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PartIII

Quantum Mechanics of

ManyParticle System

6 Second Quantization and Interaction

In this section, we discuss an effect of interaction in many-fermion systems by

second quantzation approach. We begin with problems of single particles, followed

by the discussion of many particle problems of free (no interaction) N - particles

then we finally discuss the interactions.

6.1 The Classical Equation of Motion for a Single Particle

To begin with, recall Newton’S equation of motions for a classical particle having

a mass m in one-dimentional potenital V (x).

mẍ = − ∂

∂x
V (x)

IN analytical mechanical perspective, the Hamiltonian formulation shows the equiv-

alent canonical equation of the above:

Hcl(x, p) =
p⃗2

2m
+ V, p⃗ = mv⃗ = mẋ

∂Hcl

∂x
= −ṗ

∂Hcl

∂p
= ẋ

Note that the Hamiltonian Hcl(x, p) is enpressed as a pair of canonical variables

(x, p).
138 The state of the classical system is specified by each point (x, y, z, px, py, pz)

in phase space.

Likewise, we can express the three-dimension:

m¨⃗r = −∇⃗V (r⃗)

138Show this.
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In the Hamiltonian formulation we can write

Hcl(r⃗, p⃗) =
p⃗2

2m
+ V, p⃗ = m ˙⃗r

∂Hcl

∂ri

= −ṗi

∂Hcl

∂pi

= ṙi, i = x, y, z

6.2 (First) Quantization of a Single Free Particle

A first quantization bases its discussion on the Hamiltonian formalism of ana-

lytical mechanics, in which a pair of mutually conjugate canonical variables (x, p)

being replaced by an operator in the equation called Schroedinger equation for

the wavefunction. In our one-dimensional case, for example, we let 、x̂,p̂ be the

operators which requires the commutators between the two; i.e., commutation

relation:

[x̂, p̂] = x̂p̂ − p̂x̂ = i~

Having completed this procedure of replacement, we formaliza the quantum me-

chanical Hamiltonian operator H. The following Schroedinger equation for the

wavefunction Ψ(t) can be given

H1,Q =
p̂2

2m
+ V (x̂)

i~
∂

∂t
ψ = H1,Qψ

Note that the wavefunction ψ forms an inner product space (·, ·), and contains a

complete description of physical reality of the system in the state. We let Hamilto-

nian be the Hermitian in terms of this inner product H = H†. 139 In these settings,

if the physical quantity corresponds to a Hermitian operator O, the expectation

value for the observable physical quantity at time t having the wavefunction ψ(t)

to describe the physical state of the system can be written

Theexpectationvalue = (ψ(t),Oψ(t))

139For the arbitrary state vectors Ψ, Φ, we suppose the operator O and whose Hemitian conju-
grate O† to satisfy the relation below:

(Ψ,OΦ) = (O†Ψ, Φ)
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The Schroedinger equation defines the time expansion of the state vectors of our

case. In a concrete representation that is very often used, a basis of (“ square

integrable”) function space and the inner product are formed:

(f, g) =

∫ ∞

−∞
dx f ∗(x)g(x),

∫ ∞

−∞
dx |f(x)|2 < +∞,

∫ ∞

−∞
dx |g(x)|2 < +∞

so that

x̂ = x ·
p̂ =

~
i

∂

∂x

Under such expression, we can write

H1,Q = − ~
2m

∂2

∂x2
+ V (x)

The treatment of Hcl → H1,Q is called the (first) quantization.

Likewise, the three dimensionsformalism can be given

H1,Q = − ~2

2m
∇⃗2 + V (r⃗),

i~
∂

∂t
ψ(t, r⃗) = H1,Qψ(t, r⃗)

In our specific case, the Hamiltonian is independent of time (∂tH
1,Q = 0) thus,

in the stationary state, we suppose a solution of the separation of variables to be

written

ψ(r⃗, t) = e−iϵt/~ϕ(r⃗)

The Schroedinger equation is then regarded as the eigenvalue problems:

H1,Qϕk(r⃗) =

[
− ~2

2m
∆ + V (r⃗)

]
ϕk(r⃗) = ϵλϕk(r⃗)

Note that in general cases, a certain kind of boundary condition is imposed to the

eigenfunction. For the wavefunction which being orthonormalized such that∫
d3r ϕ∗

k(r⃗)ϕk′(r⃗) = δkk′

We further formalize a complete system∫
d3r ϕk(r⃗)ϕ

∗
k(r⃗

′) = δ(r⃗ − r⃗ ′)

Example of Free Space



— Quantum Mechanics３: Quantum Mechanics of Many-Particle System — Hatsugai105

To provide a more concrete example, we suppose V = 0 with the system being

put inside a box having each edge the length L. If a periodical boundary condition

ϕλ(x + L, y, z) = ϕλ(x, y + L, z) =ϕλ(x, y, z + L) =ϕλ(x, y, z) is required, we let k

be the label to obtain k⃗ = (kx, ky, kz) thus,

ϕk⃗(r⃗) =
1√
L3

eik⃗·r⃗, ϵk⃗ =
~2k⃗2

2m
, k⃗ =

2π

L
(nx, ny, nz), nx, ny, nz = 0,±1,±2, · · ·

140

6.3 First Quantization of Many Particle Systems

In the system of N -particles, we let the coordinates of jth particle be r⃗j =

(xj, yj, zj). If there is the potential V (r⃗1, · · · , r⃗N) existing in the N -particle system,

the classical equation of motion can be written

m¨⃗rj = −∇⃗jV (r⃗1, · · · , r⃗N)

Whose corresponding Hamilton’s equation can be written

Hcl =
∑

j

p⃗j
2

2m
+ V (r⃗1, · · · , r⃗N)

∂Hcl

∂rα
j

= −ṗα
j , α = x, y, z

∂Hcl

∂pα
j

= ṙα
j

In the case with no interactions between the particles, we can express

V (r⃗1, · · · , r⃗N) =
∑

j

v(r⃗j)

In our continuing discussions, we consider no interaction cases followed by discus-

sions of the interaction cases. 141

140Show the orthonormality and completeness.
141If we consider in general up to the two-body force, the potential can be written

V (r⃗1, · · · , r⃗N ) =
∑

j

v(r⃗j) +
1
2

∑
i ̸=j

g(r⃗i, r⃗j)
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In the cases with no existing interactions, the (first) quantization can be per-

formed as:

H1,Q
N =

N∑
j=1

hj

hj = − ~2

2m
∇⃗2

j + v(r⃗j), ∇⃗j = (
∂

∂xj

,
∂

∂yj

,
∂

∂zj

)

i~Φ̇(t, r⃗1, · · · , r⃗N) = H1,Q
N Φ(t, r⃗1, · · · , r⃗N)

Here hj is regarded as the operator that acts only on jth particle coordinates and it

is called the sinple-particle Hamiltonian. Now we consider for the stationary states,

and solve the Schroedinger equation of the N -particle system for the eigenfunction

ΦΛ(r⃗1, r⃗1, · · · , r⃗N) and its eigenvalue EΛ of the N -particle system: (We denote the

name label of the eigenvalue in N -particle system by Λ.)

H1,Q
N ΦΛ(r⃗1, r⃗2, · · · , r⃗N) = 　EΛΦΛ(r⃗1, r⃗2, · · · , r⃗N)

This equation in fact is a partial differential equation such that the solution can

be written (by using the method of separation of variables)

Φk1,k2,··· ,kN
(r⃗1, r⃗1, · · · , r⃗N) = ϕk1(r⃗1)ϕk2(r⃗2) · · ·ϕkN

(r⃗N) =
N∏

j=1

ϕkj
(r⃗j)

Ek1,k2,··· ,kN
= ϵk1 + ϵk2 + · · · + ϵkN

=
N∑

j=1

ϵkj

The eigenfunction label Λ takes the paitrs from k1 to kN ; i.e., k1, k2, · · · , kN をと
り（note the order). Each ϕkj

(r⃗j) is called the wavefunction of the single-particle

stateは kj, which is the eigenfunction having the eigenvalue ϵkj
known as the

single-particle energy of the single-particle Hamiltonian hj（labeled by kj). In

short, this can be written hjϕkj
(r⃗j) = ϵkj

ϕkj
(r⃗j)。142

Note: for a reshuffled state of k1, k2, · · · , kN , we will generally have a different

state but the energy will stay the game.

6.4 Many-particle Quantum Mechanics and the Symmetry

by Particle Switching

To begin, let us consider a point in the generalized x-coordinates obtained by

symmetry operation R, which we suppose to be moving to a point in the coordi-

nates Rx. In this, let symmetry operation OR for the function phi(x) be defined

as:
142Confirm the energy of many-particle system is given by the above equation.



— Quantum Mechanics３: Quantum Mechanics of Many-Particle System — Hatsugai107

ORϕ(Rx) = ϕ(x)

ORϕ(x) = ϕ(R−1x)

Here if we define ψ(x) = H(x)ϕ(x), we can write

OR{H(x)ϕ(x)} = ORψ(x) = ψ(R−1x) = H(R−1x)ϕ(R−1x)

OR{H(x)ϕ(x)} = OR{H(x)O−1
R ORϕ(x)} = ORH(x)O−1

R ϕ(R−1x)

Thus, the transformation for H(x) as the operator acting upon the function can

be given

H(R−1x) = ORH(x)O−1
R

This indicates if H(x) is invariable under the symmetry operation R, expressed in

the form

H(R−1x) = H(x)

H = ORHO−1
R

[H,OR] = HOR − ORH = 0

we can use the fact to further discuss the symmetry by the particle-switching

in many-particle quantum mechanics. Since it is clear to all that the Hamiltonian

H1,Q
N in N -particle system is invariant against the switching of the particles, we can

express that by letting the switching operator between the ith and Jth particles

be Pij (i, j = 1, · · · , N):

[
H,Pij

]
= 0, PijHP−1

ij = H

The above indicates that the many-particle wavefunction of having the simultane-

ous eigenstate for the energy and the particle-switching such that

H1,Q
N ΦΛ = EΛΦΛ

PijΦΛ(· · · , r⃗i, · · · , r⃗j, · · · , ) = ΦΛ(· · · , r⃗j, · · · , r⃗i, · · · , )

= pijΦΛ(· · · , r⃗i, · · · , r⃗j, · · · , )

Switching the particle twice enables the particle to switch back to the initial po-

sition, and therefore the eigenvalue pij for Pij satisfies p2
ij = 1 contrasting with

P 2
ij = 1; i.e., pij = ±1. The particle system under pij = +1 is called a boson

system (B) while under pij = −1 is called a fermion system (F). This switching
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characteristic is regarded as one of the fundamental characteristics of the con-

stituent particles. The each wavefunction for boson (B) and fermion system (F)

has the characteristics described below:

ΦΛ(· · · , r⃗i, · · · , r⃗j, · · · ) = +ΦΛ(· · · , r⃗j, · · · , r⃗i, · · · ) (Boson)

ΦΛ(· · · , r⃗i, · · · , r⃗j, · · · ) = −ΦΛ(· · · , r⃗j, · · · , r⃗i, · · · ) (Fermion)

The wavefunctions we obtained for the many-particle system does not satisfy the

symmetry described in above. Now we use the linear combination of the degenerate

states we noted earlier when we talked about the degenerations, and make the

valid wavefunctions that satisfy the symmetry by performing the symmetrizing

and anti-symmetrizing of the wavefunctions. The results can be written

ΦB
{k1,k2,··· ,kN}(r⃗1, · · · , r⃗N) = ϕk1(r⃗1)ϕk2(r⃗2) · · ·ϕkN

(r⃗N)

[Boson] +ϕk2(r⃗1)ϕk1(r⃗2) · · ·ϕkN
(r⃗N) + · · ·

=
∑

All possible exchange of

k1,··· ,kN

ϕk1(r⃗1)ϕk2(r⃗2) · · ·ϕkN
(r⃗N)

ΦF
{k1,k2,··· ,kN}(r⃗1, · · · , r⃗N) = ϕk1(r⃗1)ϕk2(r⃗2) · · ·ϕkN

(r⃗N)

[Fermion] −ϕk2(r⃗1)ϕk1(r⃗2) · · ·ϕkN
(r⃗N) + − · · ·

=
∑

All possible exchange

P of k1,··· ,kN

(−1)Pϕk1(r⃗1)ϕk2(r⃗2) · · ·ϕkN
(r⃗N)

Note that the wavefunctions do not depend of the order k1, k2, · · · , kN (except for

the scalar multiplications). In the fermion system, the existence of the same single-

particle states may give the wavefunction to be 0 because of the characteristics

of the determinant. In other words, the consistent wavefunction with no-zeros is

free of superposition of single-particle states. This is called the Pauli’s exclusion

principle.

6.5 First Quantization of N-Free Particles System

In summarizing our discussions up to this point, we denote HN as H1,Q
N to

simplify. The complete system of the orthonormalized eigenfunction of the single
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free particle Hamiltonian h(r⃗) can be written in the form 143

h(r⃗)ϕk(r⃗) = ϵkϕk(r⃗)∑
k

ϕk(r⃗)ϕ
∗
k(r⃗

′) = δ(r⃗ − r⃗ ′) completeness∫
d3r ϕ∗

k(r⃗)ϕk ′(r⃗) = δkk′ orthonormality

The Schroedinger equations of each fermion and boson system for the (first quan-

tized) Hamiltonian HN of the N -free particles can be given by

HN(r⃗1, · · · , r⃗N) =
N∑

i=1

h(r⃗i)

HN(r⃗1, · · · , r⃗N)ΦF,B
Λ (r⃗1, · · · , r⃗N) = EΛΦF,B

Λ (r⃗1, · · · , r⃗N)

Whose eigenfunctions satisfy the symmetry condition to the following commuta-

tion:

ΦB
Λ (· · · , r⃗i, · · · , r⃗j, · · · ) = +ΦB

Λ (· · · , r⃗j, · · · , r⃗i, · · · ) (Boson)

ΦF
Λ(· · · , r⃗i, · · · , r⃗j, · · · ) = −ΦF

Λ(· · · , r⃗j, · · · , r⃗i, · · · ) (Fermion)

143For the completeness, we can write

ϕk(r⃗) =
1√
L3

eik·r⃗

giving ∑
k

ϕk(r⃗)ϕ∗
k(r⃗ ′) =

1
δk3

(δk)3
∑

k

1
L3

eik·(r⃗−r⃗′)

=
1

(2π)3

∫
V

dV eik·(r⃗−r⃗′) = δ3(r⃗ − r⃗′)
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In each equation above, we introduce the normalization constants to write

ΦB
Λ={k1,k2,··· ,kN}(r⃗1, · · · , r⃗N) = CB

{
ϕk1(r⃗1)ϕk2(r⃗2) · · ·ϕkN

(rN)

+ϕk2(r⃗1)ϕk1(r⃗2) · · ·ϕkN
(r⃗N) + · · ·

}
= CB

∑
P

ϕkP1
(r⃗1)ϕkP2

(r⃗2) · · ·ϕkPN
(r⃗N)

≡ CBper D(ϕk1ϕk2 · · ·ϕkN
)

ΦF
Λ={k1,k2,··· ,kN}(r⃗1, · · · , r⃗N) = CF

{
ϕk1(r⃗1)ϕk2(r⃗2) · · ·ϕkN

(r⃗N)

−ϕk2(r⃗1)ϕk1(r⃗2) · · ·ϕkN
(r⃗N) + − · · ·

}
= CF

∑
P

(−1)P ϕkP1
(r⃗1)ϕkP2

(r⃗2) · · ·ϕkPN
(r⃗N)

= CF det D(ϕk1ϕk2 · · ·ϕkN
) Slater determinants

{D(ϕk1ϕk2 · · ·ϕkN
)}i,j = ϕki

(r⃗j)

EΛ =
N∑

i=1

ϵki

The normalization constants CB and CF will be defined later. Let us use to label

the eigenfunctions of N -particle systems; the wavefunction is independent of the

order k1, k2, · · · , kN (except for the scalar multiplications). Now, we organize the

overlapping parts in k1, k2, · · · , kN as to change the method in defining the state of

N -particle systems from our initially used method of:“defining the single-particle

states which being occupied by particles”to,“method of defining the number of

overlapping occupations for each single-particle state which is defined by the label

k of the single-particle states.”Further, these overlaps are called the occupation

numbers of a single-particle states k. The states of N -particle systems can be

determined by defining all possible occupation numbers of the single-particle states

k. Therefore, we obtain the occupation number nk for the single-particle states k,

and give {nk} to finally determine the states. In the boson systems, the occupation

numbers can be nk = 0, 1, 2, 3, · · · while it can become nk　 = 0, 1 for the fermion

systems. (Pauli ’s principle) We use this occupation number representation to

write the Schroedinger equation and the energy of N -particle system:

H　ΦB,F
{nk}(r⃗1, · · · , r⃗N) = E{nk}Φ

B,F
{nk}(r⃗1, · · · , r⃗N)

E{nk} =
∑

k

　ϵknk
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6.6 Second Quantization

We now consider a new form of Schoedinger equation through the following

procedures:

HN → H =
∑

k

　ϵkn̂k, n̂k = d†
kdk

ΦB,F
{nk}(r⃗1, · · · , r⃗N) → |{nk}⟩ =

∏
k

|nk⟩ ≡
∏

k

1√
nk!

(dk
†)nk |0⟩

The negative sign ? is used for Bosons (commutation relation) while the positive

sign + is used for Fermions (anti-commutation relation) in equation [A,B]∓ =

AB ∓BA. Thus, we understand that d†
k and dk are the creation and annihilation

operators which satisfy

[d†
k, d

†
k′ ]∓ = 0, [dk, dk′ ]∓ = 0, [dk, d

†
k′ ]∓ = δkk′

Take notice of n̂k|nk⟩ = nk|nk⟩、|nk⟩ = 1√
nk!

(d†
k)

nk |0⟩ which are derived from the

eqquations above, one can write the Schroedinger equation that corresponds to H:

H|{nk}⟩ = E{nk}|{nk}⟩
E{nk} =

∑
k

　ϵknk

The form of energy can be written in the same form that was given before. Here

note that the vacuum |0⟩ is being defined by

∀k, dk|0⟩ =0

⟨0|0⟩ =1

These procedures H → H are called the second quantization.

We can express |{nk}⟩ in which tha label of k decides the one-dimensional order

where we denote the order by ≺ and obtain k1 ≺ k2 ≺ k3 · · · such that

|{nk}⟩ = |nk1 , nk2 , nk3 , · · · ⟩

=
∏

k1≺k2≺k3···

1√
nki

!
(d†

k1
)nk1 (d†

k2
)nk2 (d†

k3
)nk3 · · · |0⟩

The normalization of this state is written

⟨{nk}|{n′
k}⟩ = δ{nk}{n′

k}

=
∏

δnk1,k′1
δnk2,k′2

· · ·

In the following discussions, let us express only the non-zero nk found in |{nk}⟩.
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Field Operator

We use the operator which is defined by the so called field operator

ψ̂(r) =
∑

k

ϕk(r)dk

and write

[ψ̂(r⃗), ψ̂†(r⃗ ′)]± = δ(r⃗ − r⃗ ′)

[ψ̂(r⃗), ψ̂(r⃗ ′)]± = 0

[ψ̂†(r⃗), ψ̂†(r⃗ ′)]± = 0

The Hamiltonian of the free-particle systems can be written

H =

∫
d3rψ̂†(r⃗)(−~2∇⃗2

2m
)ψ̂(r⃗)

This equation represents the first quantization of energy such that the wavefunc-

tion corresponds to the operator in the form; the reason why we call“ second

quantization.”It should be clear to most of us by now that the Hamiltonian for

the general single-particle can be discussed in the same manner. The general

treatment for the operators will be discussed later yet; we can still obtain the

Hamiltonian that corresponds to the energy based on the knowledge we have ob-

tained up to this point.

In our next step, we consider how to treat the state vectors. The relation between

the state vector |{nk}⟩ by second quantization formalism and the many-particle

wavefunction in first quantization can be written 144

Φ{nk}(r⃗1, · · · , r⃗N) = ⟨r⃗1, · · · , r⃗N |{nk}⟩

|r⃗1, · · · , r⃗N⟩ ≡ 1√
N !

ψ̂†(r⃗1) · · · ψ̂†(r⃗N)|0⟩ =
1√
N !

N∏
j=1

ψ̂†(r⃗j)|0⟩

144For fermions:

⟨r⃗1, · · · , r⃗N |{nk}⟩ =
1√
N !

⟨0|ψ(r⃗N ) · · ·ψ(r⃗1)|nk1 , nk2 , · · ·nkN
⟩

=
1√
N !

∑
i1,···iN

ϕiN
(r⃗N ) · · ·ϕi1(r⃗1)⟨0|diN

· · · di1 |nk1 , nk2 , · · ·nkN
⟩

=
1√
N !

∑
P

(±)P ϕkP N
(r⃗N ) · · ·ϕkP1(r⃗1) =

1√
N !

detϕki
(r⃗j)
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The normalization constants CF and CB are given

CF =
1√
N !

CB =
1√

N !
∏

k nk!

The normalization can be given by 145∫
d3r1 · · · r⃗N |ΦΛ(r⃗1 · · · r⃗N)|2 = 1

For bosons:

⟨r⃗1, · · · , r⃗N |{nk}⟩ =
1√
N !

⟨0|ψ(r⃗N ) · · ·ψ(r⃗1)|nk1 , nk2 , · · · ⟩

=
1√
N !

∑
i1,···iN

ϕiN (r⃗N ) · · ·ϕi1(r⃗1)⟨0|diN · · · di1 |nk1 , nk2 , · · · ⟩

=
1√
N !

∑
i1,···iN

ϕiN
(r⃗N ) · · ·ϕi1(r⃗1)⟨0| · · · (dk2)

nk2 (dk1)
nk1 |nk1 , nk2 , · · · ⟩

{i1, · · · iN} = {

nk1︷ ︸︸ ︷
k1, k1 · · · k1,

nk2︷ ︸︸ ︷
k2, k2 · · · k2, · · · }, as a set

=
1√
N !

∑
i1,···iN

ϕiN (r⃗N ) · · ·ϕi1(r⃗1)
√

nk1 !nk2 ! · · ·

=
1√
N !

1
nk1 !nk2 ! · · ·

∑
P

ϕiP N (r⃗N ) · · ·ϕiP1(r⃗1)
√

nk1 !nk2 !, · · ·

We cannot find the overlapped values by the substitution in the form of natural free sum. Thus,

= 1
√

N !nk1 !nk2 !···
P

P ϕiP N
(r⃗N )···ϕiP1 (r⃗1), {i1,i2,··· ,iN}={

nk1︷ ︸︸ ︷
k1, k1 · · · k1,

nk2︷ ︸︸ ︷
k2, k2 · · · k2,··· }

145Consider the noemalization. For the fermions:∫
d3r1 · · · r⃗N |Φ{nki

}(r⃗1 · · · r⃗N )|2 =
1

N !

∑
PQ

(−)P (−)Q

∫
d3r1 · · · d3rN ϕ∗

kQ1
(r⃗1)ϕkP1(r⃗1) · ϕ∗

kQ2
(r⃗2)ϕkP2(r⃗2) · · ·

=
1

N !

∑
P

∫
d3r1 · · · d3rN ϕ∗

kP1
(r⃗1)ϕkP1(r⃗1) · ϕ∗

kP2
(r⃗2)ϕkP2(r⃗2) · · · = 1

While for the bosons:∫
d3r1 · · · r⃗N |Φ{nki

}(r⃗1 · · · r⃗N )|2 =
1

N !nk1 !nk2 ! · · ·
∑
PQ

∫
d3r1 · · · d3rN ϕ∗

iQ1
(r⃗1)ϕiP1(r⃗1) · ϕ∗

iQ2
(r⃗2)ϕiP2(r⃗2) · · ·

{i1, · · · iN} = {

nk1︷ ︸︸ ︷
k1, k1 · · · k1,

nk2︷ ︸︸ ︷
k2, k2 · · · k2, · · · },

=
1

nk1 !nk2 ! · · ·
∑
P

∫
d3r1 · · · d3rN ϕ∗

i1(r⃗1)ϕiP1(r⃗1) · ϕ∗
i2(r⃗2)ϕiP2(r⃗2) · · · = 1
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Further, the orthonormal condition can be given by

⟨r⃗1, · · · , r⃗N |r⃗1
′, · · · , r⃗N

′⟩ =
1

N !

∑
P

(±)P δ(r⃗1 − r⃗P1
′) · · · δ(r⃗N − r⃗PN

′)

6.7 Operator and the Interactoin in Second Quantization

Formalism

Now we consider the second quantization approach and the form of operator that

can be introduced to the given single-particle operator F and to the two-particle

operator G, which we defined in first quantization earlier:

F =
N∑

i=1

f(r⃗i)

G =
1

2

∑
i ̸=j

g(r⃗i, r⃗j)

146

First, we need to confirm the complete system IN of N -particle systems: 147

146In first quantization, the kinetic energy can be an example of the single-particle operator F :

F = −
∑

i

~2∇2
i

2m

For the two-particle operator G, the Coulomb interaction can be of the typical example:

G =
1
2

∑
i,j

e2

|r⃗i − r⃗j |

147In the fermions cases:

ÎN =
∫

d3r1 · · · d3rN |r⃗1, · · · , r⃗N ⟩⟨r⃗1, · · · , r⃗N |

=
1

N !

∑
i′1,··· ,i′N

∑
i1,··· ,iN

d†
ı′1
· · · d†

i′N
|0⟩⟨0|di1 · · · diN

×
∫

d3r1 · · · d3rN ϕ∗
i′1

(r⃗1)ϕi1(r⃗1) · · ·ϕ∗
i′N

(r⃗N )ϕiN (r⃗N )

=
1

N !

∑
i1,··· ,iN

|nı1 · · ·niN
⟩⟨ni1 · · ·niN

|

=
∑

i1≺···≺iN

|nı1 · · ·niN
⟩⟨ni1 · · ·niN

| Note that there are only non-zeros.
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148

|r⃗1, · · · , r⃗N⟩ =
1√
N !

ψ̂†(r⃗1) · · · ψ̂†(r⃗N)|0⟩ =
1√
N !

N∏
j=1

ψ̂†(r⃗j)|0⟩

ÎN =

∫
d3r1 · · · d3rN |r⃗1, · · · , r⃗N⟩⟨r⃗1, · · · , r⃗N |

=
∑

α1,··· ,αN

∏
αi

nαi
!

N !
|nα1 · · ·nαN

⟩⟨nα1 · · ·nαN
|

=
∑

α1≺α2≺···

|nα1nα2 · · · ⟩⟨nα1nα2 · · · |

Calculate the matrix elements of the operator below for the arbitrary N -particle

states α = {nα1 · · · , nαN
} and β = {nβ1 · · · , nβN

}:

F =

∫
d3rψ̂†(r⃗)f(r⃗)ψ̂(r⃗)

⟨α|F|β⟩ =

∫
d3r

∫
d3r1 · · · d3rN−1 ⟨α|ψ̂†(r⃗)|r⃗1, · · · , r⃗N−1⟩f(r⃗)⟨r⃗1, · · · , r⃗N−1|ψ̂(r⃗)|β⟩

= N

∫
d3r1 · · · d3rN−1d

3r ⟨α|r⃗1, · · · , r⃗N−1, r⃗⟩f(r⃗)⟨r⃗1, · · · , r⃗N−1, r⃗|β⟩

=

∫
d3r1 · · · d3rN

N∑
i=1

Φ∗
α(r⃗1, · · · , r⃗N)f(r⃗i)Φβ(r⃗1, · · · , r⃗N)

=

∫
d3r1 · · · d3rN Φ∗

α(r⃗1, · · · , r⃗N)FΦβ(r⃗1, · · · , r⃗N)

148For the bosons:

ÎN =
∫

d3r1 · · · d3rN |r⃗1, · · · , r⃗N ⟩⟨r⃗1, · · · , r⃗N |

=
1

N !

∑
i′1,··· ,i′N

∑
i1,··· ,iN

d†ı′1
· · · d†

i′N
|0⟩⟨0|di1 · · · diN

×
∫

d3r1 · · · d3rN ϕ∗
i′1

(r⃗1)ϕi1(r⃗1) · · ·ϕ∗
i′N

(r⃗N )ϕiN
(r⃗N )

=
∑

k1,k2···

∏
k nk!
N !

|nk1 , nk2 , · · · ⟩⟨nk1 , nk2 , · · · |

{i1, · · · , iN} = {

nk1︷ ︸︸ ︷
k1, k1 · · · k1,

nk2︷ ︸︸ ︷
k2, k2 · · · k2, · · · }

=
∑

k1≺k2···

|nk1 , nk2 , · · · ⟩⟨nk1 , nk2 , · · · |,
∑

nki = N
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The above indicates that we can use calF to correspond to the single-particle

operator F . 149

In the same way, we consider the two-particle operator:

G =
1

2

∫
d3rd3r ′ψ̂†(r⃗)ψ̂†(r⃗ ′)g(r⃗i, r⃗j)ψ̂(r⃗ ′)ψ̂(r⃗), g(ri, rj) = g(rj, ri), (i ̸= j)

Calculation for the matrix elements of the above yields

⟨α|G|β⟩ =
1

2

∫
d3rd3r ′

∫
d3r1 · · · d3rN−2

×⟨α|ψ̂†(r⃗)ψ̂†(r⃗ ′)|r⃗1, · · · , r⃗N−2⟩g(r⃗, r⃗ ′)⟨r⃗1, · · · , r⃗N−2|ψ̂(r⃗ ′)ψ̂(r⃗)|β⟩

=
1

2
N(N − 1)

∫
d3r1 · · · d3rN−2d

3rd3r ′

× ⟨α|r⃗1, · · · , r⃗N−2, r⃗, r⃗
′⟩g(r⃗, r⃗ ′)⟨r⃗1, · · · , r⃗N−2, r⃗, r⃗

′|β⟩

=

∫
d3r1 · · · d3rN

×1

2

N∑
i ̸=j

Φ∗
α(r⃗1, · · · , r⃗N)g(r⃗i, r⃗j)Φβ(r⃗1, · · · , r⃗N)

=

∫
d3r1 · · · d3rN Φ∗

α(r⃗1, · · · , r⃗N)GΦβ(r⃗1, · · · , r⃗N)

This indicates that we can use calG to correspond to the two-particle operator G.
150 We can summarize that in the form:

F ⇔ F
G ⇔ G

Second Quantized Example

• Particle density operator

∑
i

δ(r⃗ − r⃗i) −→ n̂(r⃗) = ψ̂†(r⃗)ψ̂(r⃗)

149We put the complete system IN−1 of N − 1 particle system into the equation:

ψ̂†(r⃗)|r⃗1, · · · , r⃗N−1⟩ = (−1)N−1
√

N |r⃗1, · · · , r⃗N−1, r⃗⟩

and
Φ∗

α(r⃗1, · · · , r⃗N )Φβ(r⃗1, · · · , r⃗N )

Note that the commutation of arbitrary ri and rj is symmetric.
150In our typical case, we used g(r1, r2) = g(r2, r1 in the equation; however, in general cases, we

will obtain G = 1
2

∫ ∫
d3r d3r′ψ†(r⃗)ψ†(r⃗ ′)gS(r⃗, r⃗ ′)ψ(r⃗ ′)ψ(r⃗) when we use G = 1

2

∑
i,j g(ri, rj) =

1
2

∑
i,j gS(ri, rj)
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• Total energy-momentum operator 151

−
∑

i

~2

2m
∇⃗2

i −→ −
∫

d3r ψ̂†(r⃗)
~2

2m
∇⃗2ψ̂(r⃗) =

∫
d3r

1

2m

(
~
i
∇⃗ψ̂(r⃗)

)†(~
i
∇⃗ψ̂(r⃗)

)

• Density-density correlation operator 152

n̂(r⃗, r⃗′) =
∑
i̸=j

δ(r⃗ − r⃗i)δ(r⃗
′ − r⃗j) −→= n̂(r⃗)n̂(r⃗ ′) − δ(r⃗ − r⃗ ′)n̂(r⃗)

151Use the integration by parts.
152

n̂(r⃗, r⃗′) =
∑
i ̸=j

δ(r⃗ − r⃗i)δ(r⃗′ − r⃗j)

−→ ψ̂†(r⃗)ψ̂†(r⃗ ′)ψ̂(r⃗ ′)ψ̂(r⃗) = ±ψ̂†(r⃗)ψ̂†(r⃗ ′)ψ̂(r⃗)ψ̂(r⃗ ′)

= ψ̂†(r⃗)
(
ψ̂†(r⃗ ′)ψ̂(r⃗) − δ(r⃗ − r⃗ ′)

)
ψ̂(r⃗ ′) = n̂(r⃗)n̂(r⃗ ′) − δ(r⃗ − r⃗ ′)n̂(r⃗)
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7 Single-particle States and Mean-field Approx-

imations in Fermion Systems

Generally speaking, to obtain the eigenstates of many-particle systems with in-

teractions is considered much complicated. Among the different types of approxi-

mation methods performed effectively to solve the many-particle problems, we fo-

cus our discussion on the most fundamental and essential of which; the mean-field

approximations and the single-particle approximations. We begin our discussion

by considering the simplified spinless fermion systems. Following our discussion

in the previous section, we let one-body of potential be v(r⃗) and let the inter-

electronic interaction be g(r⃗ − r⃗ ′). In such case, the Hamiltonian can be written

as

H =

∫
d3r ψ†(r⃗)

(
−~2∇2

2m
+ v(r⃗)

)
ψ(r⃗)

+
1

2

∫
d3r

∫
d3r ′ ψ†(r⃗)ψ†(r⃗ ′)g(r⃗ − r⃗ ′)ψ(r⃗ ′)ψ(r⃗)

The Coulomb force can be written

g(r⃗ − r⃗ ′) =
1

4πϵ0

e2

|r⃗ − r⃗′|
.

Let us now consider a problem of determining the ground state |G⟩ of the fixed

number of particles N in the system:

N = ⟨G|N̂ |G⟩

N̂ =

∫
d3r n̂(r⃗), n̂(r⃗) = ψ†(r⃗)ψ(r⃗)

In fact, this is commonly known to be insoluble for N ¿ 2 (many-body problem).

In our following subsections, we will consider the certain types of approximated

solutions to solve the many-body problems.

7.1 Single-particle Orbit and Unitary Transformation of

Fermi Operator

Let us consider the following trial function for the ground state in the many-

particle system: 153

|G⟩ = c†1c
†
2 · · · c

†
N |0⟩

153The wavefunction in such form is called the single-particle wavefunction.
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Note that cj can be transformed in applying the unitary transformation Uij to the

annihilation operator dj of the fermions used in second quantization: (Vacuum |0⟩
is the invariable)

di =
∑

j

Uijcj, cj =
∑

j

dkU
∗
kj

Uij = {U}ij, U
yU = UU y = I∑

k

UikU
∗
jk =

∑
k

UkiU
∗
kj = δij

The field operator can be written in correspond to the above transformation:

ψ̂(r⃗) =
∑

j

ϕj(r⃗)dj =
∑

k

φk(r⃗)ck

φk(r⃗) =
∑

j

ϕj(r⃗)Ujk

Now we can demonstrate that φj(r⃗), j = 1, 2, · · · formulates the following or-

thonormalized complete system: 154

∫
d3r φ∗

i (r⃗)φj(r⃗) = δij∑
j

φ∗
j(r⃗)φj(r⃗

′) = δ(r⃗ − r⃗ ′)

While contrarily in the arbitrary orthonormalized complete system {φk(r⃗)},
each function of this complete system can be expanded over the complete sys-

tem {ϕj(r⃗)}:

φk(r⃗) =
∑

j

ϕj(r⃗)Ujk

The expansion coefficient in the above can formulate Uij, by which the unitary

154 ∫
d3r φ∗

i (r⃗)φj(r⃗) =
∫

d3r ϕ∗
k(r⃗)U∗

kiϕl(r⃗)Ulj = U∗
kiUkj = δij

φj(r⃗)φ∗
j (r⃗

′) = ϕk(r⃗)Ukjϕ
∗
l (r⃗

′)U∗
lj = ϕk(r⃗)ϕ∗

k(r⃗ ′) = δ(r⃗ − r⃗ ′)
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matrix is formed. 155 Hence, the new operator {cj} defined by this unitary matrix

also satisfies the anticommutation relation of fermion. 156 Based on which we

write

⟨r⃗1, r⃗2, · · · , r⃗N |G⟩ = CF det{φi(r⃗j)}

This may give us a act that to consider |G⟩ analogues to having φk(r⃗) for the

single-particle orbit which takes oart in making the ground state. We use the

variation principle for φk(r⃗)

⟨G|H|G⟩

In our following discussions, we will consider the mean-field approximation that

takes the smallest value in the above. We will now demonstrate a step-by-step

calculation of each term that makes up ⟨G|H|G⟩.

7.2 Total Energy of Single-particle States

The equation {ψ̂(r⃗), c†j} = φj(r⃗) gives ψ̂(r⃗)c†j = −c†jψ̂(r⃗) + φj(r⃗), which further

giving:

ψ̂(r⃗)|G⟩ = {−c†1ψ̂(r⃗) + φ1(r⃗)}c†2 · · · c
†
N |0⟩

= −
N∑

j=1

(−1)jφj(r⃗)c
†
1 · · · c

†
j−1c

†
j+1 · · · c

†
N |0⟩

A one-body energy term can be written

⟨G|
∫

d3r ψ̂†(r⃗)

(
−~2∇2

2m
+ v(r⃗)

)
ψ̂(r⃗)|G⟩ =

N∑
j=1

I(j)

I(j) =

∫
d3r φ∗

j(r⃗)

(
− ~2

2m
∇2 + v(r⃗)

)
φj(r⃗)

155 ∫
d3r φ∗

i (r⃗)φj(r⃗) =
∫

d3r ϕ∗
k(r⃗)U∗

kiϕl(r⃗)Ulj = U∗
kiUkj = δij

Ujk =
∫

d3r ϕ∗
j (r⃗)φk(r⃗)

UikU∗
jk =

∫
d3r′ ϕ∗

i (r⃗
′)φk(r⃗′)

∫
d3r ϕj(r⃗)φ∗

k(r⃗) =
∫

d3r ϕ∗
i (r⃗)ϕj(r⃗) = δij

156

{ci, c
†
j} = {dkU∗

ki, d
†
l Ulj} = U∗

kiUkj = δij
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In the same way, we may write

ψ̂(r⃗ ′)ψ̂(r⃗)|G⟩ = ψ̂(r⃗ ′){−c†1ψ̂(r⃗) + φ1(r⃗)}c†2 · · · c
†
N |0⟩

= −
N∑

j=1

(−1)jφj(r⃗)ψ̂(r⃗ ′)c†1 · · · c
†
j−1c

†
j+1 · · · c

†
N |0⟩

=
∑
k<j

(−1)j+kφk(r⃗
′)φj(r⃗)c

†
1 · · · c

†
k−1c

†
k+1 · · · c

†
j−1c

†
j+1 · · · c

†
N |0⟩

+
∑
j<k

(−1)j+k+1φk(r⃗
′)φj(r⃗)c

†
1 · · · c

†
j−1c

†
j+1 · · · c

†
k−1c

†
k+1 · · · c

†
N |0⟩

=
∑
k<j

(−1)j+k{φk(r⃗
′)φj(r⃗) − φj(r⃗

′)φk(r⃗)}

×c†1 · · · c
†
k−1c

†
k+1 · · · c

†
j−1c

†
j+1 · · · c

†
N |0⟩

Thus,

⟨G| 1

2

∫
d3r

∫
d3r ′ ψ̂†(r⃗)ψ̂†(r⃗ ′)g(r⃗ − r⃗ ′)ψ̂(r⃗ ′)ψ̂(r⃗)|G⟩

=
1

2

∫
d3r

∫
d3r ′g(r⃗ − r⃗ ′)

∑
k<j

|φk(r⃗
′)φj(r⃗) − φj(r⃗

′)φk(r⃗)|2

=
1

2

∫
d3r

∫
d3r ′g(r⃗ − r⃗ ′)

∑
k ̸=j

{|φk(r⃗
′)|2|φj(r⃗)|2 − φ∗

k(r⃗
′)φj(r⃗

′)φ∗
j(r⃗)φk(r⃗)}

=
∑
k<j

(J(k, j) − K(k, j))

J(k, j) =

∫
d3r

∫
d3r ′|φi(r⃗)|2 g(r⃗ − r⃗ ′) |φj(r⃗)|2

=
e2

4πϵ0

∫
d3r

∫
d3r ′ |φk(r⃗

′)|2|φj(r⃗)|2

|r⃗ − r⃗′|

K(k, j) =

∫
d3r

∫
d3r ′φ∗

k(r⃗
′)φj(r⃗

′) g(r⃗ − r⃗ ′) φ∗
j(r⃗)φk(r⃗)

=
e2

4πϵ0

∫
d3r

∫
d3r ′φ

∗
k(r⃗

′)φj(r⃗
′)φ∗

j(r⃗)φk(r⃗)

|r⃗ − r⃗′|

The total energy ET can be given 157

ET =
∑

i

I(i) +
∑
i<j

(
J(i, j) − K(i, j)

)
These J(k, j) and K(k, j) are respectively called the Coulomb integral and the

exchange integral of both having positive quantities. The integrals satisfy the

following relations:
157The i = j terms are canceled by the Coulomb integral and the exchange integral
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158 159 160

J(i, j) ≥ K(i, j) ≥ 0

Further, satisfy the following: 161

J(i, i) + J(j, j) ≥ 2J(i, j)

158

J(1, 2) − K(1, 2) =
e2

4πϵ0

∫
d3r

∫
d3r ′ 1

|r⃗ − r⃗ ′|
1
2

(
|φ1(r⃗ ′)|2|φ2(r⃗)|2 + |φ1(r⃗)|2|φ2(r⃗ ′)|2

−φ∗
1(r⃗

′)φ2(r⃗ ′)φ∗
2(r⃗)φ1(r⃗) − φ∗

1(r⃗)φ2(r⃗)φ∗
2(r⃗

′)φ1(r⃗ ′)
)

=
e2

4πϵ0

∫
d3r

∫
d3r ′ 1

|r⃗ − r⃗ ′|
1
2
(|Z|2|Y |2 + |X|2|U |2 − X∗Y ZU ∗ −Z∗UXY ∗)

=
e2

4πϵ0

∫
d3r

∫
d3r ′ 1

|r⃗ − r⃗ ′|
1
2
|XU − Y Z|2 ≥ 0

X = φ1(r⃗ ′), Y = φ2(r⃗ ′), Z = φ2(r⃗), U = φ1(r⃗)

159Let us write
e−µr

r
=

1
2π2

∫
d3k eik⃗·r⃗ 1

k2 + µ2
=

1
V

∑
k⃗

eik⃗·r⃗ 4π

k2 + µ2

Where we interpret as µ → 0 so that

1
r

=
1

2π2

∫
d3k eik⃗·r⃗ 1

k2
=

1
V

∑
k⃗

eik⃗·r⃗ 4π

k2

160

K(1, 2) =
e2

4πϵ0

1
2π2

∫
d3k

1
k2

∫
d3r

∫
d3r ′ eik⃗·(r⃗−r⃗ ′) φ∗

1(r⃗
′)φ2(r⃗ ′)φ∗

2(r⃗)φ1(r⃗)

=
e2

4πϵ0

1
2π2

∫
d3k

1
k2

∫
d3reik⃗·r⃗φ∗

2(r⃗)φ1(r⃗)
∫

d3r ′e−ik⃗·r⃗ ′
φ∗

1(r⃗
′)φ2(r⃗ ′)

=
e2

4πϵ0

1
2π2

∫
d3k

1
k2

∣∣∣∣ ∫
d3reik⃗·r⃗φ∗

2(r⃗)φ1(r⃗)
∣∣∣∣2 ≥ 0

161

J(i, i) + J(j, j) − J(i, j) − J(j, i) =
e2

4πϵ0

∫
dr⃗

∫
dr⃗ ′

× 1
|r⃗ − r⃗ ′|

(
|φi(r⃗)|2|φi(r⃗ ′)|2 + |φj(r⃗)|2|φj(r⃗ ′)|2 − |φi(r⃗)|2|φj(r⃗ ′)|2 − |φj(r⃗)|2|φi(r⃗ ′)|2

)
=

e2

4πϵ0

1
V

∑
k⃗

4π

k2

∫
dr⃗

∫
dr⃗ ′eik⃗·r⃗e−ik⃗·r⃗ ′

×
(
|φi(r⃗)|2 − |φj(r⃗)|2

)(
|φi(r⃗ ′)|2 − |φj(r⃗ ′)|2

)

=
e2

4πϵ0

1
V

∑
k⃗

4π

k2

∣∣∣∣ ∫
dr⃗eik⃗·r⃗

(
|φi(r⃗)|2 − |φj(r⃗)|2

)∣∣∣∣2 ≥ 0
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Expectation Value of Free Fermion System

In contrast to the fermion systems, the simplest form of many-particle states

where the single-particle states are packed to the fermi energy of EF , is called a

“ Fermi sea”. In the second quantization representation, we can write

|F ⟩ =
∏

ϵ
k⃗
≤EF

d†
k⃗
|0⟩

ϵk⃗ =
~2k2

2m

ψk⃗(r⃗) =
∑

k⃗

1√
V

eik⃗·r⃗

Let us now demonstrate the calculations for the expectation values of the second

quantized operators in the Fermi sea.

• Particle density 162

⟨F | n̂(r⃗)｜F ⟩ =
N

V
=

1

6π
k3

F

• Particle-particle correlation function 163

⟨F |n̂(r⃗, r⃗ ′)｜F ⟩ =

(
N

V

)2(
1 − (f(kF |r⃗ − r⃗ ′|))2

)
f(kF R) = 3

sin kF R − kF R cos kF R

k3
F R3

The above equations show that the particles repel each other in the real

space given by the Pauli ’s exclusion principle; the effect is known as the

Exchange hole.

162

⟨F |n̂(r⃗)｜F ⟩ = ⟨F |ψ̂†(r⃗)ψ̂(r⃗)|F ⟩

=
1
V

∑
k⃗,⃗k ′

e−i(k⃗−k⃗ ′)·r⃗⟨F |d†
k⃗
dk⃗ ′ |F ⟩

=
1
V

∑
k⃗,ϵ

k⃗
≤EF

⟨F |d†
k⃗
dk⃗|F ⟩ =

N

V

while

N =
∑

k⃗,ϵ
k⃗
≤EF

1 =
(

L

2π

)3 ∫
ϵ

k⃗
≤EF

dk⃗ = V
1

8π3

4π2

3
k3

F = V
1
6π

k3
F

163In calculating the interaction terms, we first write g(r⃗− r⃗ ′) = δ(r⃗−R⃗A)δ(r⃗ ′−R⃗B) to directly
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7.3 Mean Field Equations: Hartree-Fock Equations

Now we consider obtaining the basis function φi(r⃗) that includes the lowest

variational energy we evaluated in the last subsection. Since the basis function

is known as the complex quantity, we write the variation of φ∗
i (r⃗) while knowing

that we may take the variation of φ∗
i (r⃗) independently of φi(r⃗). Before we do

so, we consider the binding condition by introducing the normalization condition∫
d3r φ∗

i (r⃗)φi(r⃗) = 1 using a set of N Lagrangian uncertain multipliers ϵi, i =

1, · · · , N : (We will consider the orthogonal conditions later.)

δ

δφ∗
i (r⃗)

(
ET −

∑
i

ϵi

∫
d3r φ∗

i (r⃗)φi(r⃗)

)
= 0

=

(
− ~2∇2

2m
+ v(r⃗) +

e2

4πϵ0

N∑
j=1

∫
d3r ′ |φj(r⃗

′)|2

|r⃗ − r⃗ ′|
− ϵi

)
φi(r⃗)

− e2

4πϵ0

N∑
j=1

( ∫
d3r ′φ

∗
j(r⃗

′)φi(r⃗
′)

|r⃗ − r⃗ ′|

)
φj(r⃗)

obtain from J − K as following:

⟨F | n̂(r⃗, r⃗ ′)｜F ⟩ =
∑

k≤kF ,k′≤kF

∫
d3r

∫
d3r ′δ(r⃗ − R⃗A)δ(r⃗ ′ − R⃗B)

(
|ψk⃗(r⃗ ′)|2|ψk⃗ ′(r⃗)|2 − ψ∗

k⃗
(r⃗ ′)ψk⃗ ′(r⃗ ′)ψ∗

k⃗ ′(r⃗)ψk⃗(r⃗)
)

=
∑

k≤kF ,k′≤kF

(
1

V 2
− 1

V 2
e−ik⃗·R⃗Beik⃗ ′·R⃗Be−ik⃗ ′·R⃗Aeik⃗·R⃗A

)

=
1

V 2

∑
k≤kF ,k′≤kF

(
1 − ei(k⃗−k⃗ ′)·(R⃗A−R⃗B)

)

=
1

V 2

( ∑
k≤kF

1
)2 − 1

V 2

∣∣ ∑
k≤kF

eik⃗·(R⃗A−R⃗B)
∣∣2 =

(
N

V

)2(
1 − f(kF |R⃗A − R⃗B |)

)
Here we calculate below:

N

V
f(kF |R⃗A − R⃗B |) =

1
V

∑
k≤kF

eik⃗·(R⃗A−R⃗B) =
1
V

L3

(2π)3

∫
k≤kF

dk⃗ eik|R⃗A−R⃗B | cos θ

=
1

(2π)3
(2π)

∫ kF

0

dk k2 eikRAB − e−ikRAB

ikRAB
=

1
2π2RAB

∫ kF

0

∫ kF

0

dk k sin kRAB

= k3
F

1
2π2

sin kF RAB − RAB cos kF RAB

kF R3
AB

=
N

V
3

sin kF RAB − RAB cos kF RAB

k3
F R3

AB

giving
∫ K

0
dk cos kR = 1

R sin KR, note that we have
∫ K

0
dkk sin kR = 1

R2 (sinKR−KR cos KR).
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We rewrite the above:

HF φi(r⃗) = ϵiφi(r⃗)

The operator HF can be defined as:

HFO =

(
− ~2∇2

2m
+ v(r⃗) +

e2

4πϵ0

N∑
j=1

∫
d3r ′ |φj(r⃗

′)|2

|r⃗ − r⃗ ′|

)
O(r⃗)

− e2

4πϵ0

N∑
j=1

( ∫
d3r ′φ

∗
j(r⃗

′) · O(r⃗ ′)

|r⃗ − r⃗ ′|

)
φj(r⃗)

The non-linear operator HF provided above can be applied to all i and therefore,

the solution will be the orthogonal system. 164 This is called the Hartree-Fock

equation. Here note that the equation itself depends on φi of the solution thereby,

the solution must be determined self-consistently. Usually, this equation possesses

more than one solution in the N -particle system:

{φi(r⃗)}, i = 1, · · · , N

However, based on the variation principle, we know the solution that contributes

to the lowest total energy can only become the ground state. We organize the

N -functions that provide the ground states to the N -particle system:

φN
1 (r⃗), · · · , φN

N(r⃗)

The eigenvalue ϵN
i and the total energy of the Hartree-Fock equation can be

given by (we clarify the N -particles dependence in the form) 165

ϵN
i = IN(i) +

N∑
j=1

(
JN(i, j) − KN(i, j)

)
EN

T =
N∑

i=1

IN(i) +
N∑

i<j

(
JN(i, j) − KN(i, j)

)
164If we show a Hermitian of HF while no degeneration being observed, we can understand that

the eigenfunctions of different eigenvalues become orthogonal. The Hermitian we show is clear
by leaving out the kinetic energy; the Hermitian of the kinetic energy is already known.

165The Hartree-Fock equation is integrated over all space after multiplied by φ∗
i (r⃗):

ϵN
i = IN (i) +

∑
j

(JN (i, j) − KN (i, j))
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166 Now we consider taking away (to make travel a finite distance) one electron

in φα(r⃗). To be succinct, we consider the ionization of the orbit φα(r⃗). In this way,

the Hartree-Fock equation changes its form, which causing its solution to change

in accordance. So far as the degree of change being negligible, the system |G,α⟩
in N ? 1 particles system can be obtained as described in the below. The system

below comprises the electron configuration of excluding φα from φN
1 (r⃗), · · · , φN

N(r⃗)

that attributes to the ground state in N -particle system:

|G,α⟩ = c†1 · · · c
†
α−1c

†
α+1 · · · |0⟩

The total energy of the ionization of the system within this approximation can be

written

EN−1
T (α) = ⟨G,α|H|G,α⟩

=
∑
i ̸=α

IN(i) +
∑

i<j;i̸=α,j ̸=α

(
JN(i, j) − KN(i, j)

)
Let us define the ionization energy I(α) (where there is no relaxation of the elec-

trons system) as

I(α) = EN−1
T (α) − EN

T

So, −ϵα gives the ionization energy of the orbit: 167 168

I(α) = −ϵN
α (Koopman′sTheorem)

Fermi Sea and Hartree-Fock Equations

Let us now identify that the solution of Hartree-Fock equation includes the Fermi

sea. Here, we assume the system is in a uniform positive charge background to

satisfy the condition of electric neutrality. One-body potential is therefore given

v(r⃗) = − e2

4πϵ0

ρ+

∫
d3r ′ e−µ|r⃗−r⃗ ′|

|r⃗ − r⃗ ′|
= −4πρ+

e2

4πϵ0

1

µ2
, µ = +0

166Note that i = j terms in Coulomb integral and the exchange integral cancel each other
(cancel the self-interaction).

167

I(α) = EN−1
T (α) − EN

T

= −IN (α) −
N∑

i=1

(JN (α, i) − K(α, i))

= −ϵN
α

168In general, a stable particle-system takes ϵi < 0
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Here, the electric neutrality condition gives the charge density of the uniform

positive charge:

ρ+ =
N

V

In the following, we consider the Hartree-Fock equation of the orbital function φk =
1√
V

eik⃗·r⃗ . First, we write the Coulomb term of the operator as (given (|φk|2 = 1
V

) )

e2

4πϵ0

∑
k′≤kF

∫
d3r ′ 1

V

1

|r⃗ − r⃗ ′|
=

e2

4πϵ0

∫
d3r ′ N

V

1

|r⃗ − r⃗ ′|
= −v(r⃗)

This can be canceled by the potential term. While, for the commuting term we

may write

− e2

4πϵ0

∫
d3r ′

∑
k′≤kF

1

V 3/2

1

|r⃗ − r⃗ ′|
e−ik⃗ ′·r⃗ ′

eik⃗·r⃗ ′
eik⃗ ′·r⃗

=

(
− e2

4πϵ0

∫
d3r ′

∑
k′≤kF

1

V

1

|r⃗ − r⃗ ′|
e−i(k⃗−k⃗,′)·(r⃗−r⃗ ′)

)
1√
V

eik⃗·r⃗

=

(
− e2

4πϵ0

∫
d3r ′

∑
k′≤kF

1

V

ei(k⃗−k⃗,′)·R⃗

R

)
1√
V

eik⃗·r⃗
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This indicates that the orbital function 1√
V

eik⃗·r⃗ becomes the eigenfunction of the

Hartree-Fock equation such that the eigenvalue ϵk⃗ can be obtained by 169 170

ϵk⃗ =
~2k2

2m
− ϵex

k⃗

ϵex
k⃗

=
e2

4πϵ0

∫
d3r ′

∑
k′≤kF

1

V

ei(k⃗−k⃗,′)·R⃗

R

=
e2

4πϵ0

1

π

(
kF +

k2
F − k2

2k
log

∣∣∣∣kF + k

kF − k

∣∣∣∣)

169

e2

4πϵ0

∫
d3r ′

∑
k′≤kF

1
V

ei(k⃗−k⃗,′)·R⃗

R
=

e2

4πϵ0

1
2π2

∫
d3r ′

∫
dK⃗

eiK⃗·R⃗

K2
ei(k⃗−k⃗,′)·R⃗

=
e2

4πϵ0

∑
k′≤kF

1
V

1
2π2

∫
dK⃗(2π)3δ(k⃗ − k⃗,′ +K⃗)

1
K2

=
e2

4πϵ0

∑
k′≤kF

1
V

(4π)
1

|⃗k − k⃗ ′|2

=
e2

4πϵ0

1
π2

∫
k′≤kF

dk⃗ ′ 1

|⃗k − k⃗ ′|2

=
e2

4πϵ0

1
π2

2π

∫ kF

0

dk′k′2
∫ −1

1

d(cos θ)
1

k2 + k′2 − 2kk′ cos θ

=
e2

4πϵ0

1
π2

2π

∫ kF

0

dk′ k′2 1
−2kk′ log

∣∣k2 + k′2 − 2kk′t
∣∣∣∣∣∣t=1

t=−1

=
e2

4πϵ0
πk

∫ kF

0

dk′ k′ log
∣∣k′ + k

k′ − k

∣∣∣∣
=

e2

4πϵ0

1
π

(
kF +

k2
F − k2

2k
log

∣∣∣∣kF + k

kF − k

∣∣∣∣)
170
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8 The Single-particle State and Mean Field Ap-

proximation in Electron Spin System

8.1 Hamiltonian of Many-particle System

Based on our discussion in the last section, we investigate the many-electron

systems as the model of typical fermion systems with the spin. Note that the

Coulomb force is independent of the spin in the Hamiltonian, which we may write

as

H = H0 + Hint

H0 =
∑
σ=1,2

∫
d3r ψ†

σ(r⃗)

(
−~2∇2

2m
+ v(r⃗)

)
ψσ(r⃗)

Hint =
1

2

∑
σ,σ′=1,2

∫
d3r

∫
d3r ′ ψ†

σ(r⃗)ψ†
σ′(r⃗

′)
e2

4πϵ0

1

|r⃗ − r⃗′|
ψσ′(r⃗ ′)ψσ(r⃗)

8.2 Spin-orbital Function

Except for the interaction, the term H0 forms the simple sum of the spin variables

in the Hamiltonian thus, has a single-particle state in the separation of variable

form |jµ⟩. We can describe the fact in the form

H0|jµ⟩ = ϵjµ|jµ⟩ (ϵjµ = ϵj)

|jµ⟩ = φj(r⃗)χµ(σ)c†jµ|0⟩(
−~2∇2

2m
+ v(r⃗)

)
φj(r⃗) = ϵjφj(r⃗)

Here cjµ is the annihilation operator of the fermions, which satisfies the anticom-

mutation relation

{cjµ, c
†
j′µ′} = δjj′δµµ′ , {cjµ, cj′µ′} = 0, {c†jµ, c

†
j′µ′} = 0

While χµ(σ) represents the orthonormalized spin function. Let us suppose sz =
~
2
σz whose eigenstate µ =↑↓ can be written as 171

sz|χ↑⟩ =
~
2
|χ↑⟩ sz|χ↓⟩ = −~

2
|χ↓⟩

171

sz =
~
2

(
1 0
0 −1

)
|χ↑⟩ =

(
1
0

)
|χ↓⟩ =

(
0
1

)
In this way, we have χ↑(1) = 1, χ↑(2) = 0, χ↓(1) = 0, χ↓(2) = 1.
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χ↑(σ) = |χ↑⟩σ, χ↓(σ) = |χ↓⟩σ, σ = 1, 2

These spin functions satisfy both the orthonormality

⟨χµ|χµ′⟩ =
∑

σ

χ∗
µ(σ)χµ′(σ) = δµµ′

and the condition for the completeness∑
µ

|χµ⟩⟨χµ| = I2∑
µ

χµ(σ)χ∗
µ(σ′) = δσσ′

The space coordinates r⃗ and the spin coordinates σ = 1, 2 are together regarded

as τ = (r⃗, σ), the orbital function ϕjµ(τ) can be defined as

ϕjµ(τ) = φj(r⃗)χµ(σ), τ = (r⃗, σ)

Note that our discussion in previous section can be applied exactly the same way

to the cases having the spin by considering the spin-orbital function.

8.3 The Total Energy of Single-particle States

We write the following single-particle wavefunction for the N -particle system:

|G⟩ = |j1µ1, · · · , jNµN⟩ = c†j1µ1
· · · c†jNµN

|0⟩

The expectation value of H0 under this state can be written according to the

discussion in the previous section: 172

⟨G|H0|G⟩ =
N∑

n=1

I(jn)

I(jn) =
N∑

n=1

∫
d3r φ∗

jn
(r⃗)

(
− ~2

2m
∇2 + v(r⃗)

)
φjn(r⃗)

172We use the normalization of the spin function: (⟨µ|µ⟩ = 1 )
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The expectation value of interaction also follows our discussion in the previous

section:

⟨G|Hint|G⟩ =
∑
n<n′

(J(knµn, jn′τn′) − K(knµn, jn′τn′))

J(kµ, jν) =
e2

4πϵ0

∫
d3r

∫
d3r ′ |φk(r⃗

′)|2⟨µ|µ⟩|φj(r⃗)|2⟨ν|ν⟩
|r⃗ − r⃗′|

=
e2

4πϵ0

∫
d3r

∫
d3r ′ |φk(r⃗

′)|2|φj(r⃗)|2

|r⃗ − r⃗′|
= J(k, j)

K(kµ, jν) =
e2

4πϵ0

∫
d3r

∫
d3r ′φ

∗
k(r⃗

′)φj(r⃗
′)⟨µ|ν⟩φ∗

j(r⃗)⟨ν|µ⟩φk(r⃗)

|r⃗ − r⃗′|

=
e2

4πϵ0

∫
d3r

∫
d3r ′φ

∗
k(r⃗

′)φj(r⃗
′)φ∗

j(r⃗)φk(r⃗)

|r⃗ − r⃗′|
δµν =

{
K(k, j) µ = ν

0 µ ̸= ν

Note that the exchange integrals here contribute only to the same spin functions.

The total energy ET is therefore written

ET =
∑

n

I(jn) +
∑
n<n′

J(jn, jn′) −
∑

n < n′

µn = µn′

K(jn, jn′)

となる。

8.4 The Hartree-Fock Equation in Electron Systems

We discussed the one-body wavefunction in the last section:

|G⟩ = |j1µ1, · · · , jNµN⟩ = c†j1µ1
· · · c†jNµN

|0⟩

Now we consider obtaining the orbital function φi(r⃗) which includes the total

energy as“ stationary” in variation terms. In here, we assume that the spin

function is already given. We write the orbital function that possesses spin up

↑ electrons as φ↑
i while we describe the orbital function that possesses the spin

down ↓ electrons as φ↓
i , and introduce them by using normalization condition and

N -undetermined multipliers. The result, which is in the form of the Hartree-Fock

equation, can be easily obtained by recalling the spinless cases:

H↑
F φ↑

i (r⃗) = ϵ↑i φ
↑
i (r⃗)

H↓
F φ↓

i (r⃗) = ϵ↓i φ
↓
i (r⃗)
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The operators H↑
F and H↓

F are defined respectively in the forms:

H↑
FO =

(
− ~2∇2

2m
+ v(r⃗) +

e2

4πϵ0

N∑
n=1

∫
d3r ′ |φjn(r⃗ ′)|2

|r⃗ − r⃗ ′|

)
O(r⃗)

− e2

4πϵ0

∑
n,µn=↑

( ∫
d3r ′φ

∗
jn

(r⃗ ′) · O(r⃗ ′)

|r⃗ − r⃗ ′|

)
φjn(r⃗)

H↓
FO =

(
− ~2∇2

2m
+ v(r⃗) +

e2

4πϵ0

N∑
n=1

∫
d3r ′ |φjn(r⃗ ′)|2

|r⃗ − r⃗ ′|

)
O(r⃗)

− e2

4πϵ0

∑
n,µn=↓

( ∫
d3r ′φ

∗
jn

(r⃗ ′) · O(r⃗ ′)

|r⃗ − r⃗ ′|

)
φjn(r⃗)

These nonlinear operators H↑
F and H↓

F are found in the equivalent forms in the

equations for the orbital functions of respective spins thereby, the solutions of the

equations can be naturally given in the orthogonal systems. One can understand

the solution of the different spins by considering the spin functions; the orthogonal

systems can be also given.




