—1

(204 1) = n?

v ‘

~
Il
o

183

Thus we write

2F
0 ="—(4I* + h?) + o?
m
2Eh?
= 4i(i+1)+ 1)+
“ @i 1) +1) +a
2Eh? 2ER?
= (n=1)n+1)+1)+a?="——n?+a?
m
E:ima2 1

282 n2
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9.2 The Hamiltonian in Many-electron Atoms

We consider the following second quantization formalism as the Hamiltonian in
many-electron atoms of having the nucleus at the origin with the charge +Ze:

H = Hy+ Hyy
Hy — / dr 1 (r)h(r)o ()

ﬁ262 Ze?
B ;/df'iﬂl(?#)(— 2m _47360 r )1%(77)
Ho = 5 [ dr [ arslmpl gl = vt
= g ] O e (7))

/dT = /d?’rza:

The second quantized operator:

(1) = o (r), T =(r0)

which forms

d)a,u(T) = ¢a<F)Xu(O->

,a complete set of normalized spin-orbital function for the bound states in central
force field, and which can be further defined as in the followings:

(1) = olP) =D Gal)xu(0)Cap

{CL#’ Ca'“/} = 60‘“’ 5##’7 {Ca,,ua Ca’u’} - 07

a:nlm = {1s, 28, 2pm—1---}
AV 1 Ze? . S
(- Joun() = €unn)

om dmeg T
52¢nlm(7:‘) = hzl(l + 1)¢nlm<7z‘)

— h—»
! = 7"x =V
1
1
s:x11(0) = igth(U)
5 1.1
x11(0) = §(§+1)h2>m(0')
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Now, by using the fact that both the angular momentum and the spin being
conserved, we can express by spectroscopy notation:

9.3 Periodic Law of the Elements and the Shielding Effect

If the interaction between electrons can be ignored while the electrons move
independently then, the ground state of N-electron system can be obtained by
packing the particles of up to two for each level of the eigenstate of Hy in the
lower to the higher energy order. Let us summarize the single-particle eigenenergy
€ntm Of Hy:

e Let n be the principal quantum number, be the orbital angular momen-
tum quantum number, and m be the magnetic angular momentum quantum
number.

e We define n = 1,2,3,---, which can be also expressed as £ = 0,1,2,--- ,n
or £ =0(s), £ = 1(p), £ =2(d), and ¢ = 3(f).

e The energy degenerates for the magnetic angular momentum quantum num-
ber. (Spherical-symmetric potential)

€nlm = €Enlm/

e The energy also degenerates for the orbital angular momentum quantum
number. (Peculiarity of Coulomb force)

€nlm = €nl'm

e The smaller the principal quantum number n, the lower the energy becomes.

€nm < €nim, N <1,
(1s) < (25) < (3s) < - --
(2p) < (3p) < (4p) < ---
(3d) < (4d) < - -

In considering the interaction among electrons, the center of the nucleus is
known to have relatively large electron density, and which gives a stronger shielding
against the central force generated by the nucleus thereby, the interaction energy
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is considered to be low. There is a greater probability for the existence of inter-
action at periphery of atomic nucleus when there is smaller angular momentum.
Such effects may in fact provide us a clue for solving the degeneration problem of
the orbital angular momentum for a pure Coulomb force. Given these facts, it is
clear that the ground states of the elements in the small to large electron number
order are given by the electron configurations described in the following.

H'  (1s)*
He?  (1s)?
Li®  (He)(2s)!
Be*  (He)(2s)?
B°  (He)(2s)*(2p)"
C°  (He)(25)*(2p)?
N (He)(2s5)*(2p)’
0% (He)(2s)*(2p)*
F?  (He)(2s)*(2p)°
Ne'®  (He)(25)*(2p)°
Na''  (Ne)(3s)
Mg  (Ne)(3s)?
AlY* (Ne)(3s)*(3p)*
Sit* (Ne)(3s)%(3p)?
P (Ne)(3s)*(3p)®
S (Ne)(3s)*(3p)*
CI'™  (Ne)(3s)*(3p)®
Ar'®  (Ne)(3s)*(3p)°

Up until this point, we all understand the above with considering the Coulomb
force. Now, we only consider the Coulomb force to just pack the electron in 3d;
however, now we should further consider the shielding effect we have discussed
before, which makes (4s) energetically lower than 3d:

KY¥  (Ar)(4s)
Ca®®  (Ar)(4s)?

Therefore, the electron is filled first in (4s). After for a while, the electrons go into
(3d), which are called the transition metals. The electron in such elements found
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at the farthest from the nucleus possesses some common properties that (4s)? has,

hence the two shares the similar chemical properties.

Sc*t - (Ar)(3d)" (4s)

Ti#*  (Ar)(3d)*(4s)

VE - (Ar)(3d)(4s)

Cr** (Ar)(3d)°(4s)'  ( ewception)
Mn®*  (Ar)(3d)°(4s)

Fe*®  (Ar)(3d)°(4s)

Co™  (Ar)(3d)(4s)

N (Ar)(3d)°(4s)

Cu®  (Ar)(3d)"

(Ar)(3d)

Zn30

0(45)t  ( ewception)
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10 Electron Configurations and Multiplet Struc-

tures

10.1 Multiplet Terms and Perturbation Theory

In the previous section, we generalized to understand the effects of many-electron
via the shielding effect. Now, we take a look at the Coulomb interaction with a
perspective of the perturbation theory. Before we start, it is important to note
that the Hamiltonian including the interaction takes the total orbital angular mo-
mentum as well as the total spin as the conserved quantity. We will study this in a
second quantization form. Generally, in the second quantization, the total orbital
angular momentum operator and the spin operator is given as

I - /d?’rZW GEXG
§ - / S (et (7)

More precisely, the operators above can be expressed by using a specific repre-
sentation:

7)) = —ikFxV

wy
I
|
4
q
q\

Here ¢ = (04, 0, 0,) can be understood as the matrix representations called Pauli
matrices in the following: ¥4

0 1 0 — 1 0
O-:L' == 3 Uy == . ) O-Z == I
10 1 0 0 —1

02 =1, 0,05 = —0504 (0 # B), 0,0, =i0,,- -
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The above satisfies the commutation relations for the angular momentum:

[LZ‘,LJ‘] = ZhEUkLk
[SZ‘,Sj] = iheiijk

185For example,

L, = [&rf P13 S B (P ) it B
- [ 113 SO =7 X )L al7) 60 = )} D7)
= [ 113 S OO X Db Vo) ()
b [ @ UL ih7 )i V)00
Thus,

(L Ly]

/d3r D WL A= x V), (—ihi x V1) (7)

ih [ o STl in < V). (7)
= dhL,
To give an example for the spin operator:

8.8, = [dr [ @13 S Gl 0% bo (VL) 10" ()

oo’ TT!

2
= %/diﬂr /d?’r/ZZwi(f’)g[o'w]gg,{fwi(f'/)l/}‘,/(f’) + 6(F = )05 Yo Y] 7t (7)

oo’ 1T

- % / dST / dgrl Z Z w; (F)wi (F/)[am}m’/ [Uy}TT/U)T/ (F,)d)a/(’f?)

oo’ 11!

O L G e ety

ot!

Thus,

[z, 5]

h
Y RS ST
= RS, ”
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L and S commute with Hamiltonians that include interaction. 186 187 188 189 190

186FOI‘

[Ho, L] = 0

, we understand from the following that it obeys:

B2 B ,
Hole = ~(5) [dr [ @30S 6l09, 2baliol (7)62 v ()

() / dgr/ dr' YD LAV (UL T )0 (7) + (77 Voo o (7)
_(%>/d3r/d3r/zzwl/(7zﬂ)wl(?)ﬁr 2wa(m€:y/wa’(F/)

2

(o) [ @Y w9, 2 o (7]

2
Loty = ~() [ [ Er 503 (o (P T )

(5 / & [ dr 3 S L () 4 80 Vi) ¥ 200
o) [@r [ S S P o D P )
~(5) [ @S0 T 2 ()

18TNext, we consider the interaction term. First we have
2

(5)  HiniLa = [ @ ST G T~ 7 (7 ()0 ()6 ()

oo'o!

= / dird'r'dr” Y0 WL () <f—F'>wa/<f'>(—wm")wam+6<f 73 )z Yo (i

oo'c!

= / drd®r'd*r"” Yy QLEYL g = ) (=)o (P01 (7 Vb (P oo ()

oo'oa’

+ [ dordtr DML TAOTERTA

= /d3rd3r’d37“ DR INGEVIGEE ) (1&2/:(?”)%'(77’) —o(F" - F”)(Sofa”)%(f')%”ww/ G

oo'o!!

+ / Erdr 33 T )9 = 7 () (7
= [drarate D P g~ 7 Yo (7)o (I i ()

- [ @ PILILRATE STLTAY

+ / dirdr’ S S O EL ()97 7)o (7)o (7)
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188While we can write

2
(5) Lol = / drdir'dr” Y0 Pl o (T (g (7 = 7)o ()60 (7)

oo'o!!

= /dg dS /d3 " Z 1,[;[// _’H < W( )wn”(F//)+§(F7?”)5(70”)7/13;/(7?/)9(7? 7_"/)7/10’(7?/)7/}0

oo'o!

=[S O b (7L (P 7 (7 ()

oo'o!!

s [ S il ( gl = P )

oo’

= [draran S ol w*wr( W () = 87" = 7)o (7 = ) (7

oo

s [ S ulee (66 - e )

oo'c!

= [ S L b (gl T )

oo'c!

- [ e (o= (00

oo’

s [t 3wl e (e = e (7))

oo’

[ S g 7 (Y () )

oo'o!!

+ / drd®r" Yy L (P (7 — 7 e (P o ()

oo’

I 2k SR IC T G O TG Tl

oo’

b [ S L L G~ o () ()

oo’

b [ B S ) (0 = ) ) )

oo'o!’

Therefore,

2
(%)_1[Hint;La] _ /d3 Br" Z ¢T” 11 ¢T (”')((ﬁﬂ _|_€r> (H// W))%/W')%NW")
0

We used the fact that the angular momentum is the first order differential operator. Physically,
the interaction is the internal force of the two body force such that the angular momentum is
conserved.
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189 As for the spin we can write

HoSo = [ a3 whh(r)balPIl () salaror e ()

oolc!

= e @) - e+ 56 e Ysolrorbar ()

oo'o!

— / Erd®r’ 3 WL ) PR alarer o (P ()

oo'o’

/d%zw (MA(r)[sal oo tor (7)

SuHy = / Prar’ 3 Wb saloron i (715 PR )o ()
- [eeee S v ( BT () 807 = i ()1
- / Prad’r’ 32 WO lsaloror b (7o ()
+/d3r ddr’wa,/(f‘)[sa]gfgh(r)u)o(ﬁ
Thus, :

190

(Hine: Sl = 3 / d*rd*’ g(|F - 7)) / @S W Yo (7 ) (), 05 (P [t ()]

oo'c! o'

=5 a0 [a@e0.2) [ae) [aop e @u@en).' @)

Here we have

[ (1)1 (2)0(2)9 (1), 91 (3)[s]3av(4 )] WY ) (2)w (1), 9" (3)[s]s41(4)]
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[B(2)p(1), ¥1(3)] = v(2)v(1)¥'(3) — T (3)w(2)w(1)
= p(2)(~v (3)w(1) +6(31)) — v 3)w(2)v(1)
=6(31)9(2) - 6(32)¢(1)

[ (1)01(2),8(3)] = —6(31)¢1(2) +8(32)01 (1)

[ (1)91(2),p(4)] = —6(41)81(2) + 8(42)01 (1)

Thus,
[Hint, Sal /d /d (1,2) /d (DT ()T (2) (¥ (2)[s]141(4) — (1) [s]2at(4))
+5 [ d) [ a29.2) [ A @lsnv! @) + 61 @) s OUE)
=5 [ 4) [ a29.2) [ a3 0 @@l - 60k (3)

43 [ [a290.2) [ a6/ @) @0 + 61 @) Do)

—5 [0 [ g2 [ ae

< {1 (2)1(2)07 (1)[s]13¢(3) + ¢ (1) (1) 9T (2) [s]25¢(3)
—1(2)1%(2)91(3)[s]s19(1) — ¥ (1) (1)¥7(3)[s]s29(2)} =
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In this way, we may have

(i, Lol / d(1 ¥ (2)g(12)5(2) (1), 6T (3)0a (3)1(3)]

—5 [dwae)
<AV ()l

—5 [ dmaeae)
< (U B (1 (2),BBNg120020(0) + ¥ (1! 2)g(12)[()0(1), ' (3))a(3)(3))

—; [ dmaeas

3)
x {07 (3)La(3)(—8(31)01(2) + 6(32)07(1)g(12)1(2)1(1)
+9T (10" (2)9(12)(8(31)9(2) — 6(32)1:(1))la(3)1(3)}

1
:§/anam
< {( G () (1) (2) + ¢*<2>6a<2w<1>)g<12>w<2>¢<1>

B[ (1)01(2)9(12)9(2)p(1), w(3)] + [T (1)01(2)9(12)1(2)1 (1), 1(3)]¢a(3)(3)}

+9T(1)y!(2)9(12) (20(2)%(1)1/)(1) - 1/}(1)%(2)1#(2)) }
1

=§/ﬂuam

x {=T(1)01(2)0a(1)g(12)(2)e(1) — ¥ (1)1 (2)0a(2)(12)8(2)1(1)
+uT(1)Y!(2)9(12)0a (1) (2)0 (1 )ﬂbf(l)w*( )9(12)€a(2)9(2)1(1)}

—— 3 [ awae)w @) (g )) B + 1001 2) (20012 )20}

)
—— 5 [amaewi wu e (o )w D} =0
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191

[H,L]=0, [H S =0, [L,S]=0
Each energy eigenstate can be given as a set of simultaneous eigenstates of S 2 8.,
EQ, and L. Among which, the degeneration of energy can be observed for those
having different S, = Mg and L, = M. While among the levels with different
52 = S§(S+1) and L2 = L(L + 1), there is no matrix element for the Hamiltonian
thus, the energy can be considered separately. 92

To be more specific, when electric configuration {(nf)™} (1 <n, < 2(20+1) is

1T et us have

192\When the Hermitian operator @ is commutable with the conserved quantity; i.e., commutable
with Hamiltonian, the matrix element of the Hamiltonian becomes zero among the states with
different eigenvalues of O:

[H,0] = HO-OH=0
ol1) o1]1)
0)2) = o022)

01 02

RIS

Here,
0 = (o1[H,0Olo2)
= <01HO—OH|02>
= (01 — 02){(01|H|02)

Given 01 # 09, we can write
(01|H|o2) =0
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given, the interaction terms are not made merely by the summation of the spins
such that each spin can possibly hold different energies. Under no interaction, the
levels which have been degenerating may begin splitting at each value of the total
spin. These are called multiplet terms. We will investigate the multiplet with a
few examples after some preparation steps in the followings.

10.2 Angular Momentum Operator, Spin-orbital Function,

and Second Quantization

Let us first make some preparation before we demonstrate a concrete example
of calculations. We use a particular spin-orbital function to rewrite the angular

momentum operator and the spin operator. '3
193

lidom = h/EFm)EEm+ D)pmi
Ezqsém = hm¢Zm
st 1) = Rl
s—|T) = hlD)
s = A1)
sl = —3hlD)

L= [ @ Y va)t00(7)
= Y o) [ dr Y6506y (e
! Ji’
= Z hmcilmuc”lml’«

nlm

and so on.
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.I.
E hme,,,. Crlmy

nlmpy

L, +iL,
Z h/(LF m) (I £m + 1)CLzmi1uCnlmu

nlmpu

1
Z §h(CleTCnlmT - Cleicnlml)

nlm

Z hCTnlmTCnlml

nlm

_'.
Z hcnlml Cnlm?

nlm

The operator is expressed as

Vo(7) =D ba(Mxu(0)ca, = (nim)

While one body term of the Hamiltonian can be written as

_ E T
HO - Enlmcnlm’ucnlm,u

nlm,u
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The interaction term can be written as 9%

Hiyy = E I(nl,ll;nQal2;n37l3;n47l4) E E
n1,l1;n2,l2;n3,l3;n4,1l4 £m

my, Mo, M3, My

mitm=my 3, E(lymy, Lymy) et (layma, Isms)
mg+m = mgy

T T
X cal N cag 2 COCB 2 0@4 sH1

c(Im,I'm') = ,/% JdQY ()Y e ()Y, () : real

194

2
Hint = Y [ drdr v () oo (7)o et (7 (1)

~ dmeq |71 — 7]

/ 1 * * —/ =1 =
-y / dF dF ;TOW ST 6 ()00, (7 )by (), ()

ap,02,03,004

X Z X:l (U)X:,g (OJ)XU«3 (U/)X/M (U)Civl,plc];z,ug Ca3,ﬂ«3 Ca4’ll«4

H1,H2,143, 44

2
" 1 Z . « 1= " Z
= /d d l47T60 |T 77;»] ¢a1 (F)¢a2(r/)¢a3<rl>¢a4(?) Cgl,ulcgg,pzcasyﬂ2ca4yul

ap,02,03,004 H1,H2
S [avar [a0 [0 o R 0B R () R 1)
a1 ,062,x3,004

<Y,

lml(

Q)Yizmz (Q )}/ZS"LS (Q ))/147”4 Z Ca1 Mlczf)zz M2C(XS w2 Coy

1,142
2

¢
€ r
47T€0 Z Z 2£+1 /darlll n4l4 /d’l“ Rn2l2 nglg(’rl) : =

rerl
a1,09,03,004 I >

x / 4OV} ()Y ()i () / 4 Y} () Vi () Vi s ()

§ T T
X COzl,;l,l CO(Q,I,LQCOésﬂu‘QCOéALHU’l
M2

= > I(n1,11;na, lo; na, Isina, a) Y > > lima, lama) et (Iamy, lsms)

ni,li;na,l2ins,lzina,ly £m my,mo,m3,myg 1,02

my +m=myg
m3 +m = ma

t
Xcot1 s Oéz 2 00437112 ca4,M1

4
!(Im, I'm!) 1/2£+1/dQYlm VYo ()Y, () - real
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10.3 Some Concrete Examples of Multiplet Terms and the
Method of Trace

10.3.1  (1s)(2s)

In this case, there are possibly four different degeneration states for the non-

perturbation:
(19)1(25)1) = el,;el10)
(19)1(25)") = clych,10)
(1s)4(25)T) = el chy10)
(1s)H(25)") = el e, 10)

We use the above as basis for calculating the degenerate perturbation theory. To
make diagonalization of 4 x 4 Hamiltonian matrices, the conservation of the spin
and angular momentum, which we discussed in the last subsection, should be
considered. Here, we use h = 1 in the calculations. The linear combination of the
four states above can give the eigenstate for the total spin. To demonstrate this, let

us first confirm that Sy |(1s)"(2s)") = 0 and S.|(1s)"(25)") = (5 + 3) |(1s)"(2s)")

are the eigenstates of S =1and Mg=1:
S?(19)1(25)1) = 1(1+1)|(15)"(29)")
S:|(1s)1(29)T) = 1-|(19)1(2s)")
In other form, the above can be written as
1S =1,Ms=1) =|(1s)'(25)")
Likewise, we can write
S?|(1s)'(29)1) = 1(1+1)|(1s)"(25)")
S:(1s)1(2s)") = —1-|(1s)"(2s)")

The above indicates that |(1s)!(2s)!) being the eigenstate of S =1 and Mg =
—1:
1S =1, Mg =—1) =|(1s)"(2s)")

The states for Mg = 0 can be obtained by linear combination of |(1s)(2s))

and |(1s)*(2s)), and among which the state for S = 1 is proportional to 1%

195Demonstrate this.
196 Demonstrate this.
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S_1(18)1(28)) = (cly a1 + lyyenst + - )l(15)1(25)")
= 1(15)"(25)") +1(1)"(29)")

Consider the normalization we have

S =1,Ms=0) = %(Kls)wzsm T 1(15)'@5)))
Loy

_ T T
- E(CLSTCZ?T + ClsTCQSl)‘())
The rest of the states we know from general theory of angular momentum for

S = 0 can be written as an orthogonal form of the above:

S=0,Ms=0) = ——(|(1)'(25)) - |(15)(25)"))

-5

_ A Tt
= _(Cmczsl - 0131025T>|O>

S

We obtained the eigenstates without conducting diagonalization of the Hamil-
tonian matrices. This, in fact is one of the important features of the conserved
quantity. We can easily understand how this may take place by the figures below
that describe the dimension of the basis using the orbital angular momentum M,

and the spin angular momentum Mg:

My

NN

(D)—2)>—2) V]
S
-1 0 1

Abbreviate the negative parts, we have
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M L
M S

In general, the state for the total angular momentum L and the total spin S
is expressed as 2L (S(L = 0), P(L = 1), D(L = 2), F(L = 3) ). The triplet
degeneration state for S = 1, for example, we have 35 while for S = 0 we have 'S.

The energy for 35: 197

E(*S) = (*S|H['S) = ((1s)!(25)"| H|(1s)"(2s)")
I(1s) + 1(2s) + J(1s,2s) — K(1s,2s)

While the energy for 1S be 1%
E(*S) = (*S|H|'S) = I(1s) + I1(25) + J(1s,2s) + K(1s,2s)
'S) = %( |(15)1(2)") = |(1s)'(25)") )

In the above, we directly obtained the energy for 1S. We now reconsider the
above from different view. The Hamiltonian matrices are diagonalized by unitary
transformation of the basis as we have demonstrated, and the traces of matrices
are known to be invariables. The z-component of the angular momentum M is the
conserved quantity so that the diagonalization procedures can be taken by each
M since there is no matrix element found among the blocks that have different

Ms. Hence, the trace is same for the before and after diagonalization. In our

197Using the degeneration, we have |(1s)(2s)T) for 3S.
198

b (7o (P (15) (25)1) = (—1)(<P15(7')|T)a'@zs(7)|l>a—s02s(77')l>o'<ﬂls(F)T>a>0>
b (7o (P (15)25)1) = (—1)<<P1s(F/)|l>a'<P2s(77)|T>a—sﬁ2s(77')T>a’80ls(777l>a>0>
Thus,

(YS|Hint|'S) = =(2J(1s,25) — 2K (1s,2s) + 4K (1s,25)) = J(1s,25) + K(1s,25)

1
2
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present case, for example, the block of M = 0 is the 2 x 2 matrix having the basis
(1s)1(2s)! and (1s)}(2s)!. After we make diagonalization for them, [consider the
multiplet terms which will be given by this block] we have 1S and 3S. So, we can
write

((Ls)'(2)' [ H[(L1s)"(28)") + ((1s)'(25)'|H|(18)(25)") = ('SIH|'S) + (S|H[’S)
Thus,

E('S)+ E(S) = E((1s)', (25)") + E((1s)", (2s)")
=2(I(1s) + I(2s) + J(1s,2s))

For the block of M =1 we have

E(*S) = E((1s)", (25)")
= I(1s) + 1(2s) + J(1s,2s) — K(1s,2s)

Hence, we obtain
E('S) = I(1s) + 1(2s) + J(1s,2s) + K(1s,25s)

We call the above,the method of trace. Further, we determine the wavefunction

for the coordinates ' representation:

@357Ms=1(7_1’177?2) = <T1772301702‘35>
_ U b en(@)xi(on)  eus(i2)xi(02)
2! | @as(T1)x1(01)  p2s(72)x71(02)
_ L ©01s(T1)  ¢15(72) - o
B 2 ()023(_)1) 9023(_'2) XT( I)XT( 2)
= LQ (9015(7“1)(,025(7”2) - 9028(7?1)%018(772)) X1 (Ul)XT(Uz)

1
= E (@15@25 - @23@13)XTXT

In the same way we can write
Vagares (Fa7) = (solsmms(fz) - so2s<ﬂ>sols<f2>>m(al)xl(az)

(90139023 - 90289015) X1X]

S-Sl -
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The wavefunction for 2S and Mg = 0 that are left out can be written as '*°
S 1 - - - S0\ Xa(o1)x (o2) + x (01)x1(02)
\E =071, T = —F= s\ s\T2) — s\T s\T
ssarsmalfin ) = < ((enlFpa () - () v

1 +
= = (90159023 - @23@13) M

V2 V2

Apparently, the functions which belong to S are antisymmetric to the switching
of the particles 701 <> T509; however, we should note that the space component
for the functions, the antisymmetric spin component, has symmetric property.

For 1S, the function can be obtained as

Vs ag=0(71,72) = = (9013(7?1)@23(7?2) + 9025(7?1%013(?72)) X1(01)x1(02) = xi(01)xi(02)

V2 V2

1 X1X| — XIX7

- E (90189023 + @23@13) \/§

The space component is symmetric while the spin component is antisymmetric

for the above. The difference observed in the space components of the wavefunction
creates the energy gap in physical terms.

10.3.2 (1s)(1s)
In this case, only one state is applicable to the non-perturbation state:
(1)1 (15)") = el ych,10)

where Mg = 0 is only valid. It is obvious that S = 0 therefore, 1S is the only state
we obtain.

10.3.3  (1s5)(2s)(3s)

In this case, we can consider 2° = 8 degenerate states for the non-perturbation.
To make a list of the states in terms of Mg, we have:

199

rorsonela) b = o] SANe fe
- %(‘Pls(Fl)S@s(FQ)XT(Ul)Xl(02) = #25(F1) 15 (F2)X1 (01)x1 (2))
1

(r1,72;01,02|(15)"(25)") (p15(71) 025 (P2) x1 (1) X1 (02) — 25 (1) 15 (F2) X1 (01) X1 (02))
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Mis | Mas | Mas | Mg
1 1 1 3
2 2 2 2
1 1 _1 1
2 2 2 2
1 _1 1 1
2 2 2 2
1 _1 T S R §
2 2 2 2
S U I R I R
2 2 2 2
_1 1 T S R §
2 2 2 2
1) 1 1 _1
2 2 2 2
_1 _1 1] _3
2 2 2 2
Therefore,
Mg | Number of states
3
5 1
1
2
M
= + 2
M M
\—(:)—(:)—S \—C)—(:)—S -O—(O—
1 3
2 2

In short, we are having one S and two 2S.

10.3.4  (2p)(3p)

In this case, we can think of (2 x 3)?> = 36 degenerate states for the non-
perturbation. To make a list of the possible basis states using Mg and M, we
have:
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Mg | My, (2pe. )" (3pe, )1
1 2 (2p1) T (3py)!
0| 2 (2p1)"(3p1)*, (2p1)* (3p1)!
—11] 2 (2p1)t(3py)*
|1 (2p1)"(3po)", (2p0)' (3p1)"
0| 1 (2p1)"(3po)*, (2p1)* (3po)"s (200)' (Bp1)* (2p0)* (3p1)'
-1 1 (2p1)*(3po)t, (2p0)* (3p1)*
I (2p1)'(3p-1)", (2po)'(3po)T, (2p-1)'(3p1)!
0 | 0 | (2p)'Bp-1)" (2p0)'(Bpo)*, (2p-1)"(Bp1)*, (2p1)*(Bp-1)T, (2p0)*(3po)", (2p-1)*(3p1)!
—1] 0 (2p1)* (3p-1)*, (2po)*(3po)*, (2p-1)'(3p1)*
1 -1 ( ) (3290) (2290) (319—1)T
0 —1 (229—1)T(3po)l (2]0 1) (3]?0) (2p0) (317—1)i (2170)l(3l?—1)T
-1 -1 (2p-1)*(3po)*; (2po)*(3p-1)*
1 | =2 (2p_1)"(3p_1)T
0 | =2 (2p-1)"(3p-1)*, (2p—1)'(3p_1)!
—1] =2 (2p_1)*(3p_1)*
Therefore,

@
1@
OO
o 0O
S0 "0
020
O O
0 ~ 00 "0O0
®
O O O
O ~ o0 "0QO0
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In other words *D, 'D, 3P, 1P, 35 1S are given as multiplet terms.
According to the method of trace, the energy can be expressed as following forms
as we are given F(a, 3) = (a|H|3) and D = E(3D):

*D=((2p1)' (3p1)"[H|(2p1)' (3p1)") = E((2p1)'(3p1)")  (Ms = 1, M, = 2)
=1(2p1) + I(3p1) + J(2p1, 3p1) — K(2p1, 3p1)
'D3D=FE((2p1)' (3p)") + E((2p1)' (3p1)") (Mg =0, M =2)
=21(2p1) + 21(3p1) + 2J(2p1, 3p1)
P +°D=E((2p1)"(3po)") + E((2p0)' (3p1)") (Mg =1, M, =1)
=1(2p1) + 1(3po) + 1(2po) + 1(3p1)
+ J(2p1,3po) — K (2p1,3po) + J(2po, 3p1) — K (2po, 3p1)
°9 +°P +°D=E((2p1)' (3p-1)") + E((2p0)'(3po)") + E((2p-1)'(3p1)") (Mg =1, M, =
=1(2p1) + 1(3p-1) + 1(2po) + 1(3po) + 1(2p-1) + 1(3p1)
+ J(2p1,3p-1)) — K(2p1,3p-1) + J(2po, 3po) — K (2po, 3po)
+ J(2p_1,3p1) — K(2p_1,3p1)
'P3P+'D3D=E((2p1)"(3po)") + E((2p1)* (3po)")
+ E((2p0)' (3p1)") + E((2p0)' (3p1)")  (Ms =0, My, = 1)
=1(2p1) + I(3po) + I(2p1) + I(3po) + I(2po) + 1 (3p1) + 1(2po) + I(3p1)
+ J(2p1, 3po) + J(2p1, 3po) + J(2po, 3p1) + J(2po, 3p1)
'S5+ P+ P+ D2 D=E((2p1)' (3p-1)") + E((2p0)' (3p0)") + E((2p-1)'(3p1)") + E((2p1)* (3p-1)
+ E((2p0)' (3po)") + E((2p-1)'(3p1)") (Mg =0, M, = 0)
= 21(2p1) + 21(3p_1) + 21(2po) + 21(3po) + 21 (3p1) + 21(2p_1)
(21 3p-1) + T(2p0,3p0)) + T (20-1.3p2) + (21, 3p_1)+
+ J(2po, 3po) + J(2p-1, 3p1)
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Recast the above to have

3D

1 *
11 D *
1 1 3P_>x<
1111 p || x
1 1 39 *
111111 1s *

The equation has a solution because the left side of the matrix has 1.

10.3.5 (2p)?

There are 4C5 = 15 degenerate states for the non-perturbation. We make a list
of possible states to be the basis by using Mg and M:

=
=
~—~
)
=
&
~—
—
P

O O O = = O O = =N
S
-
=
~—
—
—~
[\
=S
(=)
~—
—
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Mg | M, |0DODO
0| 2 1
0| 1 2
0| o0 3
0 | -1 2
0 | —2 1
11 1
110 1
1| -1 1
1] 1 1
—1] 0 1
1] -1 1

Therefore,

OO+,
O O O
O "~ o0 00

In other words, 2P, 'D, and 'S are given as the multiplet terms.
In determining the energy by using the method of trace,

‘D =E((2p)'2p)") (Ms=0,M, =2)
= 21(2p1) + J(2p1, 2p1)
°p= E(2p1>Ta (2P0>T) (Ms=1,My =1)
= 1(2p1) + 1(2po) + J(2p1, 2po) — K (2p1, 2po)
LSHDHP = E((2p1) (2p-1)") + E((2p1)'(2p-1)") + E((2p0)' (2p0)")  (Ms = 0, M, =0)
= 21(2p1) + 21(2po) + 21(2p_1) + 2T (2p1, 2p—1) + J (2o, 2p0)

can give the energy. To provide with other multiplet examples and their results,
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10.3.6 pd

3F,3 D73 P,l F,l D,IP

10.3.7 pds

‘FAD*P2(*F),2(*D),2(*P)

10.4 Electron-hole Transformation and the Multiplet (nl)”
10.4.1 Multiplet (nl)”

For the multiplets which fill the electrons of the particular orbits, we can obtain
the following results:
o pt: 2P
e > :3P'D'S
3 . 4 52 D 2 P

4: 3P,1D,1S

=T ~ T~

5.2p
e d': 2D

« @:3P3PLGIDS

« @ 'PAP2H2G2F2(2D)?2P

o d*:°DPH3G,2(3F)2*D,2(3P),} I,2(*G),} F,2(* D), 2(15)
o @SS GAPADAP2I2H, 2(°G), 2(2F),3(2D) 2 P2 S

o °:°DPH3G,2(3F)2*D,2(3P),* I,2(*G),' F,2(* D), 2(15)
« &' ‘P P2H2G2F2(2D)?2P

« & 3F3P1G DS

« 2D

The above indicates that (nl)* and (nl)??*+1)~* are given by the same multiplet
term due to the electron-hole symmetry. In the following, we will investigate this

characteristic.
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10.4.2 Electron-hole Transformation

When we limit the electron configuration to the particular (nl), the angular
momentum and the spin operator can be

L,= Z Z hmciwcm“
mo o

Ly= Z Z (I Fm)(l£m+ 1)c;rni1ucmu
mo o

1
S, = §hZ(CInTCmT - ijcmi)
m
Sy = hz Cimcml
S_ = hz CjnlCmT

Let us define

U= H H(Cmu + C:rn,u)

m.p

then U and
Ulv =UU" =1
are the unitary operator. 2°° Now we write
L' =ULU",
S =USut

which giving

therefore, 20t

o 1 .
o= SWALL+ L)+ L = I

5= &

200

(c+c) (" +¢)=ccl +cfe=1

201

(c+ cNele+ ') = clect = ¢
(c+cNel(e+ch) =c
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So, for the arbitrary multiplet |G), we can write

L?|G) = AL(L + 1)|G)
S?G) = hS(S +1)|G)

This gives

Ucm“U = cmu

UCJr U = Cmpu

Thus,

L= 303 memchy,
m 14
= Zth mucmu) —L.
L/i _ Z Z h\/ l :|: m l +m+ 1>Cm:i:1ucinu

:_ZZh\/lq:m Yl £m+1)cl ChupCmEp
ZZR\/Z— (I +m+1)el, emap

m

- ZZR\/ (=m/ + 1)+ m/)cjn'—lucm’uy m' =m+1

m’

—L_

_ZZH\/(Z+m)(l—m—|—1)c;rwcm_1u
:—ZZTL\/Z—FW—FI Y(I—m )m_‘_l“cm“, m =m-—1

:—L+

1
r_ T Ty
S, = §h;(0mTcmT - lecml) =-5,
Sho= hz lecjn‘[ =-S_
m

S = hz CmTCInL =-S5

m




— Quantum Mechanics 3: Electronic Structure of Many-Electron Atoms — Hatsugail71

So that we can write in the form: 202

16"y = RL(L + 1)|G")
|Gy = hS(S + 1)|G")
|G') =UIG)

As we can readily confirm: 23

|G> c (nl)x PN |G/> c (nl)2(2l+1)—$

2(204+1)—z

Therefore, generally speaking, (nl)* and (nl) may give the same multiplet

term.

10.5 Hund ' s Rule

Although we can determine the multiplets that are given in the way described
in the last few subsections, further calculations (integrations) are required to de-
termine the energy states for such multiplets. In considering the states which
contributes to the lowest energy level, an experiential rule called the Hund * s rule
can be applied.

Hund’ s Rule: Among all multiplets that are given by an electron
configuration, the spin with the greatest level may possess the lowest
energy. When there are more than one maximum multiplicity spins
then, the one with the greatest orbital angular momentum among them
has the lowest energy level. In the case where there are more than
one maximum multiplicities of the greatest orbital angular momentum
then, the spin which has the greatest orbital angular momentum L has
the lowest energy level.

202

UL*UTU|G) = hL(L + 1)U|G)
US?UTU|G) = hS(S + 1)U|G)

203Tp the case for d®, if we have
[6) = clyel chyl0)
then we can write

t') =Ult) = CT—mCT—QLCT—HCT—uC(T)TC:ruC;T‘0>
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Yet it is considered as an experiential rule, the Hund ’ s rule has been widely
accepted. As we have discussed earlier, in the physical terms, the spin function
indeed holds symmetric property in electron replacement for the spins with maxi-
mum multiplicity while the space part of the wavefunction is antisymmetric based
on the Pauli ’ s principle. In other words, the wavefunction becomes zero when
arbitrary two electron coordinates are the same, and from which we may assume
that the Coulomb interaction energy among electrons can be obtained. For the
orbital angular momenta of the same spin, the greater the momentum, the less
chances are for the electrons to come close to each other since they move at farther
distance away because of the centrifugal force. For the last part of the rule that
relates to L, there is a small Coulomb repulsion and the low probability for the
electrons of greater m value to come close to each other in filling out the parallel

spin.

10.6 Spin-orbit Interaction

In considering the electrons in an atom with large atomic number, the relativistic
correction will be required. The most important term can be the spin-orbit inter-
action. By following the procedures we demonstrated in our earlier discussions,

the term written below can be added after the second quantization: 2%
204
10V - h
3 _
Heo =C [ d*r S e L), 0= g
1 oV
fOZZ/drr )2 () — €l 't
nl n'l’
X Z Z Xu SUU XM ) / dQY’l:n(Q) Z}/l’m/ (Q)Cllmucn/l’m’;ﬂ
oo! pp!
=Y &'
nn'l m
1 *
5] el [ 035, @) £ Vi (@h iy
bl ) [ A0 (@) € Vi@l 1yt |
+ Z X/L|SZ|X[1 /dQ)/lm( )Ez }/lm(Q)CIleucn/lm/L:|
hQ
= Zé(nl,n/l) Z 2{\/(l + m)(l —-—m + 1) nlm lTCn/lml =+ \/ l - (l +m + 1) nlm-‘,—lTC"/lmi

nn'l m

+ m(cjzlmTcnllmT - C']:L[mlcn’lmi)}
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h
4m2c®

Hso = /d?’ S S T (), C=

oo’

—C S [ o) S dntr) — gl

nl n'l

x Z ZXN 0)850' Xy (0) - /dQY}in(Q) gY}’m/(Q)Cjzlmucn’l’m/ﬂl

oo’ !
= Z§ TLl n l Z Z lmX/J«’ ‘Yim’Xu > nlm,ucn'lm W
nn'l m

As far as the effect of the term described above is concerned with only to the
discussion of the multiplet; i.e., the eigenstate of L and S, an effective addition of
the term to the Hamiltonian is known to be able to bring such discussion:

HY = AS- L

Having confirmed with the fact above, we can easily understand that the appli-
cation of the term no longer allows to conserve the spin and the orbital angular

momentum; however,

-

(J? = §2 — [?)
L

Bl = 4

N | —

J =8

+

which indicates that the composition of the spin and the orbital angular mo-
mentum ./ is in fact the conserved quantity:

J: = J(J+1)
J = |[L-S|,|[L-S8|+1,---,L+S

Therefore, the degenerating levels other than 'S in the multiplet, which we dis-
cussed in the last subsection, are considered to further split due to the spin-orbit
interaction. The structure of further splitting of the multiplet is called the fine
structure. This fine structure can be given by

@%:Aaﬂj+n—uL+D—ﬂS+m

The interval among the levels,

AB3o = E3o — Eéal =4J
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is proportional to J within one multiplet term. This is known as the Lande’ s
interval rule. 2%

Equivalence of Hgo and HS/

Let us first define:
H,,, :/ dr wT(T)f(r)saﬁmw(T), a,m=uz,y,z
HSO =H,, + Hyy +H,,

According to [s,, $p] = ihéqpeSe, we can write
[Saa Hbm] :/ dr wT(T)S(T)[Saa Sb]gmw<7_) = iheabCHcm

for § = [ dr(T)p(T)
This yields Hy,, = Hyy, £ 9H,y,, so that

(Hazmy Hyma Hzm)
becomes the irreducible vector operator for S. In the same manner,
(Haxa Hayv az)

becomes the irreducible vector operator for L.
Now, suppose

(T2, T, T7)
satisfies
[Ja, Ts] =iheasy T,
for an angular momentum operator J. In such case,

(Ta:a Ty7 Tz)

205We first considered the multiplet splitting caused by the Coulomb interaction before we
consider the fine structures given by the spin-orbit interaction. This we call the R-S coupling.
Intrinsically, for the atoms with larger atomic numbers, only the J becomes the conserved quan-
tity. The direct treatment of the levels organized by J is called the J-J coupling.
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is regarded as irreducible vector operator of .J. 2%

The commutation relations for non-zero can be:

[J,, Ty] = £hTL
[J+,T,] — 2hTZ
[J_,T+] — —2hTZ

For the eigenfunction [jm) of J? and J,, it is written as

(ml[L., Telljm’) = = h(jm|Tx|jm’)
=h(m —m')(jm|Tx|jm’)

So that we can write
(jm|T|jm') #£0, m—m' = +1

Moreover,

Jilgm) =h/(j —m)(j +m + 1)|jm + 1)
J_|jm) =h\/(j +m)(j —m+ 1)|jm — 1)

gives

0= (jm|[J-, T ]|jm")
= /(G —m)(j +m+ 1) {jm + UT_|jm') — b/ (j + m/)(j — m’ + 1) (jm|T_|jm' — 1)

On the one hand, we have m’ = m + 2 so, we can write in the form:

Vi —m)(j+m+1)(im+ UT_|jm +2) =\/(j + m+2)(j — m — 1)(jm|T_|jm + 1)

im + 1|T_|jm + 2 m|T_|jm + 1
m+ T jm+2) _ GmiT-[ym +1) = independentofm

Vi+m+2)(-—m—-1) JGi+m+1)j—m)

206

[Ja, Ta] =0

[J2, Ty) =ihT,

[Jz,Ty] =—¢hT, 00
[J, Ty] = £hT%
[, Ty = (lJo, Ty] + il Jy, Ta]) = 0
[J+,T_] = (=i[Jy, Ty] + i[Jy, Ty]) = 2RT,
[vaTJr] = (i[JxaTy] - i[Jy7Tx]) = —2nT,
[ J=( )
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Now,

(mlJ-|jm +1) =/(j = m)(j + m+ 1)h
gives
(Gm|T_[jm +1) =c_(jm|J_|jm + 1)
Thus, we can write as

0= (Gml|[Jy, T{][im’)
=/ (j +m)(j —m+1)(im = T [jm') = ha/ (5 — m')(j + m’ + 1) (Gm|Te[jm’ + 1)

For m’ = m — 2, on the other hand, we can write as

VG +m) —m+1)(im — YT jm — 2) =\/(j — m+2)(j + m — 1)(jm|T|jm — 1)
(jm— 1|T+|jm—2> . (jm|T+]jm— 1>

Vi-m+2)G+m-1) JG+m)j-m+1)

= independentofm

Now,

(GmlJilim = 1) =V/(G = m+1)(j +m)h
gives
(m|Ty|jm — 1) =cy (jm|Jy|jm — 1)
and gives

0 = (jml|[L., T:][jm") =h(m — m)(jm|T.| jm’)
(Gm[T.]jm’) # 0, m =m'

Further, we can write
0 =(m|[J¢, T_]|jm) = 2h{jm|T.|jm)
=hy/(j +m)(j —m+1)(jm — LT_|jm) = ha/(j —m)(j + m + 1)(jm|T-|jm + 1)

—c_ b/ (j +m)(j —m+1)(jm — 1|J_|jm) — WJ— )(j +m+ 1) (jm|J_|jm + 1)
=c_2h{jm|J,|jm)

This gives

(gm|T.|gm) =c_(jm|J.|jm)
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Finally,

0 =(jm|[J-, T+]|jm> = —2h(jm|T.|jm)
=h\/(j —m)(j +m+ 1) (jm + 1T.[jm) — h/(j +m)(j — m + 1)(jm|T|jm — 1)
—cw (G = m)(G +m+ 1) {Gm+1Je|jm) = h/ (G +m)(§ —m + 1) (jm|J¢|jm — 1)
ZC+2h<Jm|Jz\Jm>

which is yielding
(m|T:|gm) =cy(gml|Jz|jm)
That is
c_ =cy

Thus, we can define the reduction of the matrix element (j||T||7) which does
not depend on m or

(m|T|jm’y =c(jm|J]jm’)
GIT|7)
ViG+D2i+1)

Cc =

We can rewrite the above as

(LSM; Mg|Hgo|LSMMg) =c(LSM;Mg|L - S|LSMMs)
(LS||Hsol|LS)
VLL+1)(2L+1)S(S+1)(2S +1)

To provide a concrete example of the above, let us suppose d" where (n < 5), the
ground state should have the maximum multiplicity spin according to the Hund ’
s rule:

S n
L, S=—
’ 2

This also gives the greatest value for the orbital angular momentum:

1 —n2 (5-
L=3n— (1424 +n)=3n— (n2—|- ) 5n2n :(5 2n)n

The states for Mg =S and M; = L:

|Ms =S, M, = L) :cg_nc;_2T . -cg_m|0)
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The above is used to calculate both sides of the equation:

1
th2§L =cSL

264
¢c=""3g

Cd =/ dr 73| ¢ri—a(1)]? > 0

Under n > 6, we may write

SleQ—n
L=—{3(10-n)—(1+24+---+(10—n)}
(10—n)(11—n) (10 —n)(n —5)

= — 1 — —
3(10 — n) + 5 5

The state can be determined as
_ _ S R B B | T T T T
Mg =S, M, = L) =C91€11C01C-11C—21C3-1C3-2] "~ CS—(n—5)1|0>

with which we calculate the both sides of the equation:

G ()@ 414+ (3 (n—5)) =€t () L) g,
2 G
c=—~h ﬁ

d6789 §

Where ¢ > 0, d"*3%5 is considered to be in the normal position while s

considered to be in the inverse position under ¢ < 0. We have ¢ = 0 for d° and

d.





