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PartlIl
Relativistic Quantum Mechanics

In order to discuss the spin of an electron, the effect arising from relativity must
be fully considered. In the following series of sections we sill discuss this important
theory of relativity.

4 Special Relativity (Classical Theory)

First, we begin by reviewing the classical relativity theory. We use the following
notation:

o = (2% 2h 2% 2® = (ct,z,y, 2)
We write the metric tensors (will be discussed later) in special relativity

Juv = Guu :diag (1,—1,—1,—1)
9" = ¢ = (gu) = diag (1,-1,~1,-1)
gul/gyp - 5Mp

The indices can be raised and lowered as below:
v
a, = Gua

This yields

a = a, a1 =—a', a= —d?, a3 = —a®

Which gives

a bt = at’ —a-b=agby—a-b
For

s _ 0 (100 00

B ozn \cot’' oz’ Oy’ 0z
we can write

1 02
00" = w75 —A=-0
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4.1 Lorentz Transformation

We call the Lorentz transformation for the real linear transformations (coor-
dinate transformations) that conserve the norm |z|*> = g, a*2”. (We denote the
coordinates of the fixed points in space time, which we measured by another frame
to be z#, 2"

= QF
(Q'u‘/l/)* _ Q'u‘/l/
[P = |z
gL/V/xlulx”/ == gluux'ul'y

g/u/ = g;w: dlag (17_17_17_1)

From which, we can derive the conditions below. & ™ 80

e = g;/ley’)\an
on = gh=Q"PQ, = ()

K

78

vA _SA
Juvd _6M
A
79
/H/ ;/ v
T = OF x
AN '
(Q 1/) = O,
!’ ’ 7’ ’
g'#,l,/x/” = G U A 2t = gaea z gives
’ ’ ’
g)\,{ = g/.l/l/’Qu )\QV K
A
Thus, 6’ = 9" gxs
_ PN/ Q;/ QV'
- g gy’y/ A K
’
= QPO

80For the arbitrary quantities X,Y, we write

XMy, :XHQH”YAQM = XKY)\gN)\ =X, Y"
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The inverse transformation can be written 3!
1K K __ K
Q) = x

The following relation is also valid: 8

0,0 = 4

All together, we can express &3

81

K v v
V9 = gou¥rt =Qpu
x’“gM,Q’”v = QQ,a

I K _ KV _ K
Q" = v =2
82
Yo _ v P K __ vk
Gor’T" = gpex 0,727 Q" =g, x

ganupQu"i = QunQuﬁzguu
Q,,.00"

|
s}
<
=
<
b
B
Il
=
SEY

83Let us put

This gives

(1), 0 (), = 5
0, (7)Y, =0,0," = b

and furthuer we can write
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The Example pf the Lorentz Transformation

e Rotation phi around z— axis

ct” 10 0 0 ct”
x | 0 cos¢p sing 0 x
Yy | 0 —sing cos¢ 0 Yy
Z 0 0 0 1 z

e Special Lorentz transformation with velocity v = ctanh ¢ in direction of z—

axis: 8
ct’ cosh¢p —sinhg 0 0 ct
' | | —sinh¢ cosh¢ 0 0 x
y | 0 0 10 y
2 0 0 0 1 z
Tensor

Under the coordinate transformation x — 2’ , the physical quantity O(P) in
space time p, which follows the transformations described below are called in each
name below. (A point in space time P({z*}) defined by a coordinate system is
{z#}, while it is defined as P({z'"}) by another coordinate system of ’. This gives
the functional relationship z/* = 2/*({z"}).)

!
ox'" , ,
57 =z =Q",
x 9
ox” 5 ,
o' = = Qu
‘1. 9
!
/J/ v 8.’]3,“ a.TV “/
Iv’/xyﬁ’ - axy a 1K = 6 K
X
!
v 837” 8I/V
ot =———— =¥,
N T 8[[‘”/ 8:6/4
84FQr this we let z = 0 and write
' = tcosh¢, a2’ = —ctsinhg
/
x
— = —ctanh¢

t/
This above implies that the system z’ is i uniform motion with the velocity —ctanh ¢ to the
system x
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Scalar

T = T
e Contravariant vector
™ = (Zf TV =T = Q' T"
e Covariant vector
T, = %Ty =0T,

e Contravariant of the 1st order and the 2nd order (examples)

1K1 P1 P2
T/,ul _ ox 83: ox ™ — QM (). PIQ). P2 T/V1
R1R2 axl,l 8];/,‘-@1 ax/fw pP1LP2 V1="K1 K2

p1p2

e The contraction A*B,, , for example, of the contravariant vector and covari-
ant vector is the scalar.

e What contracts with the contravariant vector to become a scalar is called
the covariant vector.

e The second order covariant tensor is g,,,. %
85
AMB, = QM A, B, = 0", Q, A B, = g0, gm0 AYB, = Q, OP"AYB, = A'B,
86
2 ’ g vy oz dx'" K
ds'" = g, dx'""dz"" =g Wwdx” e dz
ds® = Gprdr’dx”
giving ds = ds’ thus,
, 02" ox’
T gge ggn — Ie%
, Oz Ox2"
Jw = WWQPH
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4.2 Effects of Free Particles

The action integral is defined as:

b ty
S = —mc/ d3:/ Ldt
a ta

ds® = g,.dz'dz”

I dxt dxv 2 1 vz dr
= —mc\/ gu———— = —mc -, U=—=7
I "t V' 2 dt

The Lorentz transformations z/* = Q2" gives ( ¢ = g ) , and the line element
stays invariant ds = ds’. This fact implies that the action is being interpreted as
Lorentz invariant.

In the non-relativity limit:

1
L — —mc(l—==)=-mc®+ §m02

where the kinetic energy is indeed being given, while excluding the constant values

in the limit. The momentum can be written

3L_8L_ mu

P = o= = e
or  0U 1 _ o2

M =

and let M be the relative mass. The Hamiltonian A and the energy F can be
defined as:

Therefore, in the non-relativity limit, we have

2

E — m02(1+§z—2):m02+§mv

2

which naturally gives the rest energy mc? . The following relations can be derived
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between the energy and the momentum: 87
U
cpg = —-F
c

H = FE =c\p?+m2c

Especially where super-relativistic v = ¢, ® the relation with E ~ cp particularly

with light can be
E=cp

The canonical equation can be written %

- . O0H ¢

T = V== —
o5  E

- OH

D = ——:0

P oF

which giving p'= f—f = M7 by the first equation, we may make a substitution into

the second equation to write

87We can use

E*(1-—=) = m%
(1-%)
2 0 P 2 4
E(l—cﬁ) = m°c
E? = m2t 4P
88
P m__
E ~ - 2
1-2z ¢
E =cp
89
by OH _ 2 _
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This in fact is an equation of motion.

To discuss the Lorentz invariance in more explicit form, we can use the variation
principle to write the differential of the curve ' s parameter 7 with /. Rewrite the
action of the curve with common parameter 7, and write the Lagrangian of the

common parameter as L (S = / Ldr ). * Thus,

Ta

oL oL doL _  d( gwr” N _,
Szt Oxt dr Oxr dr \ \/gpr?’z )

We take parameter 7 as ds = cdr,( 2*'z,/ = ¢*) that gives (proper time) 9 2

Az

dr? =0

From this, we can now consider the free-particle. If we have 7 = ¢, the relational
expression for the components of u = 0 can be written %3

d_me
dt 02 dt
\/ T2

indicating that the energy is being conserved. The conservation of momentum can

=0

90

dzt dx?
L = —mey | Guv P —mey/ gt zv’!
oL oL d OL d (guz”’
— = —— = — —— = —MmCc— =0
oxk Ozt dr Ox™ dr /

2 ) and write

m v
s = ds—/ \/gwdf dd;v / N x, dr

ds :\/:cl":ry dr = cdt

91et parameter 7 be ds = cdr,( 2"z,

M, =c?
92
””(;L—LM = = fmcg”“%g,wlliw = —mc5”ud;_x; = fmcd;f: =
93
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be given by =i =1,2,3: %

d mer -
— " =0
dt /1 2
CQ
When we let four-momentum be p, = g as we will cover it in our next section,
T
we have %
po = —Mc=——

mr
Pi = Pzyz=—
_v/;

which giving the covariance of vectors for the Lorentz transform.

4.3 Particle Motion in Electromagnetic Field (Lagrange

Formulation)

Let us describe below as the action integral:
S = So+ S
b Th ty
Sy = —mc/ ds = —mc/ dt /gt v’ :/ dt Ly
a Ta ta
Ly = —mey/guara”

Th tp
S, = —e/ Aydxt = —e/ Aﬁx”’dT:/ dt Ly
Ta ta

dx* 57
Ly = —eAME =—ep+ter-A
94
d —zh 0
dt cy/1— Z—;
95
.I"l/
Py = —mcL,,
v/ GuvTha?
c
p9 = —mc———=-—-Mc=——
cy/1— Z—i ¢
—z" mr
Pi = Pzuy,z mc = ( )
o /1-9% — v/
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The four-vector potential can be written

AO - Aozlqﬁ
C
A = —AL A=A, AP = A, A= A,

. dzt .
Where 2t = 5 s the four-velocity.
Note that the Lorentz invariance of this action is obeyed by the covariant vector
A,. The covariance of A, is obeyed by the observation given by the Maxwell * s
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equation as well as by the conservation of the electric charge. %

In those actions, we use the variation principle in which the equation of motion

96The covariance of A, is obeyed by the observation because of the Maxwell ' s equation and
the conservation of the electric charge. From our later discussion, the Maxwell * s equation can

be defined by B = div ff, E= —%—‘f — ﬁ(b , which are equivalent to the two equations below:

04 = AA-— 0%?927? = V(div A + C%%f) — poJ
Ap = —%div/f - %
Under a condition called the Lorentz (gauge) condition
- I
wds 10O
The two equivalent equations we described above can be written
04 = —pof
06 = —c’pop
Here we let the four-current j* be
jo = cp. 3 =Gus 3° =Gy 50 = U
which giving the Maxwell ' s equation
0A" = —poj”

For the conservation of electric charge

- Jdp
0 = divyg —_— = L.IL
1Vj+8t ]

which is (experimentally) understood to be the Lorentz invariant. This gives the contravariant
vector j* and A*. Note that the Lorentz condition 9, A" = 0 in fact expresses the relation for
the scalar, and remains invariant to the Lorentz transformation,

00, A" = —pedyj* =0
This is compatible with the field equation. Now, the gauge transformation

EHXZA’—FVX
¢

can be written
Ay — Au = A, +0ux
To write E, Bin four-form, we let the second order covariant tensor be

fuww = 0,A, —0,A,=—fu
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We may write down

(104, 196 1

= A — Ay = P 7Ea?
fOl 30 1 al 0 c 8t Cax -
1
= -FE
fo = B,
1
fos = -E,
c
0A 0A,
f12 = 81A2—62A1:_7y+ - B,
3$ 8y
0A 0A
= Ao — O Ay = ——Z2 T _
Ji3 0143 — 034, o + o B,
0A, O0A
f23 = 82A3—63A2:— +7y:_Bz
Jy 0z
Organize the above and rewrite
0 E, Ey E.
E < ¢ c
_ —=r 0 -B., B,
f/u/ = 7&}4 BZ 0 7Bx

These indeed stay invariant under gauge transformation:

fuw = 0,4, -0,A,
a,u(Au + auX) - au(Au + aILX) = fl“’
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97 takes the proper-time parameter. In the Lorentz invariant form, we can write

AP d:v
— v pup
md7'2 f
0 E, By E.
E Cc Cc Cc
-2 () -B, B

Rewrite the above as

PP )
dr?
dz
FP—=_ v fvp
€ dr /

We call F? the four-force. This equation of motion embodies the all four forces

97

% = mci ( g/il"ry/ )
dxH dr /gagxo"xﬁl
0L dA,

- —e€

6$u, ( /‘ W)
= e( L (Ak m”/ —2v'9,A )
= e( ""6 A, —x”'@ A )
(OuAy — 0, Az = *fWIV/ = fvuxul

In which we take proper-time parameter, and written

= —e

d?xv dx” B
M 2 e dr Jon 0
d?zv
maP* —  _egPH
9" 9w~ g
md2xp _ dx? p_ _edﬁyfup
dr? dr dr
We define 7 = t, so that
d  gud” -
m——— = ez
= fun
c2
dm, . . .
o et” fue, (mutakesthetimet forthecommonparametert;thatiswhent = t)
iy
Ty = m% = Mg, t" =Mz,
V1i—-&=
2. s 202 .2
meg, & m=(c® —v
7TM7TM © _ ( ) — m202

v2 v2
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that are not independent but has a linear relation among them: %

u, F" =0
dx
=g

Where u* is the four-velocity, we can write

2

dt _dt

C%, UE)

utu, = c
ut = (

99

With time ¢, this equation of motion can be written 1%

dm
l,t .
a T e
¥ .
T, = mgL2 = Mz, = mu,
v
V- &
Tt = m2c?
98
d dx,, dz, ) .
%F"’ = —e%dif““ = 0; antisymmetricof f**
T T dr
99We can rewrite
dt
0 _ -
v _CdT
i da?
T dr
dty2 1 ,dt -2
\/(dr) - () =1
02
dty/1 — 2 =dr
Mk =" B m_dzt d“ﬂ:muu

100
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For each component we can write in the forms '

d(Mc?*)

i = ¢i-FE
d_’\ — —
d—: — o(E +7 x B)
M202 7?2 — m202

Now let us rewrite the above:

Mo m
B

T = Mu= (7r1,7r2,7T3) = (—my, —mg, —73)

vo= 7

We can also confirm the equation

dm - dMc?
v-— =elb - U=
dt dt
101
-1
T = me = Mc
)2
-
™ = ;m:—Mdc:fwlzfﬂz
2
-z
Ty = —My—7'r2:—7ry7 71'3:—M2';:—7r3:_772
The zeroth component gives
dm dM . e, . .
dito = ¢ =ek for = E(a:Eg,c +yE, + 2E,)
d(Mc? ~
M) - _ et E
dt
While the first component gives
dmy d(Mz) .
— = - =ei"fin=¢e| —-E,—yB.,+:B
dt dt fin=e YBs+ 25y
dr, L
% = e(FE+7xB),
. . dmy, oo e s odm. o
Lilewisewewrite e e(E +7x B)y, prai (E+7x B),
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Thus, only % —e(E+7

x B) remains independent for the equation of motion. 12

4.4 Particle Motion in Electromagnetic Field (Hamilton

Formulation)

We now discuss the
forms. Where (7 =1) ,

Pu

particle motion in electromagnetic field by Hamiltonian

the canonical momentum is defined as 03

102

103

Pu

oL
e
ma
" .
- — —eA,=—Mz,—eA
= p I i
T2
eE - v
dM _, dv
il RN V7 St
dt U
dM 5, 1 dv?
el R ) Skl
dt 2 t
d v? 2
£ v 1. dv
dt c? 2
_dtE e
"o - 2y’ oM
vi+ (1 - %)02 d v? m dv?  dMc?
nmn—————— = — =
21— %)3/2 dtc? 21— %)3/2 di dt
dm - dMc?
0. — e E-_’:
U VT T
0L
I
= mc%—ez‘lu
\/W
ma .
= — , “Ug—eAM——qu—eAu
e
= —m,—eA,

po=—Mc—elAy=—-Mc— E(b

C
pP1 = —M.i'l —eAl = —‘rMﬂ?—‘r@Am
P2 = —Mioy —eAy = +My+6Ay
p3 = —Mig — eAs = +Mz +eA,
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Each component can be written in the forms:

€
po=—Mc——-¢

c
plei"i_eAprx
p2 =My +eAy =p,
p3:M2+eAzEpz
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The Hamiltonian H can be defined as 104 105

H = Y pi'-L

n=1,23
= VT2 +m2c2 + e¢
= C\/(ﬁ— eA)? +m2c + e

104Giving

We may write

More precisely we can write

(F—eA? = M?*?
2,2 2 2 v?
- m v v +c - =3
(7 —eA)? + m?c* = — +m?? =m® ( — =)
T2 T2
2
— 2_¢
c2
\/(ﬁfef_l')2+m202 = me = Mec
1— 22
c2
Thus,
M = C\/(ﬁ— eA)? + m2e2
105
H = > pi'—1L
p=1,2,3
= Z puit —poi’ — L
pn=0,1,2,3

2
v
= —poi’ — Mz,i" — eA,i* — (—mc*y /1 — - —eAui”)

2
v
= —poi® — M(c* —v?) +mc? 1-—
c

= —poi’ = Mc? +ep
= VT2 +m3c + e

= 0\/(‘5’7 eA)? +m2e? + e
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In the non-relativistic limit % << mc? the Hamiltonian can be defined as
106

(7 — eA)?

H ~mdc® +
2m

+ e

Recall our initial discussion is to formulate a Hamiltonian description of particle

motion in electromagnetic field. The canonical equation can be given 17

7=

. T
/l) —
M
P o= eV(A-7-9)
Now given p'= 7 + eff, the canonical equation we described above may give the

equation of motion which we described earlier:

106

-,

1
H :mcg\/l + W(ﬁ_ 6A)2 =+ €¢

S o2
~mc*(1 4 l(ﬁf eA)?) +ep = mc? + —ed?

D T

107The canonical equations are written

. OH
o= 78}5’
. OH
P or

we direct our attention to the first equation of Mec = VA2 + m2c2,7 = j— eA = M¥ and write

_ ., OH
T = 7F=—
oy
T
= C———
/72 & m2c2
7
M
Given @ = M7, te second equation is written
L oOH
N or
eV(7- A) > -
= ¢—————— —¢eVo, (Note that V does not dif ferentiate .
Ve Ve i1 )
= e(ﬁ( 1. v) — ﬁ(;ﬁ), (Note that V does not dif ferentiate v as we express normally.)
= eV(A-T—0¢)
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d7 oo dA
a = €V(A’U—¢)—€%
Lo oA Lo
= eV(A 27—@5)—6%—6(’17 V)

Thus, the non-relativistic limit of the above equation speaks for itself. 1°®

—

108\We consider v is being independent of 7, and given that we have A x (B x C) = (A-C)B —
(A-B)C = B(A-C)— (A- B)C we can write
(V x A)
A)—(7-V)A

UxrotA = X
-

< =

or

(17 X rot g)z = Gijk’l}jeklmalAm = (5il5jm — 5im5jl)vj81Am
= vjé)iAj — ’Ujain
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5 Dirac Equations

5.1 Deriving the Dirac Equation

Based on the relativistic Hamiltonian we obtained in the previous section, we
continue the procedures of quantization. We first write the classical Hamiltonian

H, = C\/(ﬁ— efT)Q +m2c2 + e

to which we make replacement p — —ihV and consider the quantum Hamil-
tonian. Knowing that the root sign included in above equation being somehow

difficult, we may write
Hpay = cd-(p— e/f) + Bmc® + ep
and use the formal equation of
Hy = Hpe

from which we try determining the Hamiltonian Hp . that includes no root
signs. To explain further, we would like to determine the expansion coefficients &
and ( which satisfy

2
62{(17— eA)? + m202} = {062' (F—eA) + ﬁmcz}
To obtain such coefficients we need to have

=== = 1
{CYZ',CY]‘} = OéiOéj+OéjOéi :O, 27&]

{0, 8} = af+PBa; =0

The coefficients @ and [ that satisfy the above may be considered the matrix of
forth-order. In our case, the Dirac expression described below is considered to be

« 0; o =m®
i = = 0
o, O, P1

I, O
g = ( ’ 2)503@)12

convenient:

O, —I,

where ¢ and g are the Pauli matrices

0 1 0 — 1 0
Og = y Oy = . y Oz =
1 0 1 0 0 —1
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They satisfy the following relation %

005 = 1€ijk0k, (Z # j)
0'7;2 = _[2
[UZ‘, O'j] = 2ieijkok

Tro, = Tro,=Tro,=0
deto, = deto,=deto, =—1
(G-A) & B) = (A-B)I,+iG- (A x B)

Here we use the sign ® when we describe 4 x 4 matrices from a set of 2 x 2
matrix. (Tensor Product):

(A ® B)iajb =AijBap
i,j=1,2 a,b=1,2
(i,a), (4,0) =(1,1),(1,2),(2,1),(2,2)
Recall the multiplication of the block matrices, we may write
(A® B)(C® D) =(AC ® BD)
In another way, we may also understand from the equation

{(A ® B)(C ® D)}z’a,jb :(A ® B)ia,kc(c ® D)kc,jb
:AikBachchb - (AC)U (BD)ab

:(AC & BD)ia,jb
Furthermore, 10
109
L oL = 1
(0’ . A)(O’ . B) :O'iAiO'ij = i{aiAinBj + O'jAjO'iBi}
1
:i{Z(GinAiBj + O'jO'iAjBi)} + Z(ginAiBj + O']‘UiAjBi)}
i=j i
1
i i#]
|
=A-B + iieijkgk(AiBj — A]Bl)
:/T~ é + ieiijkA,;Bj
=A-B+ig-Ax B
110

TrA®B=Y (A®Bigia = Y AiiBasa=Tr ATt B
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TTAR B=TrATrB
A ,BRC]|=AB®C —-BA®C=[A,B|®C

The quantization p — —ihV via H D, 18 what we call the Dirac Hamiltonian
Hp such that the Schroedinger equation is called the Dirac equation and written
h

1

Hp = c@-(=V —ed) + fmc® + e

L0 .
Zﬁa\ll(r,t) = HpV(r,t)

Here we bring the Dirac matrix v,, p = 0,1,2,3 into the Dirac equation and

rewrite which in !

7, %)

—~

o=

—

Y = (Vo) =Ba= (7,7
"y = 29"

=)
> X

Note that the Hermitian for @ and § can be written
T
of _ 40

it i
Y= =7

We may simplify this in the form

P = 404y

H1Eor example,

M = BagBay = —fBogo, = —1
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Given that we can write the Dirac equation 2

{ihv“(@u + i%Au) - mc}\ll =0
(thy"D,, — me)¥ =0
€
DN = au + ZﬁAN

Note that there are four components in the wave function. For ih%\lf = HpV ,
we can write

Hp =7°(—ihcq - V + mc?)
ihC@()\I/ :HD\I/

5.2 Symmetry of Dirac Equation
The Conservation of Current

Consider now the Dirac equation and whose Hermitian conjugate, which gives
113

p = UV
= cUTay

o

112

H3The Dirac equation

ih%—\f = ¢(—ih0; — eA) ;U + (Bmc® + ep) ¥

whose Hermitian conjugate gives

t .
—ihaait = ¢(ihd; — eA) Ul + U (Bmc? + eg)
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Thus, the equation of continuity

dp

o +divi = 0

can be written.

In the covariant form we have ¥ = W40 ; the following relation for the conser-

vation of current can be obtained: 14115
o' = 0
Jo=
Thus,
m%(\w\p) = (T 4+ D)
= —ich{(aitlﬁai)\ll + \I/Tai(ailll)}
= —ichd; (¥, W)
and
p = Uiw
j = cUlau
Hence
% +divy = 0
H4Given
iy (0, W) — ey AU —me¥ = 0
the Hermitian conjugate may yield
fz'h(a#qﬁ)wf - e\I!Tfy”TA# —me¥T = 0
Let us have U = W40 and write
—ih(0, V)Y — eUy" A, —mel = 0

Therefore the following relation of the conservation of current can be given

9" = 0
o= vy

15Ty order to show the Lorentz invariance we must first show that the current j* is the invariant
vector. Vice versa, we can say that the Lorentz invariance is being retained by experimentally
identifying this conservation.
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Conservation of Total Angular Momentum for Free Particles

Here we consider the free particles A = §, ¢ = 0 in Dirac representation 16

H = cd g+ Bmc* =cp @ oip; + psmc?

where we have

L = Fxp
L; = e€juripr
we may write
h, -
[50‘ + L, H] = 0
Thus,
[H’ j] =0
J = L+8
- h
S = =0
2
116FOI‘
H = cd-p+ Bmc® =cp ® oip; + psmc’
in which
L = Fxp
L; = €7Dk
we may write
[Li, H = cp1 ® oyleijinriPr, ve] = thepr @ 00€ijijepi

ihepr ® €35x05pK = ihepr @ (6 X P);

[AB,C] = ABC —CAB
A[B,C]+[A,C]B = ABC — ACB + (ACB — CAB)

while we write

loi, H] = cp1 ® [oi,00]pe
= 2icp1 ® €ik0kDe
= —2icp1 ® (F X D);

Thus,
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where we call S the spin, and therefore the total angular momentum J becomes
the conserved quantity.

Conservation of Energy and Momentum for Free Particles

For the free particles A* = 0, we can write

Hp =cp1 ® o;p; + psmc?
[Hp, Hp| =0
[Hp, 7] =0

5.2.1 The Lorentz Invariance

The Lorentz transformation

't = QHF x¥

x/.u‘QMIi — xﬁ/
gives D,,, which is transforming as the covariance vector thus, ''" (D, = D',Q",)
Y=Y
giving 118

(ihy" D, — me)¥(x) =0

117

ox¥ y
3/H == axﬁ&, == QN 8V

9 _i_ax”’ 0
B g Qxk 9z

while the covariance of A, gives

= 07,0, = 0,9,

() = 9,7 A, ()
AL (2 = QA (2) Q4 = 9,07 Ay (2)g* Qs = 6,7 PV AL (2) Q1
=OPYA,(2)Q,, = 0" A, (x) = Ag(z)

118

0 = (ily"D,, — me)¥(x) = (ihy" D, Q" ,, — me)¥(x)
(ih(QY ") Dy, — me) ¥ ()
(ih4" D, — me)¥ (z)
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Now let us have 9

(3,47 = 29"

which indicates the existence of the regular matrix A, and for all © we know that
there is A that satisfies

%u — A‘W”A

For the in depth explanation, which is covered in our later discussion, and given
the fact, the Dirac equation forms the Lorentz covariance as described in the
following: 120

(ihy" D, — me)¥'(z') = 0
Thus,
U'(2") = AU (x)

SO, we can write

Therefore,
U'(2) = (L) (') = (LY)(Lx) = AV (z)

A specific structure of the transformation matrix Here we elaborate on A used

in our discussion for a specific construction. First, consider the infinitesimal
Lorentz transformation

Qr, =g*, + 0Q",

119

Ay = Qunﬂyp{’yﬁa’yp} = QQHKQUpng

120

(i(RA™'y"AD;, —me)¥ =0
(ily*AD;, — meA)¥ = (iln" D), — me)¥' (') = 0



— Quantum Mechanics 3: Relativistic Quantum Mechanics — 2005 Winter Session, Hatsugai90

Given that we have up to the degree of first-order 2, u/\ = g/ for the infinitesimal

quantity, 2! we can write
5Q)W - — 6QV/\

Now, let us rewrite A~1v*A = Q#,~v". To do so, we begin by writing down

QF, =g", + 00",
QA" ="+ 0"
A =1+ 0N Towhich,wemaywrite
(I = A" (I + 6A) = — [0A, "]

Therefore,

59#1/7” = - [5A> ’7#]
59#1/71/ = [6A7 ,-)/#]

and

SA = — iawmw

Given the antisymmetric property of 6€2,, we suppose

P —— ]
without losing the generality, and being aware of the antisymmetric property, we
can write

14 /i RV
5Q;u/’7 :Z[a 77}1]5QHV

(0™, 3] = = 2i(gp7" — g,7")

93\ :(guu + 5QHD)(9/L)\ + 59“)\)
=g} + 60, + 00,0
0 =60, + 69,0
0 =6y, + 0y
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We can show that the following relation for o#* being satisfied: 122

v /L v
o =5[]

By integrating the above we obtain 23

Q =e,

— W

w

For the above equations we may write down (w: real antisymmetric)
124

122
o =2,y
YAt = A = Aty
=Y (=" +29") — Hy"y
== 7" + 20 g — 4
= —2g""y" + 29"g""
[V 771" = = 299" + 29" g™ — (=29"7" + 29" ¢g"")
4y 4 gy g
[V 9" ) = — 495" + 49" g,,
1

[2 V5 ) vl = = 2i(g57" — ¥ g;)

123

Q =e%
Q0 =Igives
w=—-w
To express the components, given
(@, ="
which yields
(QQ)F, =" Q" = 6",
(Q_l)ﬁy :QVK
@)%, =t = —wh,
() (e2)," =(e)F ()", = ()" ()", = &%,
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1
A —e_Zo—ij“V
While 12°
AT _,yOA—l,yO
and
it it
IR 77 7 _ v,
At =e 47 B g0y
to give
it it
+—0o, W,  ——0, W,
R(t) =A@) Y Al) =e 4" Are 4
61—% 7' - v K 1 — KAV KV
o =12 o AW, = SATH (g - g™ ) A,
1 KTW RV 1 v K K 1 vV, K K
=5(giT" = g™ T’y = S (MW", = Tyuwh™) = S(T"w", — THw,")
1 vV, K K K
25(1“ w®y, + MW, = W™, I*

Where t = 0, note for T'*(0) = v#, the solution of the simultaneous differential equation is given

D =(e)" "

While ¢ =1, the solution is given

125

. 1 .
ot (Y v _ _Yrvt out
o 2[7,7] 2[7 ]

i
_ 0 v 0
=y oy
i

AT :ez (JMV)TWHV
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For this Lorentz transformation, we can write the current
] :A_l\IJ/ _ ’)/OAT’}/O\I//
ju :q;,yu\p
=0Ty w
=010 A0 (10 AT
:\I//T’}/OA’}/MAil‘I’/
=0/ AyFATIT
Recall our discussion in the previous section, we can express
QL :A_17“A
QAP AT =~k
QM"‘Q“VAWVA_1 :gﬁAw”A_l =Ay"AT =
:Quﬁ,yu — ,y,uQMH

Thus, 126
j/K/ :QK»H]M
j/,U« :\Ijl,y,ug[l

This implies that the current is capable of transforming itself into the invariant
vector such that the conservation d,j* = 0 can be regarded as the Lorentz invari-

ant.

5.3 The Plane-wave Solutions for the Free Dirac Equation

In this section, we consider the solutions for Dirac equation where A* =0 . Let
us write the Dirac Hamiltonian

—

\Y S
H =cd - — 4 Bmc® = cp1 @G - P+ psmc?
7
such that the Dirac equation can be written

thcOy U =HW

=" "
Qg = = gl =
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Rewrite the above and give

T (1) =~ ku"y (k)
T (z) =ethuy (k)

—ktat = — k020 + Kiat = E-7—wt
(kx7 ky7 kz) :(kla k27 k3> - <_k17 _k27 _k3)
ko =k0 = ¢
c

Thus,

H? =(*p? + m*ch)1,

Note the above, and obtain the following relation for the solutions of the plane
waves: 127

PO = £ pku™®
HU® =+ pg@®
Hu=+4 FEu
Hv=—FEv
E =chko = chk’® = hw
hko =\/ Bk 2 + m2c
mc\ 2
Kk :(?)

127

H? =c*p* ® (3 - 1)° + p3m>c* + 2mc*(p1ps + ps3p1)d - §
:(02}72 +m204)14

or

H =1"(—ihe7 -V + mc?)
H? =1*(=ihe7 - ¥ + me*)y*(~ihey - ¥ + me)
= — W20 09 (V)i(V); + m2et — ihmc? (7170 +~4'7°) (V)
== K2 (=7 )Y (V)i(V); + m?c!
2

= - RB2AV? + m2ct = Pt + mPd

h h -
POE) =ZVOE) = Z(Fi0) (ky, ko, ks)UE) = £R(EL K2 E2)TE) = £pk0E)
1

1
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While we let (ihy"0,,u —mc)¥® = 0 given by the Dirac equation } = k,y* such
that 128

(Al — mc)u =0
(hf 4+ me)v =0

5.3.1 In the Case of m # 0

If we take the inertial system ¢ = 0, k* = (%¢,0,0,0) which stays stationary,

« o — : 129
the complete system u,, Vg, = 1,2 can be given

1 0 0 0

0 1 0 0
uiest = O ) u?est = 0 ) Ul}est = 1 ) v?est = O

0 0 0 1
au” =00, 798 = —0a, av” = =0

@ 0
«a _ rest «a _
urest - 0 ) vrest - o
X rest

From which we determine the general solutions for the plane waves via Lorentz

128

(= me) ) () =0, =
(Al — mc)u =0
(hf + mc)v =0
129
0
o 0
mc(v - 1)urest =mc _9 Urest = 0
-2
2
0 2
me(y” + 1) vrest =mce 0 Vyest = 0
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transformation. We begin by the equations '3°

dp = —ia,b,0" + a,b”
Wi =k, k" = K
which gives
1
mc

_L (hk‘g + mc) fést . L (% + mc) roést
mc Vihkiwfést mc (63 ’ mw?est

5.4 The Non-relativistic Limit

ut =

(h’% + mc) u(r)iest

The four components spinor can be written by the two components spinor
and y:

Let us write the Dirac equation in the forms

'hg (0 [ m+eg cP 0
Y % B cP —mc? + e X

-,

P = a-n=0d-(p—eA)
In steady states, we obtain

V@) = G
X(x) _ e—iEt/hX<,r—,»)
yielding
(mc +ep)y +cPx = Ev
cPy+ (—mc® +ep)x = Ex

1 1
#p =ay"by” = S(auby"y” + @by ") = 5 (apby" Y + avbu(—2"y" +29"))

1 1
=5 (auby = abu)y" " + aub” = Saubu[y", 7] + aub”

o . v v
= —idaub,0" +a,b

v 7: v
ot 25[’7M77 ]
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To consider the non-relativistic limit
2

2 P 2

ep << mc, 2—<<mc, E ~ mc*
m

we transform the Dirac equation into a much more convenient form
W = E-—mc
Thus, given the second equation we can write down

c 1
X 2M' 2 v 2M'c v

2M'®> = E+mc® —ep=2mc* +W —ed
1
M = m—l—@(W—egb)

From these equations the Dirac equation can be accurately rewritten in the form
131

1
2M’

(PP ted)y = Wy

The Lowest Order Approximation
For the lowest order approximation we suppose
M = m

This gives (Schroedinger approximation)

Hshw = W@/)
1

Hsh = _P2+6¢
2m

Here note that 32

P2 = @ _¢hd-B, B=rotA

1
? P—Py = E
(me® + e + PoisPy = B
1
P P =
(PP ted)y = Wy
132

P2 — (3.7)2— i =2 1 i_j
= (6 -7)° = (oyn)(o;m?) =7 Jri(aiajfcrjai)ﬂﬂ

= 7?2 —+ ieijkaﬂrjﬂk = 7_1"2 + Z'Gijk(fi(pj — eAj)(pk — eAk)
. ) B ) h
= 72_ ie€; k0 (pjAx) = 72— zeeijkaiz(@Ak)

= 72 —¢hd-B, B=rotA
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Thus,
—eA)2
Hy = (7= ed) +ep+fi-B
2m
. eh
= ——o0
a 2m
< ~ h
= —gupS/h, (S =70)
. eh
W hereBorhmagnetonis upg = —
2m
,andsocall g factoris g = 2

The Approximation to Z—;

In our next step, we raise the order of approximation '3 to

1 1 1
N g (W )

m - 2m2c?

Here we make an estimate of W — e¢ ~ mv?, where we take the value up to Z—z

such that we can write

1 P? 1 e
P = —- WP? +

2M’ 2m  4m?2c? 4m?2c?

and which gives

PoP

P ° _peply = w(Q P
<—m+€¢+m ¢ >¢ = W(l+ )

2 Am?2c?

Now we consider the normalization condition such that
X = —Py
For this we can write

1 = /d3r\IfT\If:/d3r (¥ + xTx)

133

Q
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Therefore if we let the normalized wavefunction ¢y in two components to be

Yy = W
1 = / Pr iy

then we may also have

1
Q =1 P?
* 8m?2c?
The equation for ¢y can be given 3% 135
P? P4 e
- _ _ -
<2m + e 8m3c2  8m2 CQ[ [P ¢”>¢N YN

When we look into the degree of order, the below indicates that there are the

2
v,
values up to %:

somlPpa) = Pl e (1)

8m?2c? m2c? 2
1 mu)? 1 v?
— P~ (mo) =—mv? | =
8m3c? m3c? 2 c?
134Given {A2, B} — 2ABA = A2B— BA? —2ABA, [A,|A, B]) = A(AB — BA) — (AB — BA)A =
A%?B — 2ABA + BA? we may use {A?, B} —2ABA = [A, [A, B]]
135
p? -1
T+€¢+ P¢P Yy = Wy
[ P? 0!
Q T+6¢+ P¢P vy = Wiy
P2 p4 2 2

2 4 e
<P+ ed— — [P,[P,ebn)wN — W

2 8m3c2  8m2c2
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136
P* = [ —eh(G- B)]?
[P.¢] = [oj(p; — €A;),d] = 0;(p;¢) = —iho;0;¢
In the stationary electric fields, which is given by E= —§¢ , we can write
[P,[P,¢]] = R*ivE +2hd-E x 7

The approximation (Pauli approximation) can be made to the degree of order

we obtained in the above so that we write

Hpaulin = W¢N
Hpauli = Hsh+Hc

1 = 1 h =
Hy = o (@ —chd- By +eo= o7 +ed— = 5B
(72 — eho - B)? eh? | = eh , =
He = - 8m3c? B SmQCQdWE T am22’ Exa

Now we consider the non-relativistic limit for the classical Hamiltonian, we can

=2
H, = C\/ﬁ2+m202+6¢:m02\/1+7;62—i—egb

write

1 72 1 7t
~ 2
R eptme (1+§m202_§m4c4)
—9 —4
= e¢+m02+l— T

2m  2m3ct

where we define @ — 72 — ehd - B, which includes the effects by the spin, the
first term of H. can be regarded as the correction term for the relativistic kinetic
energy. The second term of the equation is called the Darwin term.

136

PY = [@® —eh(- B)>?
[P¢] = [oj(p; —eA;), 8] = 0;(p;j¢) = —iho;0;¢
[P,[P,¢]] = —ihloi(pi —eA;),0;0;0]

= —h?[0,0;,0;0;¢] + iehlo;Ai, 0;0;¢)]

= —Nh%0,0;0;0;¢ — h*0;0;(0;0)0; + W°0;0:(0;0)0; + ieh[o;,0,]A;0;0
= —h’A¢ — h?[04,0;](0;0)0; — 2ehe;jrorAi(0;0)

= —hA¢— 2ih2qjk0k(8j¢)3¢ — 2ehe; 014, (0;9)

= R2divE —2ih%6-E xV +2eho-Ax E

= RAdivE 420 E x (§— eA)

= WdivE+2hé-E x 7
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For the last term of the equation, when we consider the central force field,
137

edp(F) = V(r), A=0

eh - h 10V
Hps = —W&-Exﬁzm;ﬁaﬁxﬁ)
_ (L 1V s
B (2m2c27’87’)8
- h
s = 50’
7= XD

and is called the spin-orbit interaction.

The Time-dependent Case (The Lowest Order)

- e—imCQt/h 1/}
X

Recall our discussion for the steady states, and we direct our attention to the slow

Given

mode in energy mc? periphery:
me*) +ihdp = (mc® + ep) + cPx
meiy +ihdyx = cPy 4+ (—mc* + ed)x
which gives
o) = edwh+ Py
ihdyx = cPy+ (—2mc® + ed)x

We define mv? << mc?, e¢p << mc? , the second equation may give

cP
X = (0

2mc?

Thus, we can derive the Schr?dinger equation

o

hs = H,

t ot Y
P? 57— eA)? L o=

Hg = P medr +ep+i-B
2m 2m

137

A A
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