Partl
Scattering Theory

1 Scattering Theory in One Dimention

In this section, we present the basics of scattering theory as we demonstrate
some examples of scattering in one-dimensional systems shown in the figure below,

describing a left-moving incident particle on a potential barrier.

.0
@ha\ll(x,t) = HVU(z,1)

H = —— +V(z)

Vo = € [—a,d
V pr—
(z) { 0 otherwise

_—
- VA
A v B C

We assume that the time dependent variable in the wavefunction is separable
(stationary state).

U(z,t) e (1)
HVY(x) = EV(r), F=hw

1.1 Transfer Matrix Method
1.1.1 Transfer Matrix for Scattering State and Bound State

Let us divide the system shown in the figure above into three regions: A:
(=00, —a), B: [—a,al, C: (a,00). For the solutions int the regions (r =A, B,
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C), we can write with the wave number k, for which the potential is constant.

) ) h2k2
L I
2m

We define the former wavefunction as ¥y and the latter as U5, and the junction
conditions for the wavefunction when z = £ can be Vy(§) = Wy(§) and V) () =
U, (€), which we can further write down as:

gil—eik‘lf + gl—e—ik‘lf — Sg-eikgf 4 52—6—ik2§
kil e™e —grem™e) = ky(ge™t — g e ™)

In matrix representation, we can write

M (k) ( g ) — M(ky) ( g )

ke ik X Lo—ike L ik

M= . ¢ ), Mfwy =2,
- ; ¢ k 1 ik
ketks  fe—ike etké — 57 3

N

Thus, we rewrite the equations to give

()i () - sa s

We repeatedly use the above equation particularly in our present case to yield

( fz ) = T ( gg > y T — T—a(kouta kin)TG(kin’ kOUt)

€a o
Thus,
h2k? h2k?
Dlout _ o Zln o B
2m 2m

We can solve the scattering problems for more complicated scatterer in the same
way we showed above. Let us now consider two different boundary conditions.

e Boundary condition I: ¥(z) ~ e** 2 — oo Recall that an asymptotic
form of the time-dependent wavefunction where x — +o0o is e!**=% g0 the
waves (i.e., only the scattering waves) traveling toward the positive direction
on x axis are what required in the limit + — +o00. Such states are called
the scattering states, and require the conditions {5 = 0, (5 = 1) . The
scattering states always exist whenever energy E is positive ( £ ; 0 ). For
the reflection coefficient R and the transmission coefficient 7,

(8)-=(4)-( )
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giving £}, and¢; thus, we obtain

R~ G _Tn
€4 Tn
1 1
T = —+ = —
€4 Tn

(Note that the reflection rate is |R|* and the transmission rate is |7 |2.)
Furthermore, there is a relation between the transmission coefficient and the
reflection coefficient, which can be written

T +[RI* =1

We may generally explain the above relation by studying the Wronskians
of the differential equation. Suppose we have the potential V' that is real
and whose solution is W(z) then, its complex conjugate W*(z) can also be
the solution. The Schroedinger equation does not contain the first-order
derivatives; thereby Wronskians W (z) = W (¥ (z), V*(z)) is independent of
x.

L Asymptotically we can write
U(z) = e* + Re ™ g aTe™ 2~ 00

from which we evaluate the Wronskians to give W() = W(o0), revealing
indeed that we have |7|* + |R|?> = 1. As another way to express the above,

!Consider the solutions for the differential equation of f(x)

" +p@)f +q(z)f =0
from which we write the Wronskians for the two solutions f; and fs,
W(a) = W(f1. fo) = det ( oo )
i fa
Thus,

W =det (11 f2,>=dt( /1 2 )Z—W
¢ ( 1 YN\ i —ah pfh—afe b
which leads to -

W () = W(y)e™ v 70
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we define the current J, in x direction to have

h .
Jo = W)
_ (et A
~ 2mi (dj de  dz ¢)

and write out the conservation law of .J, to be

dJ,

. =0.

e Boundary condition II: To satisfy the condition [~ |¥(z)|dz < +oo , we
will need the pure imaginary wave number; i.e., the energy E is negative.
(E < 0) Which we may write

\V/2m|E]|

h

Furthermore, to avoid the exponential divergence of the wavefunction when

kowt = 1K, K =

we define &y, we will need both £§ = 0 and &5 = 0. So, we write

(1) (%)

T11:0

whose first equation

gives restriction to the wave number k. This is called the bound state in
contrast with the scattering state. In our earlier discussion of the scattering

2Where = ~,

eika: + Refik:w efik:w 4 R*eik:p
W(_OO) = det < ikeikz _ ikRefikx fikefikm 4 ikR*eikz >
eika: + Refika: efik:v 4 R*eika: eikw 4 Refika: (1 _ |R‘2)67ika:
= det < 2ikeiks 2ikR*eiks ) = det < 2iketke 0 >
= 2k(|R]*-1)

, while at x &~ co we have

ikTeks  _jkT*e ks 0 —2ikT *e ke
—2ik|T|?

ikx * ,—ikx ikx * ,—ikx
W(so) = det( Te T*e ):det( Te T*e )
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states, we defined the transmission coefficient 7 and the reflection coefficient
R, from which we understand that the energy and the wave number in the
bound states are defined as the

polars in the upper-half of the complex plane k of

the transmission and the reflection coefficient.

The Transfer-matrix Approach to the Scattering Problem in One-dimensional
Square-well Potential

Here we discuss specific calculations for the scattering problem in a simple
square-well potential. To begin with, we write the transfer matrix for a single
boundary 3

T <k17 k2)

1 (kl + k2) —i(k1—k2)E (kl k2) i(k1+k2)E
le (;ﬁ kg) i(k1+k2)é (k‘1 + k‘z) —k2)¢

T = T—a(koaki)Ta(kiako)
1 ( (k 4 k) i(ko—k;)a (ko _ ki)ez’(ko—i-ki)a )

4k;k, (ko — k;)e~iothkida (4 ke i(ko—ki)a

(k—i-k)_Zk —ko)a (k_k)—zk:—i—ko)
X
(k? —k ) i(kitko)a (kz +ko) i(ki—ko)a

eiQkOa
T, — k’ k 2 —2ik;a k —k 2 2ik;a
T {( + ko) (ki — ko)?e
_ 1 2 12\ —2kia 2k
Ty = o (ki —k2)(e e i)
— 1 2 —2ik;a __ 2ik;a
Ty = ok (k7 —k2)(e e
T22 _ e—ZQkoa (k; + k )2 2ik;a (k‘ —k )2 —2ik;a
4k;k,

Therefore, int the following case:

3

Tk ko) = Mg ' (ki) Me(ks)
1 e—iklf 1 —Zklf 'LkQE efikgf
5 ik1§ 1 2/{:15 ) ( 'L'kQE _er—ikQE )

1 [ ke zklf e—ikrg gik2g e—ikat
= % ( klezk1£ _etkig > ( erikzﬁ _k26—ik;25 >
1 ( (ki + ko)e i (ki=k2)e  (f) — ky)eilkatha)e )

Tkl (kl k‘Q) i(k1+k2)E (k1+k2)ei(k1*k2)§
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e Complete transmission
15 =0

that is where we have

2a+/2m(E — V) 0

h

sin 2k;a = sin
there will be no reflection R = 0 so, we will have a complete transmission
|7|=1.
e Bound state

WhereE <0, that is k, = ik (where & is real, ( h;:f = E ) We look for the

solutions for
T11 — 0

, which we find the bound states when
N2
ki +in\" pitkia
k’z‘ — 1K

The classical particles cannot pass through a barrier where

e Tunneling

E <V
, but if we calculate the transmission rate having considered

ki = Z'K,Z'
(Vo = E)
h

KR; =

generally we can obtain |T'| > 0 , meaning that the quantum effect allowed
the particles to be passed through the barrier. This is called the tunneling
effect. In the case where we have energy of the incident particles that is
much smaller in contrast to the potential (|k,| << |k;| = k) , we can write

16k2 1 2
2 o o —4ka
TP~ () ¢

4

K ko) ko\?
T, — 170 2ka 1770 —2ka
ml = (i) e (- 5) ]

o 672/111)

1 16k2 1
T 2 _ — o —4Ka
7] Tn)2 = K2 (1—e-dra)2®
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thus, lowers the transmission rate of the thickness of the potential barrier by
remarkably high speed.
e Delta-function potential

Where
V(z) = gé(x)

, % we consider the limit of

Vo2a — g, (|Vo| = o0, a—0)

% (Note that 2%¢ = g)we obtain

. g .9
T,y = 1 — Ty = —1—
11 +22k0’ 21 Z2k07
g . g
Too = 1 —4— Ty =
22 22]{;0, 12 Z2k0

Thus, giving
g 2
|R|2 — Qko)

L ()" L+ (o)’

7% =

g
2ko

1.1.2 The Transfer Matrix and the Scattering Matrix

i — — 0

r €— <« |

V02a - 9, (|‘/0|—>007 a_>0)

szzQa — ﬁgzg (77’”’;%‘/0)

kil — o0, a—0, (|kila—0)

_ 1 . 2 L 2 idk;a
T11 = 4kiko ((kﬁl + kio) (k‘l ko) e

1 5.
m <4k21€0 — (kl — 0) 24]{71@)

k2a g
= 1— 2 :1 )
T
1
T, = — k2 — 0)(—idk;
21 4kiko(’ )(—idk;a)

k2a g

ko 2k,

Q
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Let us suppose the wavefunction with the incidence and reflection from free-space
to an arbitrary region shows in the figure above. When we have the wavefunction
of the left side 1;e™** +1,e~** and the light side 1,e*** 4+ 1)~ the consetvation
of probability yields an equation. ”

|¢z|2 - |¢r|2 :|1/J0|2 - |¢i’|2

Now we define the one-dimensional scattering matrix S

(0)=()

At which S becomes the unitary matrix
8

SST =SS =1
We further define the transfer matrix T' to obtain

() ()

T'JT =J

9

To provide more details, we define the scattering matrix S (including the mul-
tichannel cases)

7Calculation of the Wronskians.
8The conservation law

2 2 _ (% * w’r _ * * T /(/)i _ * * %
|1/}7‘| + |"/]O| —(%ﬂ/}o)( 77[}0 ) - (wwwz’)s S( 1;[11'/ ) - (1/}”1/)21) ( wi/ )

is valid for arbitrary v;, 1) thus, STS = I.
9The conservation law is written

2 _ '/2_ * * 1/10 — * * T 1/12 — * * i
oo? = wel? =0 (47 ) =wiwnrar () =whuna (5

,giving

T JT =J
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so that we can write

AR T
T= Pl oyt
10 Here we can write
T ' =JT'J

(TTH ™ =(TH'T™ =JTT'J

Glven that each pair becomes idential with the non-negative eigenvalues of TT"
and (TT")~, all eigenvalues can be written

e:l:?xn’ T >0

10The unitarity can bu expressed in the relation equaitons
Stg_ rtooqt root\ rir + ¢ttt rie/ + ¢y B 1 0 %1
AN t ) AL A A P 0 1 (1)
’ . £ T 141 + 101
Sst — r t/ M p _ rr +ttT rt —l—trT _ 1 0 (*2)
t r t r trt Tty 0 1
with the definition of the S matrix we obtain
Y =11h; + t'
1/10 :twi + 7”/%/

It is clear that if the boundary condition 3;; = 0 is required, ¢ will represent the transmission
rate, andr, the reflection rate. To obtain the transfer matrix through solving 1,,1i’, we rewrite
the first equation

-1

Yy =—1'
and the second equation,
Yo =tihy — ' by + 1t e = (= T )+
The unitarity may give
1=ttt + 77T =t /(@ )T = wh T (ot
=(t —r't' )it

which leads to obtain
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The further calculations may yield !

-1
_ I
(TTT +(TTH ™ + 21) =1 iy

Thus, we know that COS}ll .- may give the absolute eigenvalues for 1t ande't/. 12

11

- -1
rri—( Lot =ttt
= *tlilr t/*l t/Tilr/T t/Til
E R e W
— _ _1 -
ety
T =JT'J
(! =TT =TT
-1 — -1
T 1 (TTT)fl _2< AR e SR )
'

(ttT)_l +T’(t/Ttl)_1T/T )
+ ( /)—1

given that

—1
1/ttt
(TTT +(TTH ' + 21) =1 ( ity )

12

1 1/t
2 2z, —2x,\—1 _ Tn —xp\—1\2 _ -
(2+e™ +e ) (™ +e™™)7) 4coshz, 4 ars
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1.2 The Green’s Function and Scattering Integral Equa-

tions
Consider the Schrodinger equation in the form

(B — Ho(x))¥(z) = V(x)¥(z)

n* d?
Hole) = ~onae

Suppose we obtained the Green function Go(&bylettingd(x) to be the Dirac delta
function

(£ — Ho(€£))Go(§) = 0(¢)
With homogeneous solution ¢(x)
(E — Ho())®(z) = 0

we write the equation
¥(a) = o) + [ " dyGole — V)T (LS)

13 Next, we recast the equations above in the form, which clearly show the energy
dependence instead of the x space coordinate dependence

(E—Hy)¥ = VU,

1
Go(E) =
o(E) E — H,
(E—Hy)® = 0
1
U = & 8%
T ECH,

= O+ GVU (LS

13We may simply check by making substitution into the Schrodinger equation
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The last line of equation is called the Lippmann-Schwinger equation. 4 1% 16

14We consider that the inverse number of the operator (z — Hy) uses the eigenstate |e) of the
energy € for Hy to be defined as

Z — €

Go(2) = 3" ——|e)(e]

Generally, in contrast to the real energy of z = E, Go(z) cannot be defined for its unique
property it has. We will instead have to use the limit z — E £ i§ at the end by calculating for
the complex energy z. Throughout the proceeding sections, we need to note this as an important
fact. The further details of the calculations can be found in the following.

5The relation between the formal solution and the coordinate representation can be considered
as

(Z - Ho)GO =1
(x|(z — Ho)Golz') =(x|2")

[ [ dpast wlp)tole ~ Ho)l!) 'l " Gole') = (el

On the one hand, (z|2’) = 6(xz — 2’) is the eigenfunction for the eigenvalue x’ of the operatori
such that we may treat it as &|z) = x|z).

2{x|x") :/dz" x(z|z" 2" |2') = /dx” x6(x —2")o(z" — ') = 2'6(x — ') = 2 (z|x)

For (z|p) = \/ﬁ eP*/" on the other hand, we may treat it as p|p) = p|p) because p = —ihd,
is the eigenfunction of the eigenvalue p for the operator p = —ihd,. Th completeness and the

orthonormality are given

/dx" (x| (2 |2")* :/dx”é(x —2")o(z" —2")=6(z' —2') completeness
/dm (x]x'y (x]2") = / drd(z — 2")o(x — 2") = §(a’ — 2")  orthonormality
/dp (z|p)('|p)* = /dpe”"(r )/ = hé((m —a')/h) = §(x —z') completeness
/dx (z|p)*(z|p’) :% /dm e~ {p=P)0)/h — §5(p — p')  orthonormality

Thus, we have (x|Gola’) = Go(x, ') to write

2

(o= — o)) =Gz — L)) = 60— (e — )

dpdp' {2]p) pl(z — Ho)lp') (2" Go(a”, o') = e (o PG )
e | // L

<z+2}ncgg>/dw”6(:px VGo(2",2') = <z d2 >G( ')

Given by the translational symmetry, we have Go(z,2") = Go(z — ')
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We can further write the variation of the Lippmann-Schwinger equation in the

16Let us summarize different types of normalization for the plane waves.

e L volume V = L? =boundary condition
Let us define k,, = 2% (n,, ny,n.), n; = 0,21, £2, -+ to write

1
(rln) =tu(r) = e
(n|n') :/ dr ) (P () = dppr : normalization
o) = L —itk,—k, )T
; r|n){n|r’) Z?/}n )7V;e '
1 2m.\3 Zefi(knfkn,)-"' = 41) /dk: itk —k,)r

~(2n)3 (Z) (27)3
=0(r —7r') = (r|r')

n
Z |n)(n| =1 : completeness
n

e Take the continuum limit for the wave-number represetation

<’I"|k: _ ]' zk-’l"
means k) = |
(k|K'y = (27r) /dr i (P (r) = §(k — K') : normalization
] iy = [ ki) = g ek

=i(r — ') = (rlr)

/dk: |k) (k| =1 : completeness

e For the momentum representation

o) — (1) — ;eip-’r/h
] |4
Thatis, |p) = \/h>3|k> th

PIp) =g | A U3 (r) = 8p — ) mormaiation
[ v ripyoir') = / Uy ) ) = s S e P
—5(r ') = (rlr)

/dp |p)(p| =1 : completeness
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form

U = (1-GoV)®=(1+GV)d
1
E—H
= Go+ GoVG = Go+ Go(VGo) + Go(VGo)? + -+ -

17 Let us now consider more specified one-dimensional Green’s function Gy via

"Here we used the relation

A(B-AB = (AB—-1)B=A-B
= —B(A-B)A=DB(B- A)A

The substitution of A = F — Hp,and B = E — Hy — V into the equation above gives
—GoVG =Gy —G=-GVGy
hence, we have (1 — GoV)G = Gy. That is
(1-GoV)=GGy=(Gy+GVGy)Gy =1+ GV
We also obtain a useful reration

G =Go+GoVG = Gy + Go(VGo) + Go(VGo)? + - --
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Fourier analysis & 19 20

18Clariy the space coordinate to express

1 e oA
Go(z) = = / dke™*® Gy (k)
1

so, we can write §(z) = 5= [ dke™*® to give

R2K?

2m

E

2m

which leads to (E — Ho)Go(z) = §(x) thus Go(k) = = (32) o'

1 /2m
G““”Zzw(m) [

K212

In the following, we consider F of the positive and ngative energies.

9Where E > 0, the integral remains indefinite for the unique characteristic observed along
the real axis. We now consider expanding the energy E into the complex energy £ — FE =+ 0.
This in fact corresponds to having K — K + i0 thus gives

1 /2m
0 (2) 21 \ h? wdkﬁ(( 1 k}%;i[))eikz

E+KEi0

The evaluation of the integral is done via the complex integration along the paaths Cy 4+ C'y or
Cy + C_ shows in the figure below. Further, we proceed by use of the Jordan’s lemma.

When |f(2)] is uniformly 0 on the upper-half/lower-half plane at |z| — oo, we can write

/ dzf(z)er** =0, (R — oo,a>0)
Cy

20Where E < 0, we write

2mlE
K — in — i V2IEl

h
which we can use directly to evaluate the integral. Applying a clear case such as K — K+i0 (E —

, k>0
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2 Ly nE

GO(E) =

h ?

2m\ —1 —k|z \/ 2m|E|
(ﬁ) %6 | |, K = E <0

21 Where the energy E > 0, the Green’s function and its homogeneous solution
take the traveling waves ®(x) = \/%76”“ of +x direction. the substitution into the
Lippmann-Schwinger equation may give

\I/i(l’) _ \/LQ_T(eikm + (QH_ZL> (g:) /_Oo dyV(y)eﬂk\x_yl\Pi(y}

form which the solutions that satisfy the boundary condition I we discussed in the

prior section can be clarilfied to be U (z). For this ¥t (z) where x << —a, we
can write
1 . .
/s ) ~~ _(ezkx+elkm k', )
@~ o= i)
2m\ —iv2m [
h 2k

While in a << x, we can write

dyV (y)e™ Ut (y)

— 00

L (e““(l (k. oo))

ki oo) = 2m\ —iv2mr [
T\ ) 2k

which giving the reflection coefficient (R) and the transmission coefficient (7)
to be

dyV (y)e ™0t (y)

—00

R=f(k), T=1+f(k, o0)

. To obtain more specific form of the equation, we need a specific form of U*. The
approximation of taking U*(z) ~ ®(x) in the right term of the equation is called
the Born approximation.

E+ ZO) may give
2m\ —i
+ K
GO (l’) = (2> 2761 ||

_ (2 2L e
- h? ) 2k

2INote that this solution remains indefinite as we have the linear combination of the homo-
geneous solution e****  This indefinition rests on how to take the formal solution as we are
discussing in the next section.
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The Scattering Problems in One-dimentional Delta-function Potential
via Integral Equation

Here we discuss how to solve the scattering problem in the delta-function po-
tential V(z) = gd(x) in detail. The scattering integral equation is written

wo) = et () G [T awmer e
\IJ( ) _ 1 ik .~ 1 —zquj(o) <0 1 ikx .~ 1 zkx\p(o) >0
r) = \/ﬁe ngke , T \/ﬁe ngke , T

Let us have x = 0 to give

1 1
UV0) = ———
V2r 1+ gy
thus o
g
. ) . Y
7’:1_i§ - = 7 R:_L@
1+4+1g— 1+ — 14+ =
T o ok

1.3 Levinson’s Theorem in One Dimension

Now we discuss the Levinson’ s theorem, which relates to connecting the number
of bound sates to the scattering states. We consider the solutions and the new
boundary conditions for the Schroedinger equation

h2 d2f:|:oo h2k‘2
—% A2 +V(x>f:too - Ef:l:oo -

f:l:oo

2m
o fo(k,x) —e* z — oo

o foo(k,z)—e ™ 2 — —oc0

The integral equations for the solutions above can be obtained via taking the
Green’s function

B . 2m,, sin k(z — 2’)
G =G = —hZH(x—x) ’
2 i —a
Gom Gy = gy SnkE =)



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugai23

22 23

22LLet us consider another way to obtain the Green ' s function. Generally, we consider the
Green ' s function in the second-order differential equation for y = y(z)

G"(z,2") + p(z)G'(z,2") + q(x)G(z,2") = §(x — 2), * is the z differentials

Suppose we already obtained the independent homogeneous solutions y4(x), and y_(x) so we
write
i +p(@)y; +q(@)y =0, i=+,—

Based on the variation of parameter we have
G = C+y+ + C_ Y

whichleads to
G'=(Clys +CLy-) + (Chyly + C-yl)

Now requires
(Chys +CLy_) =0

which yields
G"=(Cry, +C_y ) = (Chyy + C .y )+ (Cyyf + C_y")

SO we can write

G"+pG +qG = CL(] +pyy +ayr) +C-(v! +py_ +qy-)
+Cy +CLy. =Cy +C Ly =6(x—2a')

which giving
Y+ Y- ch _ 0
vyl cr 6(z —2')
1
w

( f’;j; e > ( §(x(1x’) ) = % ( Zi?sfixffﬁ) )

G(z,a) = /b ) dt_y+l/(§()g W st — ) + /b j =\l @Vv)é;(t) 5(t — o)

hence,

Note that by, and b_ may impose differnt boundary conditions for the integral constants.
23We consider some examples for such cases.

Whereb_ =by =2’ —0

Gale,a') = O — o) Y OW=) T - (@)y+ (@)

Where b_ =b, =2’ +0
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For these Green ’ s function written above, we add each formal solution to de-

termine the integral equations

foo(kax) = et —

foolhw) = et

2m1 (> . / / /
FE/gc da’ sink(x — 2")V(2') foo (K, 2")
2m1 [* ., . / / /
T 7ood$ sink(z — 2" )V(2') foo(k, 2')

It is clear that each solution satisfies the boundary conditions.

We now regard the functions fi.(k,z) as functions of the complex number &

to investigate the analyticity.

the complex number k& where

First, given the integral equations we should have

Imk >0

which clearly indicates that there are the convergence conditions of the integrals

for each term by successive approximation of fi..(k,z). In fact, the series itself is

said to converge while fi..(k,x) beocmes the regular function of & on the complex

plane k£ and on the upper-half plane.

We make evaluations for the

feoo(—k,x) where z — oo,

Wronslians in fo(k,2) , fo(—k,2) , f-co(k,z) and

W(f-oc(k, ), foc(=k,x)) = 2ik
Whereb_ = o0, by = —o0
Gz,z') = /OO dtWé(t—x’H[T dtby‘&f)(?)*(t)a(t—x’)
_ Y+ (E<)y-(&>)
W (')
& = max(z, '), &< =min(x, )
specially
h? d?
(E — Ho)Go %(k2 + @)G{)’ =0(x — ')

B h%k?

2m

as Y+ (v) = e W(yy,y_) = det (

h2

e n _ R
QmGQ(l‘,.’II) O(x — )

hQ

—Gi(z,2') = —0(z' — 1)

2m

ikx —ikx
e’ e .
. ik . —ik = —2Z]€
ike —ike "

sink(z — 2’)
k
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Thus, the solutions are independent where k = 0. This allows us to expand the

equations #*

froo(kyz) = cn(k)foolk, ) + c12(k) foo (=K, )
foolks2) = ca(k)foo(—k, ) + caa(k) f-oo(k, )

We now consider x — +oo for tha latter equation above to write in the form

1™ 4 Cp0e™ M (1 — —00), e*T (1 — 00)

These are the solutions that satisfy the boundary conditions for the scattering thus,
the relation between the transmission coeflicient and the reflection coefficient are

expressed as

c
R = -2
Co1
1
T = — = —: Referthetransfermatriz
Co1 11

Here we consider the Wronskians for each form of fr.(k,z) and fi.(£k,z) to

derive
(k) =~ W (b, ), foo(—h:)
k) = S W b 2), Sl )
enlh) = =5 W (el ), foacll2)
enlk) = Wk ), ook, 2)

24h The successive substitution may give

fooo(k) = cr1(k)(car(k)fooo(—k) + c2a(k) f-oo(F)) + c12(k) (c21(—k) foo (k) + coo(—F) f-oo(—F))
= (cr1(k)eaa(k) + cr2(k)car(—k)) f-oo (k) + (c11(k)c21 (k) + cr2(k)caz(—k)) f-oo(—k)

Where k # 0
Cll(k)CQQ(k‘) + C12(k‘)(}21(—]€) =1, 611(]{})(}21(]€) + 012(]{1)622(—]6) =0
Likewise

foo(k) = car(k)(cr1(=F) foo(=k) + c12(=k) foo (K)) + c22(K) (c11(k) foo (k) + c12(k) foo (=)
(cr2(=F)ean (k) + cr1(k)eaz(k)) foo (K) + (c11(=k)ca1 (k) + cra(k)eaa (k) foo (=)

thus,

612(7k)621(k) + Cll(k)CQQ(k) = ]., Cll(fk)621(k) + Clg(k)CQQ(k‘) =0
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Especially the forms of ¢9;(k), the equations are expressed in regular fi.(k,x)
on the upper-half of the complex k plane, and the zero-point kg on the upper-half
of the plane gives the polar of 77 i.e., giving the bound states, because c9; (k) is
also a regular function.

We may also show some other facts for co; (k).

e Where |k| — 00 ,ca1(k) =1+ O(3)

In |k| — oo, where the incident energu is large enough, the effects by the
potentials can be ignored, so that we understand from the transmission co-
efficient to take 7 — 1 or from the analyticity property.

e The zero-point co1(k) of kp exists on the imaginary axis, not on th real axis.
25

251t is clear from the discussion of the transfer matrix.
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e All the zero-points kp for coi(k) are in the first-order. Thus, ¢9(kg) # 0. 26

We can integrate d% log c91 (k) along the integral path C' where the path is ormed
by the real axis and the half circle on the upper-half plane. This integration may
completely detached (% = O(75), |k| — oo away from the half-circle. From the

26 At the wave number kp, in which the bound states are allowed to exist, fi(kp, ) become
linearly dependent to each other.

ca1(kp) = 0, cu(kp)eaa(kp) =1, cui(kp) #0, ca2(kp) #0
JoolkB,z) = c22(kB)f-o(kB,x)
W(foo(kBax)7f—oo(kB7x)) 0

k differentiation is written by °,
1
2ikp

— 1 <1W(foo<k3,x)7foo(k3,x)) + CQQW(foo(kBax))fOO(kB7x)))

B 2ikB C22

éo1(kp) =

(W(f'oo(kB, ). Foso(ks)) £ W (Foo(k, 2), fso () a:»)

To evauate this we diffentiate the Schroedinger equation and equation above with respect to k.
Which gives,

2m
2 _
"+ Ef = ﬁvf
ok f + k2 %Vf

With the potential terms being cancelled in the equation, we can rewrite

FE ok = W) -2k =0

This above equation is used for fo to give Imk > 0 lim, o foo(k, ) = 0 thus

Wi fo) = —2k/oodx’[foo(k7m’)]2

x

the same as Imk > 0000 lim,—, o fooo(k,x) =0

W f o) = 2k[ Ao’ [f oo (B, 2]

hence,

. _ 1 B 1 ~ 2! 2N + ¢ — : x’ a')]?

entin) = g (= gy e [0 Ul b entim(-2in) [ 211t )
= —i/_ da’[foo(kp, ") f-oo (K, 27)]

_ —iCQQ(kB)/jO Q' [f oo (k)2 = —i%}g) /jo da [ oo (i, 7))

C22

Thus, i¢a1(kp)caz(kp) is not zero for foo (kp, ).
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argument principle, the number of zero-point N for cy; on the upper-half plane
can be written

1 N
N = 2m/ — log co1 (k) = 2—m_10g021(k+10) o
= 5 (Arg c21(—00 +i0) — Arg coy (00 + ZO))
1
T
1
= —5- (Arg T (—o00 +1i0) — Arg 7T (o0 + zO))
T

Note that the changes in argument are measured on the straight line in which the
argument deviates infinitesimally on the real axis towards the upper-half plane.

k+1id

>
»
>

The N represents the number of bound states. It is defined by the transmission
coefficient 7 (more precisely, by what 7 is analytic continued to the complex k
plane), which provides the scattering information. This is called the Levinson’s
theorem.
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2 The Scattering Theory in Three Dimention

In this section, we discuss the scattering theory in three-dimension by following
the methods especially using the integral equation that are introduced in our earlier
discussions on one-dimensional scattering theory. More specifically, we consider a
spherically-symmetric scatterer at periphery of origin, in which the plane waves
incident in z-axis direction.

N @ NIV z
\WARARY /VV

2.1 The Scattering Amplitude and the Differntial Cross
Sections

In such case shown in the figure bove, the boundary condition for the stationary
state be | £0)
5 T—00 ikz ikr
U(r) — [2m)i /2 (e +_r e )

We can rewrite the above by using mv = hk$, and Vo = (2r)3 27 28

2"We can understand from [*_dx [T dy [T dz |¥|? = 1 that U(F) = Wei’;f has a

particle for every volume vy = (27)3.

28@Given
S oi 100, 1 of,
VIi= 87‘r+7‘899+rsin98¢¢
* _ 1 f*(a) —ikr [ _ f(o) ikr f(e) kT 1. laf(e)l ikr
Vs = (2m)3 r c P2 © Tt r © ZkTJrr 0 r° o
I T Vi 1
= Gnp zkr+(9(r2)
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Uy, = (2;)3/26”“

jo = 2—7?”) (\IJ;;WJO . (ﬁ\pg)\po) _ (2;3%2 _ %z

Vo= G

Jo = (2—fm> (xp:ws - (W;)\ps> _ (271T)3 ‘f@'Q%f . O(%ﬁ N %\f@m

The boundary condition at infinite distance away is the superposition of the plane
waves and the spherical waves.

Let f(0) be the scattering amplitude. We can write the differntial scattering
cross section o (f) given the ratio between the incidene flux per unit area &5 = J.-2
snf the scattering flux ®, = j, - dS per surface element dS = r2dQ (d = dQF)

O, = 0(0)d) - Py
This gives
a(0) = f(0))"

Now that we call o7 = [ dQo(f) a total scattering cross section.
Now we can express the equation of continuity for the waveunction W(7, ¢), which
is the solution for the time-dependent Schroedinger equation,

ap(Fut) _i_ﬁ—’ -

2ma

Y Jj(mt) = 0
p(7, ) W(7, 1)
G N <\I!*(F, HVU(F 1) — h.c.)

2 This gives the wavefunction for the stationary states, the main forcus of our
discussion

Vi@t = 0

?We use Schroedinger equation in the forms of time resolution &, N = 9, [,, dr|¥(7)|? for the
number of particles IV in an arbitrary volume V' and write

o = [ar( @+ v i) = [ e (- meeue v Ee o)

= - (z;z) /V di( = (V20" (7)) W(7) + O (F) V20 (7)
~ (o) [ (- @ @ee + w@Fee) = - [ asie)

J()

(5 ) |19 - G )

which shows that jis the current operator so, given that the volume V is the arbitrary volume,
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Integrate the wquation above over a region bounded by a largy sphere S having
a radius R with its center located origin. Applying the Gauss theorem to write *°

the equation of continuity
QYA +V-j=0

is obeyed. We can also obtain the above equation directly without using the arbitral character-
istics of the volume.

30We consider a more unified expression for the behavior of spherical waves at infinite distant
away via analytic continuation given the wavefunction in bound states. So, we can write

W) s (e + L)

kT =k 4140 = k + ie

We further suppose Re >> 1; i.e., we have the initial system of infinite large then, take the limit
of ¢ — 0 at the end. Thus,

(2 1)3/2 (eierOSO + {ez‘lﬁr)
VQ\I/*V\I/ :(e—lkTCOSQ f* etk r)(ikeikrcosé _’_Z’k{eik*r)?; —|—(’)(1/R2)
r=R
= <zk cos 6 + zk cos e filkcos0—=k™) ik%e‘m(k ©os G_H)) 7
= <zk cos O + zk cos fetklilcosO—1)—cl | ik%e*i’m(cos 01)6R> 7
VO\I/*V\I/ - <22k cosf + zk—*(l + cos §)eiFFlcosO—1)—ck | Zk%(l + cos 9)6ikR(COS€1)6R> 7

In the following equations, the higher-prder terms are ignored (1/R?) ,and rewritten
= / dS - oo
s

h oY
() fas(3 2% e
2mi ) Jg or

- P .
— dQ I R? - v [/
/ o= 2Jo) + / [ Vo R

Sz
W) /dQ e (21)3 (e_ikz(ik)f(e)em P+
|
)

E)
(

) e~ R (ik)ei** 5 _ . C)

<2 R
_v 2
= [ aniree)

ink
+<2mz

Q
— /dQ R2 (21)3 <eikR(1cos 0)% + f*Rgg) efikR(lfcos 0) cos b
™

. (6 ) ;
+ efsz(lfcos G)fTE) 4 %eZkR(lf‘:OSG) cos 9)

v/dQ|f(9)|2+hk( 1)3R/dQ (1+C0s0)(f(9)6ikR(lfcost9)+f*(9)efikR(17cos9))

/ aAO) + *ﬁm 2mi((0) — £7(0)) + const. R



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugai32

31 32

31

T 1
/ dQ et i—cos0) r(gy = 27 £(0) / df sin eFF=cos0) £(9) — 27 £(0) / dt e 0= kR - 0o
0 —1

1

— 2 f(0) -

— 27Tf(0) 1 eik}R(l—t) R
—1

1 — o—2ikR
kR (I =)

1 .
= 27‘(’@1']0(0) + const.e~2ikE

/dQ e ikR(1=cost) px(gy = —271’%27“(0) + const.e?* R

320ur discussion in general can be

S

h Lo

G/a7 .7 IR 1
[qu(zyO—zyo)+/dQ{R2~;;()'fgp)' }Jro (=)

<2;Lu> / dQ R? (Qi)3 (eikz(ik)fg)eikl% Fyd *éa) e R (ik)e™* 2 — h.c.)

0

v

— o [anuseo)

ihk 2 1 ik R(1—cos 0) f(a) f*(e) —ikR(1—cos )
+ <2mi>/dQR @) (e I + 7 ¢ cosf

4 ikR(1—cos0) fr0) | f9) ikR(1—cos0) (g 9)

R " R°
— o [ARUSOP + 5 R [ 01+ cos0)(FE)HTI ) . g g HR-ees0)
V() 2m (27T)3

v hk 1
= — () 2L

1
2. 91—
@rp 2 2R

(f(0) — £*(0)) + const.e=*

We can take average of the above at infinitesimal region of R, which we can leave out the last
term. Thus,

0 = 3 [P + 75 () o)



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugai33

- h ov
e = | — || ¥*— — h.c.
Joo (Qmi)( or hc)

) /Sdg(éfo—ffo)+/dQ[R2'£|f§§2)|2] 1O (3)

Vo
h A D2 1 —ikz(; f(e) kR o f*(e) —ikR ikz 2
+ (%) /dQR W(e (zk’)Te 7+ 7 ¢ (1k)e™ z — h.c.
We average the above by the infinitesimal area on R to obtain
k s Kk
m f0) = o [d0lfO)F = or

Such relation between the forward scattering amplitude and the total cross section

of the scatterer is called the optical theorem.

2.2 Lippmann-Schwinger Equation and the scattering Am-
plitude

We now consider determining the scattering amplitude via the integral equation
derived from the Lippmann-Schwinger equation, which we discussed in our previ-
ous section. To begin with, we difine the Green’s function Go(7) = G& (7, E) of

the three-dimentional free-particle system as the solution of the equation
(B — Ho(r)Go(T) = 4(r)
h2v2

2m

Ho(x) =

Specific forms of the equation above can be obtained by using the Fourier analysis

in the same way we did to obtain the specific equation form in our previous section.
33

" 2m\ 1 eFEr _ VomE | - .
Go(fj: — ﬁ E ” s KﬁKiZO:Ti'LO, E->Eilo,E>(
Go(E) =

) 1 e~ K" -
GI(F K — ix) = —< m) S ) = Y2iE E<0

2 )an

330n the one hand where E > 0, we may write

K3 1 o i
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In out present case, we consider the scattering states where £ > 0, and having

—\ — 1

the plane wave of ®(7) e e™** traveling in z-axis direction as homogeneous

solution to express the Lippmann-Schwinger integral equation

1

S VA
Eiz’O—HOV

U* =0+
In more specifin form we can write
1 ] 2m. 1 e:l:ik|r—r’|
\Iji :—zkz_ __/d—’/—v—v\lli—-l
(" = G <h2)47r M V)

Here we suppose there is the scatterer of a finite size (V(7) =~ 0,7 >> a). We
consider the wavefunction at a point, a sufficient distance away from the scatterer.

The equation we initially defined and 8(7) = iy [ d*ke’™ 7 yields GF (k) = (22) 52

2my__ 1 1 _
(2m)372 K2—k2
1 2m 1 o
+ _ 3 ik-T
Go () = 3 ( n2 ) /d " et

This integral is evaluated in the polar coordinated (z-axis in 7 direction) such that

. 1 7 e 1 4 .
ddk ik _ / dka ) / dfsin b ikr cos 6
/ 7}(3: — k2€ ; 7}(3: — k‘2( ) ; sin fe

so, we cn write

w1l /
) k ikr —ikr)— 1
T OodkKi—kQ (efkr—e uw)_%;gfmdk 2*"'_ ik

Tl [ 1 1 ik > +iK
_ - —etkry =" _(_9 iKr
ir/mdk<k+Kii0+k—K$iO)( )= (=2e

Thus,

2m\ 1 e=Kr
4 r

65 =~

On the other where F < 0, same way we handled the one-dimensional systems, we write

2m|E
K—in— i Y2EL g

h )

In this case, we may directly evaluate the integral, in which we can apply K — K+i0 (F — E+i0)
. Thus,

Go(7) = — (2;;) Le”

4T r
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Having r >> a ' =~ a, we can write 3*

which giving

- () frc v o)

Here we note that k, = kf is the k-vector in the direction of the scattering. This

in fact shows that U*(7) is the solution, which satisfies the boundary condition.
The scattering amplitude can be given from

£(0;) = _(i_?) (2)3/2 /df,e_iﬁr-ﬁv(fr)qﬁ(?ﬂ)

47

Note that the incident wave is expressed as

dp () = (2753/2 eik= T (k. = k2) , we can write 3
1) = —(32) Eh e o)
- (5 B g e
T = v+vmv

2.3 Born Approximation

The approximation method that has solution Phi in the right side of U* as the
lowest order of the successive approximation steps within the integral equation to
give a simplest form of approximation

1 . 1 o
\I]i ~ 7 elkz — 7 ezkz-r
(2m) (2m)
34
g /2 g 2
=Pl = (% 2 ) = (-2 ) = (1 -2 +@<(a> )12

35We used Ut = (1 + GTV)®



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugai36

Is called the (first) Born approximation. The scattering amplitude in this approx-
imation can be written

2m ]_ — 7 o e
/) = —(ﬁ)g/dre =Ty (1)
o= k2
Now let us have
K=K —Fk

Calculation is made with the polar coordinates (7,8, ) in K direction to give 36

fe(6y) = ( )M / do / dfsin 0 / dFF2e T30y (7)
cos 0=
— 2m 1/df_2 1 zKrcosé) '
h2 ’LK’I"

V(7)
_ _(QB_TD% / drr sin(Kr)V (r)

cosf=—1
The differntial cross section can be written
B 2m 2
T\

A Case for Born Approximation (Rutherford Scattering)

1 2

1 /0 eV () sin(Kr)

Consider scattering by Yukawa potential

Ae Hr

r

AN

K

Vi(r) =

36

0
K =|K|=+/2k?>(1 — cosf) = stini

dK = kcosf/2d0
KdK = k:2sm9d9

sinfdf = ﬁKdK
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In which we can write 37
2m A

R K2 + 2

We can rewrite the above equation with y — 0, A = —Ze? to have

fB(9> =

m Ze?

(hk)?sin® 0/2

—0
fB“—>2

This indeed is equivalent to the classical formula of the Rutherford scattering.

2.4 Partial Wave Decomposition

In the following sections we discuss the scattering problems with an approach

by the partial wave decomposition. 3

2.4.1 The Schroedinger Equation in Spherical Symmetric Field

The Schroedinger equation is expressed in the forms

HY(F) = EY(7)
%+V(T)

h
= -V

]

=
Il

1

Given that we consider to obtain the its eigenfunction in the following forms

w(r) = R(r) 6(0) o(¢)

xr = rsinflcos¢, y=rsinfsing, z =rcosf

Let the angular momentum be

—

EEFXp

L = €jxipr, T1=2, T2=y, Tz=2

37

/ drsin KrrV(r) = A/ dre #"sin Kr = — / dr (e(““K)T - e(”’K)T>
0 0 0

21

-1 1 1 AK
= A— — — . =
2i \—u+1K —pu—1K K2+ p?

38Review the mathematical handbooks for the basic knowledge of the spherical function.
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giving 3
[Li, LJ] = ZhEZ]kLk

This exchange relationship generally makes clear of the fact (from the algebraic
relation only) that the simultaneous eigenstates for L2 and L, can be obtained as

LY = R +1)Yom
LGm = hm}/fm
m o= —l 41, (—10

Furthermore, we may write 4

v oagligld g L O

T T or P00 T rsind 0g
Lo o
& = 5 = (sin @ cos ¢, sin 0 sin ¢, cos @),

r

Lo . |
G = 55— (cos 8 cos ¢, cos O sin ¢, —sin ),
€y = g—; = (—sin ¢, cos ¢, 0),
T = ér

which gives a clear sense that L does not depend on r but depends on 6, and ¢ in

9z, pj] = xip; — pjx; = thdy;

[Li, Lj] = €iav€jcd[TaDbs TePd] = €iav€jcd(TalPo, Tepa] + [Tas TepalPy) = €iav€jed(TalPo, Telpa + TelTa, Palpy)
€iab€jcd(—thOpeTapd + thbaacPy) = —ih€iab€jpaTaDd + Ph€iab€jcaTeDp
= ih(0ij0ad — 6iddaj)Tapa — 1h(0ij0pe — dicObj)TcPp
= ih(0ijTaPa — TjPi — OijTepy + Tipj) = ih(xip; — xjpi) = iheijn Ly
(= iheijrerapTapy = ih(xip; — 5p;))

40Tt is cleat that
7= x€; + Y&y, + z€
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the function. We can write respsctively, !

L, = —z'h( — Sinqb% — cot # cos ¢§;§>
L, = —ih(cosgb%—cot@sinqﬁ%)
L= ihg
2
[? = _h2{sii9%<sme%)+@%}

We use these specific in the above to determine the eigenvalue h2((¢ + 1) for L2,
In the first step, let us have Y, (0, ¢) = ©(0)®(¢) and write out the equations
according to the eigenfunction to have

L0 (ol )+ L Yoo — —ue+nowe)
snfoo\ """ 00 ) " sin?6 02 -
1 ., 1 d . dO 1 d&?d
@sm G{Smgﬁ(snﬂ@)—kaé—kl)@} = _w?&

11

L= FXp= fihég% +ih§gsi%% = —ih(— sin ¢, cos gf),())% +ih(cot 0 cos ¢, cot O sin ¢, 71)(,%
L2 =—Nh?(singdy + cot O cos ¢ dy) (sing g + cot O cospdy), (cot ) = — .129

sin

=— hg(sin2¢3g - _Lzasingbcosqﬁagﬁ+cotHSin¢cos¢898¢
sin

+ cot 6 cos? ¢ Dy + cot 6 cos ¢sing 0y Op
— cot? fsin ¢ cos ¢ Dy + cot? O cos? ¢ 635)
Li =— h2(cos¢89 — cot@sin¢8¢)(cosgz58g — c0t051n¢0¢)

=—h*(cos® ¢ 0; + ﬁsingbcosgb@) — cot fsin ¢ cos ¢ g Dy
+ cot #sin? ¢ Dy — cot sin ¢ cos ¢ Dy Oy
+ cot® fsin ¢ cos ¢ Oy + cot”® fsin® ¢ 03
L+ L = — h*( 95 + cot 0 g + cot® 0 93)
L =—1n"08;

L2:—h2(8g+cot989+ 8)¢2)

1 . 1
= — p? <Sm€ Op(sin b 9p) + — 7y 8)(;52)

sin? 0

S
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We separate the equations above to give

d*®

a e

sin @ df do in%6

The first equations above to give

2
]'i(m¢@>+w@+m—7”}@:o
S

O(p) =e™, m=0,41,42, 43 -

The condition for the m is being satisfied given the monodromy of the function.
If we require the finite property in the whole region for 6 in the function of ©, we
may use the associated Legendre differntial equation to write

O(0) x P™(O), =012, m=—L0+1,--(

42 With all the iformation we obtained from above, we now determine the normal-

ization constant as in the following form

mtlm|  [20 41 (0 — ' im im
nm<e7¢>:<—1>2'\/ R cos e

Thus, we can write the orthonormality,

<}/€/m’ D/Zm> = /dQY;m/ (67 (b)}/fm(e’ (b) = 5575/577"”/

the effects of ladder operator as,

LYo = B/(EFm)(l£m+1)Yome

and the complex conjugation as,

nin(a ¢) :<_)mY€—m(07 ¢)

427373 — . d _ ded _ _ ,p94 . 1 d(4inpd®) —
With z = cosf, we know 75 = 5= = —sinf - thus, we have sinOdG(blnada) =

4 (sin®092) = 4L ((1 — 22)492) From that we obtain

{a —x2)£} + (et +1) — %;)9 =0

(associated Legendre differntial equation)
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43

“3Here we demonstrate step-by-step of deriving the spherical harmonics Y, (6,¢) =

Oum (0)P,,(¢) via algebraic functions alone. First, we have L,Yy,, = mhYy, , which gives.

— 1 oim¢ i
®,, = NoT We may also write

Ly =L, +iL, = he'?(0p + icot 00,)

L_ =L, —iL, = he ' (~0y +icot 0,)
So, from LYy = 0, we can write

0}y — Lcot 004 =0, — O (#) = Cysin 0
Normalization may give

i /2 [(¢ 4 1)I(1/2)
1=|C, 2/ df sinfsin? 6 = 2|C, 2/ do sin®*t1 9 =C?B(l+1,1) = |C))P———L2
|Cel A i |Ce| ; 1 B( ) =1C {0+ 3/2)

0r(1/2)

=ICel (€+1/2)(¢—1/2)(¢ - 3/2) -~ (1/2)T(1/2)

2 012¢ 9 012¢ . (2€+ 1)2"[! , 2(&2@)2
= e T e Y e
e 204D
=N T
Thus, we write
Yim—1 = 1 e~ + i cot §0,)Y,
" V(+m)(l—m+1) 0 ®) ¥ em
1
= \/(f (= m D) (—=)(0g + mcot )0 ®r—1(0d) = Op—1Pp—1(0)
1
Opm—1=— (09 + mcot 0)Opp,

VI+m)(l—m+1)

Here we note that

sin!=™ 0 d (sin™ #O) =sin' ™™ 9(

deos®\ ' d
dcosf

df
=— (Omcot b + 9yO)

do

—(sin™ 0O) = —sin~ " H(Om sin™ ! f cos 0 + sin™ 00 O)
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which giving,

1 d
Opm_1 = inl="m g in™ 00,
tm—1 \/(E—i—m)(é—m—i—l)sm dcosﬁ(sm om)
1 d
Opm—2 = in?=™f———(sin™ "1 60y, _
2 e m Dl —mt2) dJoosd 10 em=1)
1 . ( >2 |
= s m sin™ 0O,
Jlrmltm D (-miDl-—m+2) dcosg ) (" 0Oum)
¢ — k)= k
@mek:\/( +m = Wi m)! sin®~ m(‘)( ) (sin™ 6@ y,,)
V(+m)(C—m+ k) dcos 0

Letusnowhavem — £,k — { — mso, werewriteinthe form

VTR
RO —m)! a(dcow

s (2041 (0+m)! 1 1 d \""
Y} - 20
— (£ —m)! £12¢ sin™ 6 (dcos 9) (sin™9)

—m
> (Sine 00y)

W eespeciallyconsiderm = Otoobtai

s [20+1 1 d \' . : [2041 1 d
__ 46 20 _ L6 _\¢ 29 1\¢
Ot =e 2 02! (d(cos@)) (sin™6) = (=) 2 02 d(cos@)(COS 6-1)
. 2 1
= () g; Py (cos 6)

so, wepute® = (=)*

20+1

Oy = 2+ Py(cosb)
2+1(0+m) 1 1 d \'"m .
—(_\¢ = 20

Oem =(-) 2 (L—m) 012¢sin™ 0 (dcos@) (sin™6)
m <0,

20 + 1(l+m) 1 d \"
Oem = (£ —m)!sin™ 6 (dcos9> Pe(cost)

2+ 1= |mD! ol d ™
> (0T m)) sin'™ 6 Py(cos 6)

On the other hand, we have

1 )

Yime1 = €' (g + i cot 004)Yorm

T - m)(ltm+ 1) (% o)Ye
1

= g —mcot 0)Op, Py,
\/(e—m)(e+m+1)( ’ JOemBema1

1

Otm+1 (09 — mcot 0)Oy,
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While we can write using the algebraic functions alone, 44

Thus,
s 1y, 1 L?
om  2mlT " 2m 12
-1
sin™ ! Hﬁzse(sin_m 00) =sin™*1 9 (d(;)esﬂ) C%(sin_m 00) = —sin™ §(—Omsin~™ ! f cos O + sin~ " 09, 0)
=(Omcot § — JyO)
which giving,
1 d
Ormi1 =(— sin™ ! g—— (sin =™ 00Oy,
e =) T m deosd' tm)
1 d
Otm+2 =(— sin”*% 6 sin™""" 00,
emt2 =( )\/(Z—m—l)(€+m+2) dcos@( eme1)
2 1 s om+42 d 2 o —m
=(-) sin™ =0 ——— | (sin™™ 00y,)
VIE=—m)l—m—1)-((+m+1)(l+m+2) dcost

k\/(g_m—k)!(€+m)!sinm+k _v ksin_m
V= m)+m+ k) 0<dcose) ( o

Weputm — 0,k — m(m > 0)

_ m (f—m)'ﬁ' m d "
Oum =(—) 7£!(£+m)!sm 0 Jcosd Oy

m [20+1(—m)l | d \"
=) T(f—f—m)!sm 9<dcos€) Py(cost)

d
dcost

oyl (2041 (= |m])!
Oum =(-1) \/2(f+|m|)!P£ (cos)

Withm < 0, wecanwrite®g_,, = (=)™ O,

Otmtr =(—)

|m|
Now, fromPg‘ml(cos 0) =sin/™ 9( ) Py(cos §)weobtain,

4 Glven that we have 7'+ p' = —iha;0; = —ihr%0; = —ihr 220; = —ihr0, ,

= €ijk€ilm T PRTIPm = (0j10km — 0jmOkl)T;PkT1Pm
Tipr®ipk — Tipitip; = 5 (xipr — thdjn)pr — 5 (xipr — ihon)p;
r2p? — il — x(pjar + ihdyy)py + 3ihi - p = r?p® — (7 p): + b

_ 22 2,2
= rrp —rp.

2

1({,, N h 2
Pl = T2{(r~ﬁ)2zhr~p}ﬂ{rarrarrar}h2(5f+r3r)
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Here we suppose V(7) = R(r)Y;n(0, ¢), the Schroedinger equation may give

(C(£420) 4 10 b e

rdr r
h2k?2 h2
= F — =V
2m ’ 2mU<r) (r)

Especially in the case where the potential employs the constant V' = V{), we define
r=kr, E—Vy= %, and write

(8 22) 12

This equation is caled the spherical Bessel equation, and its second-order of the
differntial equation has two independent solutions. %° General solutions of the
Schroedinger equaiton can be obtained by using those two independent solutions,
and written p2p2
W) =Y conBe(r)Yem(0,9), E =

Im

2m

Here we summarize the requirements for the radial of the wavefunction R,.

e Behavior at origin periphery

Where V (r) has no uniqueness at origin periphery 6
Re(kr) =3 (kr)*

e Conservation

4SEither the pairs of the spherical Bessel function j,(z) and the spherical Neumann function

ng(x), or the Hankel function of the first kind hél) () and the Hankel function of the second kind
h()¢(x), can be used as the independent solutions.

Fu(z) = Agjo(x) + Bing(z) = CobV () + Deh$? ()

and more specifically given
¢, . ‘
1d sinx\ z—o0 T
. _ o YA - x
Jelw) = (=) <xdm> ( z ) 20+ 1)

o = () () =

46Let us suppose Ry ~ r™ at the origin periphery, the Schoedinger equation may give {—n(n —
1) —2n+£(€ +1)}r"2 ~ 0. From which, we write

—n?—n+ P Hl=L-n)(l+n+1)=0

This gives r‘,and —~ yat, the probability amplitude is required not to diverge at the origin.
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Especially the case where the potential is the real 47

rRy ri;

Ry (R | "

det

This becomes the conserved quantity; independent of the coordinate systems.
(Consider where r — 0)

2.4.2 Phase Shift

We now consider the potential that is resticted to the finite region. In this case,

the region with no potential possesses the free particles, and the wavefunction can

be written *®

U() = > A Seh{V (kr) + b (kr) } Py(cos 0)
l

4TSuppose we define, R(z) = z"R(x) we can write, R = na" 'R + 2"R', R" = n(n —
12" 2R + 2na" 'R’ + 2" R" which giving

R'+227 'R = n(n—1)2" ?R+2n2" 'R/ +2"R"+2n2" 2 R422" 'R = 2" R"+2(14n)x" 'R +- - -

If we take R(z) = 2 'R(z), there are no first order differntials for the differntial equation of
R so, Wronskians will be invariable when solutions for the differential equation be R, and Rs.
Especially in this case, we consider the Wronskians of R and R* for the real potential, giving

rR rR*
det ( (rR) (rR*) )
This does not depend on the coordinate system

48The point of measurement for the angle of ¢ can be selected at any points, and therefore,
the wavefunction does not depend on ¢ but, depends only on Yy,,—¢.
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Let us first define the amplitude A, of each partial wave as we consider the
asymptotic conditions for the point where infinite distance away. We can write *°

. 1 X (20+1).
U(r) = (27T)3/2Z( 5 )Ze{Sghgl)(kT)+hé2)(k7”)}Pg(COS¢9)
2£+ 1 1 ikr —ikr
— Z 3/2 5 —T{Sgek — (=1)fe }Pg(cose)

49The asymptotic form for a large argument can be written

]/(I) e éSin (I — %), TLg(:C) i —% Ccos (:L’ — %T)

T —ix
h () = (<) b ) ()

X X
giving,

f‘)—>ZAe

We expand the scattering amplitude in terms of the complete set f(0) = >, arPe(cos8), and
further expand the incident wave in terms of the partial wave as following

{S e*r — (=1)‘e """} Py(cos 0)

ekreost =N (20 + 1)ijg (kr) Py(cos 0)
£=0
z—oo 1 . ¢ 1 in ipailm 1 N ix ol —ix
jela) "= Zsin (o = ) = g (€TF — e HE) = (i) — i)

From the above, we can express the expansion of the boundary condition at infinity point in
terms of the Partial wave in the followin form

1 (eikrcose + f(e)eikr>
(2m)3/2 T

1 1 : - ikr -4 —ikr . ikr
= ()72 ik Z {(25 +1)if ((—i) ™ — i'e ™) + 2ikase™ }Pg(COS 0)

o0

1 2ika iy ik
= @ o Z% o {(1+(2e+€1))61k7_(_)46 ' }PZ(COSG)

Compare the two equgaions from above and write

Thus,
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We use Sy to write the scattering amplitude as

f(0) = ij i 20+ 1)(Sy — 1)Py(cos0)
=0

Note that this undefined coefficient Sy is called the scattering matrix, which can
be difined by the boundary condition of a region with a presence of the potential.
We precede the rest of our discussion based on that we assume having defined the
coefficient.

Now we apply the conservation law from our earlier discussion to each partial
wave £ of the radial part, which corresponds to the conservation law for the number
of the particle, and gives 5

1Sel =1

Thus,
Sy = 2% §: real

Rewrite the asymptotic form as °!

U(r) —

1 2+1) , 45 5
)i Z ( o )de % sin(kr — §f + ¢) Py(cos 6)
¢

Compare the above with the asymptotic form for no potential,

1
(27?)3/2

4 I =(20+1), . T
gikrcos® _ E i* sin(kr — =€) Py(cos 6)
3/2
(2m)3/ — kr 2

This makes us aware that there is a shift in the phase, and the shift occurred as
much as dy. d, is called the phase shift.

50

0 — det S[@ikr _ (_I)Ze—ikr S* —ikr _ ( 1) ikr
- ikseeikr +ik(_1)€e—ikv' Z]{)S* —ikr —’Lk’( ) ikr
— det S[@ikr _ (_I)Ee—ikr Sje_”" _ (_1)5 ikr
- 2ik(—1)teikr —2ikS;e~tkr
B S[@ikr _ (_I)Ee—ikr {|Sg|2 _ 1}( )Z ikr B ) 5
= det ( Qik‘(—l)ee_“” O = _22k{|8,€| — 1}
51
ei(26g+kr) . ei(ﬂffkr) _ 6i(6[+%5) (ei(65+kr7%4) . ei(7514+%ffkrr))

e!0et309; sin(kr — gﬁ + 0¢)
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The total scattering cross section satisfies *2

4m 4m . o
or = ?f(O) = zg: ﬁ(%+ 1) sin® o,

This first equation is called the optical theorem. We understand that when ¢, =
(n+ 3)m,n : (integer), the scattering cross section of ¢ becomes the largest, while
the area becomes 0 when §, = nr.

2.4.3 Lograrithmic Differntiation and the Phase Shift

In determining the phase shift more exactly, let us first consider the junction
conditions for the wavefunction within the radius » = a and the wavefunction in

radius part; outside the radius, by each partial wave.
Rj*(a) = R{"(a)
Ri"(a) = R(a)
We can write the wavefunction of the outer part as
Ry (r) = C(Suhy) (kr) + b (kr)
Since the noemalization factor C' is unknown, the condition we can obtain now is

dlog R (r) _ dlog Ry*(r)

dr dr

_ St (ka) + B (ka)
ma S (ka) + b (ka)

Here we have
_ dh(x)

dx

from which we write the effects of the potential for the inner part

h1? (ka)

r=ka

Tk dr

52

or

2 1 2 2 2
/dQ|f(9)\ 74—1{;2;(2“1) 1Sy — 1] 27r(2£+1)

% S0+ 1))5 - 1P

fO—f0) 11
21 21 2ik

_ L 11— g L g L n2
- w2 (20 +1)(=1)(1 = Sy)(1 sé)_%ze:(zunu Syl —4k4;(2€+1)sm S

(204 1)(S¢ + S; — 2)Py(cos9)
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We parametralize the above to write

0P ka) i — b (ka)

Sy =
1 (ka) fir — b (ka)

While we have 53 , o
je(ka) fi" — ji(ka)
nelka) fi* = mj(a)

This indicates that the wavefunction in the outer oart region is defined only by

tan dp, =

the logarithmic differntiation of the boundary of the scattering region, and not by
the details of the potential.

The Low Energy Scattering

In the case for the low energy scattering

ka << 1
This gives ?* %
5£ o (ka)Q 6 — O(ka)Qf-‘rl é Z 1
Thus, 5
do
0) = —
76) =5
53
_ L S5
tand, = iS¢+ 5 +2
54
- 1 20+1 fem — ¢/(ka)
tan e e Y I /()
1 kaf}" -/

_ 2041
R TS VTG Ay Iy e

x (ka)? ¢=0(ka)**t ¢>1

55This does not apply hor the hard sphere.
56

o) = > (204 1)(Se — 1) Py(cos )
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The Hard Sphere Case

Suppose we have a hard sphere of radius » = a we can assume R(a) = 0 when

r = a, and written

in

¢ =
Based on the above, we can write
o(ka
tan 6, — Jje(ka)
ne(ka)
Here in particular, we consider the low energy case where ka << 1, and using the
asymptotic form, which gives 57
a2+
tand, = — (ka)

20+ D)I1(20 — 1)

2.4.4 Jost Function and the Bound States

The equation for the partial wave of the radius part in terms of
R(r) =rR(r)

can be written as we discussed earlier,

((0+1)

r2

R’ — (U(r) + )R = k'R

The first order differential terms are absent in the equation above, and that
the Wronskians for the equation will become the conserved quantity. Now, let us
consider the solutions, which satisfy the three different boundary conditions.

e Solutions in physical term

Require the regularity at the origin to have normalization
R =y (k,r) =t (r—0)

This is the solution, which we have been discussing expect for the normal-

1zation.

57

z—0 Z‘Z

7@ = G

z—0 (20 —1)!
ne(z) — _(le)
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e Jost solution

R = fi(k,r) — e  (k>0, r— 00)

Here we calculate the Wronskians among these solutions, which giving the con-

served quantity for all. Thus, solution is independent of the coordinate systems

58

W(fe(k,r), fE (k) = —2ik

Now, let us write down

W (fik,r), ¢ (k,r)) = [L(k)

in which we call
JL(k)

the Jost function.

Given the function is the second order, the solution for the physical terms can

be multiplied by the Jost solution. Whose coefficient can be given by the Jost

function in the form,

W) = S L) = LR £ )

Furthermore, we consider the asymptotic form of the solution in the physical

terms, and which bein compared with the definition of the scatterin matrix to give

59
FLR) = () f (k)=o)
Note that
oL
Se=(-1) E

58

eikr
W(FL (), £ (k) = det( ﬁ f{ )Zdet( ikeikr

59

_ il v
wﬁ(k,7 T‘) _ Z-Zz(k> (ff_eikr _ e—ikr)

The definition of the scattering matrix gives

f
S = (-1

Thus,
FL(k) = () £ (k)e 10

efikr
—ike kT ) = det (

(r — o0)

ezkr

2iketkr

e

—ikr

0

) =it
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We consider carrying out the analytic continuation of the wave number & to
reach the comlex number with the real energy, we have [J

k=1ik, KkK>0
Whose physical terms solution can be

Glin,r) = fL(iR)e™ = fL(ir)e
As long as we have
filk =ir) =0

The solution can be normalized in the whole space thus; the solution represents
the bound state. the above equation also indicates that the
scattering mtrix possesses the polar in the bound state energy.

1

S(k =ik) =0

Since the potential is real, the following symmetric properties are being also
obeyed.

o Yk, 1) = (—k,r) =" (k,r)
o fi(k,r) = ft(—k,r) thus giving f(k) = fL(—k)
o [U(k,r) = fik,r) giving f7(k) = f(k)

In our discussion of carrying the analytic continuations of the Jost function and
the phase shift on the complexplanes, we can observe that
the number of the bound states is defined by the phase shift analysis. This we

call, Levinson’s theorem.

The S-wave Scattering in the Three-dimentional Square Well Potential

Now we consider the function that the wavefunction R = rR satisfies, and
consider especially the case for the s-waves ¢ = 0.

R'O0 (K> -U(r)R =0

For the square well potential we suppose

U <
U(g‘) _ o T's>sa
0  otherwise
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and we define
K? =k - U,
Which gives ¢
, 1
o= E(KacotKa - 1)

Thus, %
kacotka — Kacot Ka

ka + Kacot Kacot ka

Under the low energy ka << 1, we can write 2

1 —av/—Uycotay/—Uj
ar/—Up cot ar/—U,

For the hard sphere, we have Uy — oo, which gives

tan (50 =

tandg = ka

tan dg = —ka

This matches with our first result. Generally speaking, we may expand the equa-
tion above about a\/—U, if we have the potential that is very weak. So, we have

60Require the boundary condition
R|r:0 = TR|7‘:0 =0

Thus, we write

R = CsinKr
dlogR  dlog(r'R) 1 KCOSKT
dr N T or sin K'r
- 1dlogR 1
o= — =—(K Ka—-1
0 Fodr | ka( acot Ka—1)
61
) _sinz _ wcosx —sinw coszT , _ wsinx +cosw
jole) = E, () = LTI ng(a) = - 25E () = TEREEEET

From the above, we let x = ka, and write

. ; . = 1 . —al
O

no(z) fi" — nh(x)  —<21(Kgcot Ka — 1) — £sinafeose

sinztKacot Ka —xcosr  kacotka — Kacot Ka

—coszKacot Ka—zsinz  ka+ Kacot Kacot ka

62

Ka ka=0 ay/—Uy
ka 1—av/—Upycotay/—Uy
ar/—Ug cot ar/—Uy

ka—0
—

tan dq
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63
Uoka3

%50

tan dg — —

In other words, the gravity may give oy > 0 while the repulsion may give dy < 0.
In order to discuss the bound states by the method using the integral equation;
that is inndeed the main focus of our present section, recall that we define k, which
isdeﬁnedbyE:gQ—finE<0t0beaskD k — ik, (k> 0):

R~ Sh W (kr) + B (kr) = ShY (ikr) + B (i)

o (s S _ o L@ s o _ r
o (ikr) = jo(ikr) + ing(ikr) — g (ikr) = jo(ikr) — ing(ikr) s
This clearly tells that we need

Sg — OO

for the wavefunctions that are not being normalized. We ensured that the energy

in the bound state indeed gives the polar of the scattering matrix. In our specific

case, we have 64

tan5g—|—i:O

3 Time-dependent Scattering Theory

3.1 Lippmann-Schwinger Equation

In this section we aim to understand the scatering theory in the time-dependent
forms, which contrasting with the scattering in the stationary states from our ealier
discussions. The Schroedinger equation can be written

0
tho [¥(t))s =H[Y(t))s
H=Hy+V

63

1
cotr=——-x---
z 3

Thus,

1 3
tan g — k:ag(a\/—UQ)2 = —UO:I;G

64
etdo cot g + ¢

So=—+ = :
e~ cotdy — i




— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugaibh

To be careful with the formal solution at V' = 0, and we write

[U(t))s =e~ R (L))

This gives, (|¥(¢)) is called the interaction representation) %

(1)) =V (1) (1)
V(1) =eiHot/hy =itfot/h
Given that we write
(1)) =U, (1) W(—00)

Thus, 96

Especially in our case, we let
[W(+00)) =5[¥(—00))

be given, and have S = U, (+00) thus,

Szl—l—%/ dr V(1)Ui(1)
¢ —0o0

65

(1)) = Hoe™ H M (1)) 4 = o i D (1)) = (Ho + V)em 0t ()

(1)) = ot Y e R g 1)

0
iho [ (t) =V ()[¥(t)

V(t) :eiHot/hvefngt/h
66

Uy (—o0) =
In the integral form we have

t

Ug(t) =1+ %[ dr V(r)U(7)
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We now consider a case where the interactoin vanishes adiabatically at ¢t — £oo
to have H — H,. For that we suppose

V(t) —>V(t)e*0‘t|/h =V(t)

Under such condition, we take the eigenstate |®;) = —~—ei®T for H, for the

NEoR
initial state. 57 % Which we write

W (—00)) =|®;)
(@] ®j) =1ij = 0(ki — kj)

We write the transition probability W;; at ¢t : —oo — 400 as
Wi =[(®;]SP;)* = |S;il”
Here we define
T=5-1
which gives
i# g, Wi =Tyl
Ti=s | dr@VinUse)
1 [

== dr BTN (@ |V e HoT/he Ol ()| @;)

Thus, we can write

WOE) = [ dreE e iy, (),

—0o0

This equation yields,

1
Tji == (2, V W7 (E))

67The wavefunction for the interaction representation at V = 0 will be the wavefunction for

the stationary states.
68

(@] @) = /dr e kDT — 15 = 5k — ky)

1
(2m)?
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The integral equation for U, gives % 7

69
|\II(+)(E)> :/ dTei(EfHo)T/hefo|'r|/h‘(I)i>

1 o0 . T
+ %/ dr eZ(EHO)T/heolT/h</ dr’ Ve(T/)U_T_(T/)) |D;)
:/oo dTei(EfHO)q—/hefolrl/h‘(I)ﬁ
+ %/ dr’ / dr el(E_HO)T/he_OlTl/hVE(T')Uj(T’)|<I>i>
— 00 7—/
:/OO dr B H)7/g=0ITl /b .
n i > dr > dr ei(E—HO)T/he—0|T|/he—O\T/|/h€iHo-r’/hVe—iHo-r//hUi(7_/)|q>i>
th J_o -

:/OO dTei(E_HO)T/he_OlTl/h‘¢i>
)

1 > , o . ) , ) ,
E [m deefo\r |/h /;/ dT670|T|/h ez(E'fHo)'r/hezHo‘r /hvele[)T /hUj.(T/)|‘I)z>
:/OO dTei(E—HO)T/he—OIT|/h‘¢i>
_~_%/Oo gy’ o0l 1/ /Oo dre 0|/ GHE=Ho) (=) /by i (B—Ho)T' Ihre (11|,
:/oo dTei(EfHo)-r/hefolTl/h‘(I)”

1 o0 , o0 . ) ,
n %/ dr' e~ 07 |/h /0 dre 0TI/ B o)/ (B HO) [hyre (10)| )
—o0

_ /OO i 1 E—Ho) /00l /B g

]. o0 : o0 !’ . !
+ ﬁ i dTeiO‘TI/h el(E*HO)T/hV/ dTleiolT |/h ez(EfHO)T /hUi(T/)|®’L>
:/OQ dT€i(E_H0)T/h€_O|T|/h‘q)Z‘>
—00

1 [ )
+ EA dTefor/ﬁ ez(E'fHo)'r/hV“Ijg-i-) (E)>

70Recall the definition of the delta function

1 1 1 1 1
5 = —\ — — :—I
(z) 2mi <x+i0 x—iO) =0
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|‘1/(+)(E)> _ /oo . ei(E—Ei)T/h6—0|T\/h|q)i>
1 [ '
+ E O dTe—OT/h ez(E—Ho)T/hv|\II§+)<E)>
1
=27hS(E — E,)|®;)) + —— Vo' (B
"hS(E — B)|%0) + 5V W ()
We can write the eqution above in the form
(U(E)) =2rhé(E — E;)|w") (+)

This enables us to derive the Lippmann-Schwinger equation

1

D7 SRAY], i . —
v >|>+E+m—m

Ve
Note that (x) is ™
e—iHot/hU+ (t)’q)f» :e—iEit/h"Ijl(-i—))
The left-hand side of the equation above represents the wavefunction for the

Schroedinger representation, while we regard |\I/§+)) as the wavefunction for the

stationary states. 2

0 ) > o h 1 h 1
dr e~ 07/ hti(B=Ho)r/h :/ dr i EHi0—Ho)yr/p N L g —ind(E — H
/0 Te , e B _H o i\ TEom )
71
W) = [ dre® iy ()

:/OO dr ei(E*Ei)T/h|\Ij§+)>

e—iHOT/hU+ (7_) |(I)7,> :e—iE‘,:r/h|\I,Z(_+)>

"The relationship between the state vector |¥(¢)) in the interaction representation and the
state vector |¥(¢))s in the Schroedinger representation gives

eI ()| ;) =e T U (1)) = | (1))s = e FH @)

In our last discussion, we let |W;(t)) prossess the same energy E; of |®;). Precisely, we consider
the system in the box with the length of each ede to be L. The interaction is adiabactically
applied slower than the energy resolution occurring the same time. We assume the interaction
to take the limit of L — oo knowing that the interaction may give the energy hift of about 1/L3
from the fact that the potential is much local.
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3.2 Optical Theory

We further write ™3

Ty = — 2mid(E; — E;)T j;togive
Tj: =(;| V|

The scattering probability for i« — j per unit of time can be written ™

2w
wjs == 0(Ei — E))| T
If the equation above is approximated by |\IJZ(+)> ~ |®;), which will be called the
Fermi’s golden rule.

We write the Green’s function first;

1
+ -—
Co E 410 — H,
1 1 ~
+ _ _ _ -1 _ 111 _ o+ 1-1
Eri-H Erio-H_v WG V" =[1-VG)G |
=Gi(1-VGH ' =G + GI(VGH + G (VG + - -
=G§ + (GIV)GE + (GEV))GE+--- = (1 - G{V)'Ge
73
(0 (B)) =2mho(E — E;)| 9
1
Tji = (®:| VW (E)))
= — QWi(S(Ej — Ei)TjigZ'U(’,S
Tj; =(@,|V]e")
T4

Wji :471'2 (6(E2 - Ej)>2|Tj7;|2

1 ® BB
4wt 8(E, — BT3P ) [ dr el BBt
2 (oo}
:ié(Ez—EJ”TﬂP/ drl
h —o0
Wj' 21

= = —§(E; — E;)|T;i|?
W f,oodTl 7 ( )T jil
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Here we rewrite the Lippmann-Schwinger equation:
077) =1@3) + Go VITY) = (L+ GV + GV )P +--)|®:) = (L+ G V)| @),
Go, = G§(E:), Gf =G (E)

VW) =V (1 + GHV)|@;) = T(E)|;)
T(E) =V (1+G+(E)V)
WY =(1 4 G (E)T(E))|®;)

Since |\I/£+ ) and |®;) are linked by a unitary transformation, we can write
(7 10) =(@[2)
While we can write
Tje =(®;|V 0 7) = (®;|T:] ;)
which yields to
([ 077) =01} + (@5 |GET ) + (@517 G| @3) + (83|T G 5G, T @)

Thus, ™
—Im Ty =n Y _0(E; — Ey)| Ty
k
75
0= g (BT e (@[T ])
TE-E;j+i0 Y TR R
+ 3 (@, T; G2 B0) (1] G T )
k
e (BT + e (@[T )
E;—E;j+i0" 77" B — B —
1 1 .
DD e 3oy e L A LIL LY
k J
1

1 1 1
T} Th
+Ej—Ei—zoz(E — Ej, +10 Ej—Ek—zO) ki ki

1 ; *
<PE,L — Ej — ZW(S(EZ' — EJ)> (sz - le)

1 1 1
—_— P - P —im(6(E; — Ey) +0(E; — E T7. T
+Ej—Ei—i02k:( Ei—Ey ~ E;j—E in (3(Bi = B) + 8(E ’“))) ki e

1 ) *
<PE,L — Ej — Z’/T(S(Ei — EJ)> (sz - TU)
1 1

_ (PEiiEj — ind(E; —Ej)> Z <PE -P — i (3(B; — Ey) + 0(E, —Ek))>T,’:kai
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This equation in fact is equivalent to STS =1. 7

The optical theorem written below takes the same value as the equation above.
7

Im £(0) :j—; / 4| £ (61

Thus,

. 1 1 ) x
(Ty; —T7;) = z,; (PEi o PEj o ZW(a(Ei ~ k) + 0B, Ek)))Tijki

Let us have ¢ = j, and we obtain
26ImTj; =y  —2im6(E; — By )| Thil?
k
76
(1+THA+T) =1
—(T+T" =TT

2mid(E; — E;) (T — T1) = — (2mi)* > 0(E; — Ey)o(Ey — E;) T3, Th;
k

27T25(EZ — E])(T” — T;kl) :4’/T25(E2 — E]) Z (5(El — Ek)TlekJ
k

wherei = j,weobtain —ImT;; =n Z S(E; — Ep)|Tu)?
k

T
Z&a—mb/%%&i@hﬁnfmk

k
2m 5 1
2m (27)3

F0i) == 55— T4
2m 1 K2 Ax
I e _ 2 2
mf(O) ™ 72 dkk 21%(()‘(/{Z kk)kk2m (27T)3 /ko|f(9k)|

ki
— [ a0





