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PartI

Scattering Theory

1 Scattering Theory in One Dimention

In this section, we present the basics of scattering theory as we demonstrate

some examples of scattering in one-dimensional systems shown in the figure below,

describing a left-moving incident particle on a potential barrier.

i~
∂

∂t
Ψ(x, t) = HΨ(x, t)

H = − ~2

2m

d2

dx2
+ V (x)

V (x) =

{
V0 x ∈ [−a, a]

0 otherwise

A B C
V 0

-a a

We assume that the time dependent variable in the wavefunction is separable

(stationary state).

Ψ(x, t) = e−iωtΨ(x)

HΨ(x) = EΨ(x), E = ~ω

1.1 Transfer Matrix Method

1.1.1 Transfer Matrix for Scattering State and Bound State

Let us divide the system shown in the figure above into three regions: A:

(−∞,−a), B: [−a, a], C: (a,∞). For the solutions int the regions (r =A, B,
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C), we can write with the wave number kr for which the potential is constant.

Ψr(x) = ξ+eikrx + ξ−e−ikrx,
~2k2

r

2m
= E − Vr

We define the former wavefunction as Ψ1 and the latter as Ψ2, and the junction

conditions for the wavefunction when x = ξ can be Ψ1(ξ) = Ψ2(ξ) and Ψ′
1(ξ) =

Ψ′
2(ξ), which we can further write down as:

ξ+
1 eik1ξ + ξ−1 e−ik1ξ = ξ+

2 eik2ξ + ξ−2 e−ik2ξ

k1(ξ
+
1 eik1ξ − ξ−1 e−ik1ξ) = k2(ξ

+
2 eik2ξ − ξ−2 e−ik2ξ)

In matrix representation, we can write

M ξ(k1)

(
ξ+
1

ξ−1

)
= M ξ(k2)

(
ξ+
2

ξ−2

)

M ξ(k) =

(
eikξ e−ikξ

keikξ ke−ikξ

)
, M−1

ξ (k) =

(
1
2
e−ikξ 1

2k
e−ikξ

1
2
eikξ − 1

2k
eikξ

)
Thus, we rewrite the equations to give(

ξ+
1

ξ−1

)
= T ξ(k1, k2)

(
ξ+
2

ξ−2

)
T ξ(k1, k2) = M−1

ξ (k1)M ξ(k2)

We repeatedly use the above equation particularly in our present case to yield(
ξ+
A

ξ−A

)
= T

(
ξ+
C

ξ−C

)
, T = T−a(kout, kin)T a(kin, kout)

Thus,
~2k2

out

2m
= E,

~2k2
in

2m
+ V0 = E

We can solve the scattering problems for more complicated scatterer in the same

way we showed above. Let us now consider two different boundary conditions.

• Boundary condition I: Ψ(x) ∼ eikx, x → ∞ Recall that an asymptotic

form of the time-dependent wavefunction where x → +∞ is ei(kx−ωt) , so the

waves (i.e., only the scattering waves) traveling toward the positive direction

on x axis are what required in the limit x → +∞. Such states are called

the scattering states, and require the conditions ξ−C = 0, (ξ+
C = 1) . The

scattering states always exist whenever energy E is positive ( E ¿ 0 ). For

the reflection coefficient R and the transmission coefficient T ,(
ξ+
A

ξ−A

)
= T

(
1

0

)
=

(
T11

T21

)
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giving ξ+
A , andξ−A thus, we obtain

R =
ξ−A
ξ+
A

=
T21

T11

T =
1

ξ+
A

=
1

T11

.

(Note that the reflection rate is |R|2 and the transmission rate is |T |2.)
Furthermore, there is a relation between the transmission coefficient and the

reflection coefficient, which can be written

|T |2 + |R|2 = 1

We may generally explain the above relation by studying the Wronskians

of the differential equation. Suppose we have the potential V that is real

and whose solution is Ψ(x) then, its complex conjugate Ψ∗(x) can also be

the solution. The Schroedinger equation does not contain the first-order

derivatives; thereby Wronskians W (x) = W (Ψ(x), Ψ∗(x)) is independent of

x.

1 Asymptotically we can write

ψ(x) = eikx + Re−ikx x ≈T eikx x ≈ ∞

from which we evaluate the Wronskians to give W () = W (∞), revealing

indeed that we have |T |2 + |R|2 = 1 . As another way to express the above,

1Consider the solutions for the differential equation of f(x)

f ′′ + p(x)f ′ + q(x)f = 0

from which we write the Wronskians for the two solutions f1 and f2,

W (x) = W (f1, f2) = det
(

f1 f2

f ′
1 f ′

2

)
Thus,

W ′ = det
(

f1 f2

f ′′
1 f ′′

2

)
= det

(
f1 f2

−pf ′
1 − qf1 −pf ′

2 − qf2

)
= −pW

which leads to
W (x) = W (y)e−

R x
y

dtp(t)
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we define the current Jx in x direction to have

Jx =
~

2mi
W (ψ∗, ψ)

=
~

2mi

(
ψ∗dψ

dx
− dψ∗

dx
ψ

)
and write out the conservation law of Jx to be

dJx

dx
= 0.

.

2

• Boundary condition II: To satisfy the condition
∫ ∞
−∞ |Ψ(x)|dx < +∞ , we

will need the pure imaginary wave number; i.e., the energy E is negative.

(E < 0) Which we may write

kout = iκ, κ =

√
2m|E|
~

Furthermore, to avoid the exponential divergence of the wavefunction when

we define kout, we will need both ξ+
A = 0 and ξ−C = 0. So, we write

(
0

1

)
= T

(
ξ+
C

0

)
whose first equation

T11 = 0

gives restriction to the wave number k. This is called the bound state in

contrast with the scattering state. In our earlier discussion of the scattering

2Where x ≈,

W (−∞) = det
(

eikx + Re−ikx e−ikx + R∗eikx

ikeikx − ikRe−ikx −ike−ikx + ikR∗eikx

)
= det

(
eikx + Re−ikx e−ikx + R∗eikx

2ikeikx 2ikR∗eikx

)
= det

(
eikx + Re−ikx (1 − |R|2)e−ikx

2ikeikx 0

)
= 2ik(|R|2 − 1)

, while at x ≈ ∞ we have

W (∞) = det
(

T eikx T ∗e−ikx

ikT eikx −ikT ∗e−ikx

)
= det

(
T eikx T ∗e−ikx

0 −2ikT ∗e−ikx

)
= −2ik|T |2
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states, we defined the transmission coefficient T and the reflection coefficient

R, from which we understand that the energy and the wave number in the

bound states are defined as the

polars in the upper-half of the complex plane k of

the transmission and the reflection coefficient.

The Transfer-matrix Approach to the Scattering Problem in One-dimensional

Square-well Potential

Here we discuss specific calculations for the scattering problem in a simple

square-well potential. To begin with, we write the transfer matrix for a single

boundary 3

T ξ(k1, k2) =
1

2k1

(
(k1 + k2)e

−i(k1−k2)ξ (k1 − k2)e
−i(k1+k2)ξ

(k1 − k2)e
i(k1+k2)ξ (k1 + k2)e

i(k1−k2)ξ

)

T = T−a(ko, ki)T a(ki, ko)

=
1

4kiko

(
(ko + ki)e

i(ko−ki)a (ko − ki)e
i(ko+ki)a

(ko − ki)e
−i(ko+ki)a (ko + ki)e

−i(ko−ki)a

)

×

(
(ki + ko)e

−i(ki−ko)a (ki − ko)e
−i(ki+ko)a

(ki − ko)e
i(ki+ko)a (ki + ko)e

i(ki−ko)a

)

T11 =
ei2koa

4kiko

[
(ki + ko)

2e−2ikia − (ki − ko)
2e2ikia

]
T21 = − 1

4kiko

(k2
i − k2

o)(e
−2ikia − e2ikia)

T12 =
1

4kiko

(k2
i − k2

o)(e
−2ikia − e2ikia)

T22 =
e−i2koa

4kiko

[
(ki + ko)

2e2ikia − (ki − ko)
2e−2ikia

]
Therefore, int the following case:
3

T ξ(k1, k2) = M−1
ξ (k1)M ξ(k2)

=
1
2

(
e−ik1ξ 1

k1
e−ik1ξ

eik1ξ − 1
k1

eik1ξ

)(
eik2ξ e−ik2ξ

k2e
ik2ξ −k2e

−ik2ξ

)
=

1
2k1

(
k1e

−ik1ξ e−ik1ξ

k1e
ik1ξ −eik1ξ

)(
eik2ξ e−ik2ξ

k2e
ik2ξ −k2e

−ik2ξ

)
=

1
2k1

(
(k1 + k2)e−i(k1−k2)ξ (k1 − k2)e−i(k1+k2)ξ

(k1 − k2)ei(k1+k2)ξ (k1 + k2)ei(k1−k2)ξ

)
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• Complete transmission

T21 = 0

that is where we have

sin 2kia = sin
2a

√
2m(E − V0)

~
= 0

there will be no reflection R = 0 so, we will have a complete transmission

|T | = 1.

• Bound state

WhereE ≤ 0 , that is ko = iκ (where κ is real, ( ~2k2
o

2m
= E ) We look for the

solutions for

T11 = 0

, which we find the bound states when(
ki + iκ

ki − iκ

)2

= ei4kia

• Tunneling

The classical particles cannot pass through a barrier where

E < V0

, but if we calculate the transmission rate having considered

ki = iκi

κi =

√
2m(V0 − E)

~

generally we can obtain |T | > 0 , meaning that the quantum effect allowed

the particles to be passed through the barrier. This is called the tunneling

effect. In the case where we have energy of the incident particles that is

much smaller in contrast to the potential (|ko| << |ki| = κ ) , we can write

4

|T |2 ≈ 16k2
o

κ2

(
1

1 − e−4κa

)2

e−4κa

4

|T11| =
κ

4ko

[(
1 +

ko

iκ

)2

e2κa −
(

1 − ko

iκ

)2

e−2κa

]
=

κ

4ko
(e2κa − e−2κa)

|T |2 =
1

|T11|2
=

16k2
o

κ2

1
(1 − e−4κa)2

e−4κa
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thus, lowers the transmission rate of the thickness of the potential barrier by

remarkably high speed.

• Delta-function potential

Where

V (x) = gδ(x)

, 5 we consider the limit of

V02a → g, (|V0| → ∞, a → 0)

6 (Note that 2m
~2 g ≡ g̃)we obtain

T11 = 1 + i
g̃

2ko

, T21 = −i
g̃

2ko

,

T22 = 1 − i
g̃

2ko

, T12 = i
g̃

2ko

Thus, giving

|T |2 =
1

1 +
(

g̃
2ko

)2 , |R|2 =

(
g̃

2ko

)2

1 +
(

g̃
2ko

)2

1.1.2 The Transfer Matrix and the Scattering Matrix

i

i'

o

r

5

V02a → g, (|V0| → ∞, a → 0)

−k2
i 2a → 2m

~2
g ≡ g̃ (−~k2

i

2m
→ V0)

|ki| → ∞, a → 0, (|ki|a → 0)

6

T11 =
1

4kiko

(
(ki + ko)2 − (ki − ko)2ei4kia

)
≈ 1

4kiko

(
4kiko − (ki − 0)2i4kia

)
= 1 − i

k2
i a

ko
= 1 + i

g̃

2ko

T21 = − 1
4kiko

(k2
i − 0)(−i4kia)

= i
k2

i a

ko
= −i

g̃

2ko
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Let us suppose the wavefunction with the incidence and reflection from free-space

to an arbitrary region shows in the figure above. When we have the wavefunction

of the left side ψie
ikx +ψre

−ikx and the light side ψoe
ikx +ψi′e

−ikx, the consetvation

of probability yields an equation. 7

|ψi|2 − |ψr|2 =|ψo|2 − |ψi′|2

Now we define the one-dimensional scattering matrix S(
ψr

ψo

)
=S

(
ψi

ψi′

)
At which S becomes the unitary matrix

8

SS† =S†S = I

We further define the transfer matrix T to obtain(
ψo

ψi′

)
=T

(
ψi

ψr

)
T †JT =J

J =

(
1 0

0 −1

)
9

To provide more details, we define the scattering matrix S (including the mul-

tichannel cases)

S =

(
r t′

t r′

)
7Calculation of the Wronskians.
8The conservation law

|ψr|2 + |ψo|2 =(ψ∗
r , ψ∗

o)
(

ψr

ψo

)
= (ψ∗

i , ψ∗
i′)S

†S

(
ψi

ψi′

)
= (ψ∗

i , ψ∗
i′)

(
ψi

ψi′

)
is valid for arbitrary ψi, ψi′ thus, S†S = I.

9The conservation law is written

|ψo|2 − |ψi′ |2 =(ψ∗
o , ψ∗

i′)J
(

ψo

ψi′

)
= (ψ∗

i , ψ∗
r )T †JT

(
ψi

ψr

)
= (ψ∗

i , ψ∗
r )J

(
ψi

ψr

)
,giving

T †JT =J
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so that we can write

T =

(
t†

−1
r′t′−1

−t′−1r t′−1

)
10 Here we can write

T−1 =JT †J

(TT †)−1 =(T−1)†T−1 = JTT †J

GIven that each pair becomes idential with the non-negative eigenvalues of TT †

and (TT †)−1, all eigenvalues can be written

e±2xn , xn ≥ 0

10The unitarity can bu expressed in the relation equaitons

S†S =
(

r† t†

t′
†

r′
†

)(
r t′

t r′

)
=

(
r†r + t†t r†t′ + t†r′

t′
†
r + r′

†
t t′

†
t′ + r′

†
r′

)
=

(
1 0
0 1

)
(*1)

SS† =
(

r t′

t r′

) (
r† t†

t′
†

r′
†

)
=

(
rr† + t′t′

†
rt† + t′r′

†

tr† + r′t′
†

tt† + r′r′
†

)
=

(
1 0
0 1

)
(*2)

with the definition of the S matrix we obtain

ψr =rψi + t′ψi′

ψo =tψi + r′ψi′

It is clear that if the boundary condition ψi′ = 0 is required, t will represent the transmission
rate, andr, the reflection rate. To obtain the transfer matrix through solving ψo, ψi′, we rewrite
the first equation

ψi′ = − t′
−1

rψi + t′
−1

ψr

and the second equation,

ψo =tψi − r′t′
−1

rψi + r′t′
−1

ψr = (t − r′t′
−1

r)ψi + r′t′
−1

ψr

The unitarity may give

1 =tt† + r′r′
† = tt† + r′(t′−1

t′)r′† = tt† + r′t′
−1(−rt†)

=(t − r′t′
−1

r)t†

which leads to obtain

ψo = = t†
−1

ψi + r′t′
−1

ψr

(
ψo

ψi′

)
=

(
t†

−1
r′t′

−1

−t′
−1

r t′
−1

) (
ψi

ψr

)

T =

(
t†

−1
r′t′

−1

−t′
−1

r t′
−1

)
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The further calculations may yield 11

(
TT † + (TT †)−1 + 2I

)−1

=
1

4

(
tt†

t′†t′

)

Thus, we know that 1
cosh xn

may give the absolute eigenvalues for t†t′ andt′†t′. 12

11

TT † =

(
t†

−1
r′t′

−1

−t′
−1

r t′
−1

) (
t−1 −r†t′

†−1

t′
†−1

r′
†

t′
†−1

)

=

(
t†

−1
t−1 + r′t′

−1
t′
†−1

r′
† −t†

−1
r†t′

†−1
+ r′t′

−1
t′
†−1

−t′
−1

rt−1 + t′
−1

t′
†−1

r′
†

t′
−1

rr†t′
†−1

+ t′
−1

t′
†−1

)
T−1 =JT †J

(TT †)−1 =(T−1)†T−1 = JTT †J

TT † + (TT †)−1 =2

(
t†

−1
t−1 + r′t′

−1
t′
†−1

r′
†

t′
−1

rr†t′
†−1

+ t′
−1

t′
†−1

)

=2

(
(tt†)−1 + r′(t′†t′)−1r′

†

t′
−1

rr†t′
†−1

+ (t′†t′)−1

)

=2

(
(tt†)−1 + r′(1 − r′

†
r′)−1r′

†

t′
−1

rr†t′
†−1

+ (t′†t′)−1

)

=2

(
((tt†)−1 + (r′†

−1
r′

−1 − 1)−1

t′
−1

rr†t′
†−1

+ (t′†t′)−1

)

TT † + (TT †)−1 + 2I =2

(
(tt†)−1 + r′

†−1
r′

−1(r′†
−1

r′
−1 − 1)−1

t′
−1(t′t′† + rr†)t′†

−1
+ (t′†t′)−1

)

=2

(
(tt†)−1 + (1 − r′r′

†)−1

2(t′†t′)−1

)
= 4

(
(tt†)−1

(t′†t′)−1

)
given that (

TT † + (TT †)−1 + 2I

)−1

=
1
4

(
tt†

t′
†
t′

)
12

(2 + e2xn + e−2xn)−1 =((exn + e−xn)−1)2 =
1

4 cosh xn
≡ 1

4

(
tt†

t′
†
t′

)
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1.2 The Green’s Function and Scattering Integral Equa-

tions

Consider the Schrodinger equation in the form

(E − H0(x))Ψ(x) = V (x)Ψ(x)

H0(x) = − ~2

2m

d2

dx2

Suppose we obtained the Green function G0(ξbylettingδ(x) to be the Dirac delta

function

(E − H0(ξ))G0(ξ) = δ(ξ)

With homogeneous solution ϕ(x)

(E − H0(x))Φ(x) = 0

we write the equation

Ψ(x) = Φ(x) +

∫ ∞

−∞
dyG0(x − y)V (y)Ψ(y) (LS)

13 Next, we recast the equations above in the form, which clearly show the energy

dependence instead of the x space coordinate dependence

(E − H0)Ψ = V Ψ,

(E − H0)G0(z) = 1

G0(E) =
1

E − H0

(E − H0)Φ = 0

Ψ = Φ +
1

E − H0

V Ψ

= Φ + G0V Ψ (LS)

13We may simply check by making substitution into the Schrodinger equation
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The last line of equation is called the Lippmann-Schwinger equation. 14 15 16

14We consider that the inverse number of the operator (z − H0) uses the eigenstate |ϵ⟩ of the
energy ϵ for H0 to be defined as

G0(z) =
∑

ϵ

1
z − ϵ

|ϵ⟩⟨ϵ|

Generally, in contrast to the real energy of z = E, G0(z) cannot be defined for its unique
property it has. We will instead have to use the limit z → E ± iδ at the end by calculating for
the complex energy z. Throughout the proceeding sections, we need to note this as an important
fact. The further details of the calculations can be found in the following.

15The relation between the formal solution and the coordinate representation can be considered
as

(z − H0)G0 =1
⟨x|(z − H0)G0|x′⟩ =⟨x|x′⟩∫

dx′′
∫

dpdp′ ⟨x|p⟩⟨p|(z − H0)|p′⟩⟨p′|x′′⟩⟨x′′|G0|x′⟩ =⟨x|x′⟩

On the one hand, ⟨x|x′⟩ = δ(x − x′) is the eigenfunction for the eigenvalue x′ of the operatorx̂
such that we may treat it as x̂|x⟩ = x|x⟩.

x̂⟨x|x′⟩ =
∫

dx′′ x⟨x|x′′⟩⟨x′′|x′⟩ =
∫

dx′′ xδ(x − x′′)δ(x′′ − x′) = x′δ(x − x′) = x′⟨x|x′⟩

For ⟨x|p⟩ = 1√
2π~eipx/~ on the other hand, we may treat it as p̂|p⟩ = p|p⟩ because p̂ = −i~∂x

is the eigenfunction of the eigenvalue p for the operator p̂ = −i~∂x. Th completeness and the
orthonormality are given

∫
dx′′ ⟨x|x′′⟩⟨x′|x′′⟩∗ =

∫
dx′′ δ(x − x′′)δ(x′ − x′′) = δ(x′ − x′) completeness∫

dx ⟨x|x′⟩∗⟨x|x′′⟩ =
∫

dx δ(x − x′)δ(x − x′′) = δ(x′ − x′′) orthonormality∫
dp ⟨x|p⟩⟨x′|p⟩∗ =

1
2π~

∫
dp eip(x−x′)/h =

1
~
δ((x − x′)/h) = δ(x − x′) completeness∫

dx ⟨x|p⟩∗⟨x|p′⟩ =
1

2π~

∫
dx e−i(p−p′)x)/~ = δ(p − p′) orthonormality

Thus, we have ⟨x|G0|x′⟩ = G0(x, x′) to write

⟨p|(z − H0)|p′⟩ =⟨p|(z − p̂2

2m
)|p′⟩ = δ(p − p′)⟩(z − p2

2m
)∫

dx′′
∫

dpdp′ ⟨x|p⟩⟨p|(z − H0)|p′⟩⟨p′|x′′G0(x′′, x′) =
1

2π~

∫
dx′′

∫
dp eip(x−x′′

(z − p2

2m
)G0(x′′, x′)

=
(

z +
1

2m

d2

dx2

) ∫
dx′′ δ(x − x′′)G0(x′′, x′) =

(
z +

1
2m

d2

dx2

)
G0(x, x′)

Given by the translational symmetry, we have G0(x, x′) = G0(x − x′)



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugai18

We can further write the variation of the Lippmann-Schwinger equation in the

16Let us summarize different types of normalization for the plane waves.

• L volume V = L3 =boundary condition
Let us define kn = 2π

L (nx, ny, nz), ni = 0,±1,±2, · · · to write

⟨r|n⟩ =ψn(r) =
1√
V

eikn·r

⟨n|n′⟩ =
∫

V

dr ψ∗
n(r)ψn′(r) = δnn′ : normalization∑

n

⟨r|n⟩⟨n|r′⟩ =
∑

n

ψn(r)ψ∗
n(r′) =

1
V

∑
n

e−i(kn−kn′ )·r

=
1

(2π)3
(2π

L

)3 ∑
n

e−i(kn−kn′ )·r =
1

(2π)3

∫
dk e−i(kn−kn′ )·r

=δ(r − r′) = ⟨r|r′⟩∑
n

|n⟩⟨n| =1 : completeness

• Take the continuum limit for the wave-number represetation

⟨r|k⟩ =ψk(r) =
1√

(2π)3
eik·r

means |k⟩ =

√
V

(2π)3
|n⟩

⟨k|k′⟩ =
1

(2π)3

∫
dr ψ∗

k(r)ψk′(r) = δ(k − k′) : normalization∫
dk ⟨r|k⟩⟨k|r′⟩ =

∫
dk ψk(r)ψ∗

k(r′) =
1

(2π)3
∑

n

e−ik·(r−r′)

=δ(r − r′) = ⟨r|r′⟩∫
dk |k⟩⟨k| =1 : completeness

• For the momentum representation

⟨r|p⟩ =ψp(r) =
1√

(2π~)3
eip·r/~

Thatis, |p⟩ =
1√
~3

|k⟩ =

√
V

(2π~)3
|n⟩

⟨p|p′⟩ =
1

(2π~)3

∫
dr ψ∗

p(r)ψp′(r) = δ(p − p′) : normaliation∫
dp ⟨r|p⟩⟨p|r′⟩ =

∫
dp ψp(r)ψ∗

p(r′) =
1

(2π~)3
∑

n

e−ip·(r−r′)/~

=δ(r − r′) = ⟨r|r′⟩∫
dp |p⟩⟨p| =1 : completeness



— Quantum Mechanics 3 : Scattering Theory — 2005 Witer Session, Hatsugai19

form

Ψ = (1 − G0V )Φ = (1 + GV )Φ

G =
1

E − H

= G0 + G0V G = G0 + G0(V G0) + G0(V G0)
2 + · · ·

17 Let us now consider more specified one-dimensional Green’s function G0 via

17Here we used the relation

A(B − A)B = (AB − 1)B = A − B

= −B(A − B)A = B(B − A)A

The substitution of A = E − H0,and B = E − H0 − V into the equation above gives

−G0V G = G0 − G = −GV G0

hence, we have (1 − G0V )G = G0. That is

(1 − G0V ) = GG0 = (G0 + GV G0)G0 = 1 + GV

We also obtain a useful reration

G = G0 + G0V G = G0 + G0(V G0) + G0(V G0)2 + · · ·
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Fourier analysis 18 19 20

18Clariy the space coordinate to express

G0(x) =
1√
2π

∫ ∞

−∞
dkeikxĜ0(k)

so, we can write δ(x) = 1
2π

∫
dkeikx to give

E =
~2K2

2m

which leads to (E − H0)G0(x) = δ(x) thus Ĝ0(k) = 1√
2π

(
2m
~2

)
1

K2−k2

G0(x) =
1
2π

(
2m

~2

)∫
∞dk 1

K2−k2 eikx

In the following, we consider E of the positive and ngative energies.
19Where E ≥ 0, the integral remains indefinite for the unique characteristic observed along

the real axis. We now consider expanding the energy E into the complex energy E → E ± i0.
This in fact corresponds to having K → K ± i0 thus gives

G±
0 (x) =

1
2π

(
2m

~2

) ∫
∞dk 1

2K

(
1

k+K±i0−
1

k−K∓i0

)
eikx

=
(

2m

~2

)
i

1
2K

×∓e±iKx (x > 0)∓e∓iKx (x < 0)

=
(

2m

~2

)
∓i

2K
e±iK|x|

The evaluation of the integral is done via the complex integration along the paaths C0 + C+ or
C0 + C− shows in the figure below. Further, we proceed by use of the Jordan’s lemma.

C+

C0-R R

C−

C0

-R R

When |f(z)| is uniformly 0 on the upper-half/lower-half plane at |z| → ∞, we can write∫
C±

dzf(z)e±iaz → 0, (R → ∞, a > 0)

20Where E < 0, we write

K = iκ = i

√
2m|E|
~

, κ > 0

which we can use directly to evaluate the integral. Applying a clear case such as K → K+i0 (E →
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G0(E) =



(
2m

~2

)
∓i

2K
e±iK|x|, K → K ± i0 =

√
2mE
~ ± i0, E → E ± i0, E > 0

(
2m

~2

)
−1

2κ
e−κ|x|, κ =

√
2m|E|

~ , E < 0

21 Where the energy E > 0, the Green’s function and its homogeneous solution

take the traveling waves Φ(x) = 1√
2π

eikx of +x direction. the substitution into the

Lippmann-Schwinger equation may give

Ψ±(x) =
1√
2π

eikx +

(
2m

~2

)
(∓i)

2k

∫ ∞

−∞
dyV (y)e±ik|x−y|Ψ±(y)

form which the solutions that satisfy the boundary condition I we discussed in the

prior section can be clarilfied to be Ψ+(x). For this Ψ+(x) where x << −a, we

can write

Ψ+(x) ≈ 1√
2π

(
eikx + e−ikxf(k, )

)
f(k, ) =

(
2m

~2

)
−i

√
2π

2k

∫ ∞

−∞
dyV (y)eikyΨ+(y)

While in a << x, we can write

Ψ+(x) ≈ 1√
2π

(
eikx(1 + f(k,∞)

)
f(k,∞) =

(
2m

~2

)
−i

√
2π

2k

∫ ∞

−∞
dyV (y)e−ikyΨ+(y)

which giving the reflection coefficient (R) and the transmission coefficient (T )

to be

R = f(k, ), T = 1 + f(k,∞)

. To obtain more specific form of the equation, we need a specific form of Ψ+. The

approximation of taking Ψ+(x) ≈ Φ(x) in the right term of the equation is called

the Born approximation.

E + i0) may give

G+
0 (x) =

(
2m

~2

)
−i

2K
eiK|x|

=
(

2m

~2

)
−1
2κ

e−κ|x|

21Note that this solution remains indefinite as we have the linear combination of the homo-
geneous solution e±ikx. This indefinition rests on how to take the formal solution as we are
discussing in the next section.
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The Scattering Problems in One-dimentional Delta-function Potential

via Integral Equation

Here we discuss how to solve the scattering problem in the delta-function po-

tential V (x) = gδ(x) in detail. The scattering integral equation is written

Ψ(x) =
1√
2π

eikx +

(
2m

~2

)
(−i)

2k

∫ ∞

−∞
dyV (y)eik|x−y|Ψ(y)

Ψ(x) =
1√
2π

eikx − ig̃
1

2k
e−ikxΨ(0), x < 0

1√
2π

eikx − ig̃
1

2k
eikxΨ(0), x > 0

Let us have x = 0 to give

Ψ(0) =
1√
2π

1

1 + ig̃ 1
2k

thus

T = 1 − i

2k
g̃

1

1 + ig̃
1

2k

=
1

1 +
ig̃

2k

, R = −

ig̃

2k

1 +
ig̃

2k

1.3 Levinson’s Theorem in One Dimension

Now we discuss the Levinson’s theorem, which relates to connecting the number

of bound sates to the scattering states. We consider the solutions and the new

boundary conditions for the Schroedinger equation

− ~2

2m

d2f±∞

dx2
+ V (x)f±∞ = Ef±∞ =

~2k2

2m
f±∞

• f∞(k, x) → eikx, x → ∞

• f−∞(k, x) → e−ikx, x → −∞

The integral equations for the solutions above can be obtained via taking the

Green’s function

G∞ = G1 = −2m

~2
θ(x′ − x)

sin k(x − x′)

k

G−∞ = G2 =
2m

~2
θ(x − x′)

sin k(x − x′)

k
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22 23

22Let us consider another way to obtain the Green ’s function. Generally, we consider the
Green ’s function in the second-order differential equation for y = y(x)

G′′(x, x′) + p(x)G′(x, x′) + q(x)G(x, x′) = δ(x − x′), ’ is the x differentials

Suppose we already obtained the independent homogeneous solutions y+(x), and y−(x) so we
write

y′′
i + p(x)y′

i + q(x)yi = 0, i = +,−

Based on the variation of parameter we have

G = C+y+ + C−y−

whichleads to
G′ = (C ′

+y+ + C ′
−y−) + (C+y′

+ + C−y′
−)

Now requires
(C ′

+y+ + C ′
−y−) = 0

which yields
G′′ = (C+y′

+ + C−y′
−)′ = (C ′

+y′
+ + C ′

−y′
−) + (C+y′′

+ + C−y′′
−)

so we can write

G′′ + pG′ + qG = C+(y′′
+ + py′

+ + qy+) + C−(y′′
− + py′

− + qy−)
+C ′

+y′
+ + C ′

−y′
− = C ′

+y′
+ + C ′

−y′
− = δ(x − x′)

which giving(
y+ y−
y′
+ y′

−

)(
C ′

+

C ′
−

)
=

(
0

δ(x − x′)

)
(

C ′
+

C ′
−

)
=

1
W

(
y′
− −y−

−y′
+ y+

)(
0

δ(x − x′)

)
=

1
W

(
−y−δ(x − x′)
y+δ(x − x′)

)
hence,

G(x, x′) =
∫ x

b−

dt
−y+(x)y−(t)

W (t)
δ(t − x′) +

∫ x

b+

dt
y−(x)y+(t)

W (t)
δ(t − x′)

Note that b+, and b− may impose differnt boundary conditions for the integral constants.
23We consider some examples for such cases.

Whereb− = b+ = x′ − 0

G2(x, x′) = θ(x − x′)
−y+(x)y−(x′) + y−(x)y+(x′)

W (x′)

Where b− = b+ = x′ + 0

G1(x, x′) = θ(x′ − x)
y+(x)y−(x′) − y−(x)y+(x′)

W (x′)
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For these Green ’s function written above, we add each formal solution to de-

termine the integral equations

f∞(k, x) = e+ikx − 2m

~2

1

k

∫ ∞

x

dx′ sin k(x − x′)V (x′)f∞(k, x′)

f−∞(k, x) = e−ikx +
2m

~2

1

k

∫ x

−∞
dx′ sin k(x − x′)V (x′)f−∞(k, x′)

It is clear that each solution satisfies the boundary conditions.

We now regard the functions f±∞(k, x) as functions of the complex number k

to investigate the analyticity. First, given the integral equations we should have

the complex number k where

Im k > 0

which clearly indicates that there are the convergence conditions of the integrals

for each term by successive approximation of f±∞(k, x). In fact, the series itself is

said to converge while f±∞(k, x) beocmes the regular function of k on the complex

plane k and on the upper-half plane.

We make evaluations for the Wronslians in f∞(k, x) , f∞(−k, x) , f−∞(k, x) and

f−∞(−k, x) where x → ∞,

W (f∞(k, x), f∞(−k, x)) = −2ik

W (f−∞(k, x), f−∞(−k, x)) = 2ik

Whereb− = ∞, b+ = −∞

G(x, x′) =
∫ ∞

x

dt
y+(x)y−(t)

W (t)
δ(t − x′) +

∫ x

−∞
dt

by−(x)y+(t)
W (t)

δ(t − x′)

=
y+(ξ<)y−(ξ>)

W (x′)
ξ> = max(x, x′), ξ< = min(x, x′)

specially

(E − H0)G0 =
~2

2m

(
k2 +

d2

dx2

)
G′′

0 = δ(x − x′)

E =
~2k2

2m

as y±(x) = ei±x W (y+, y−) = det
(

eikx e−ikx

ikeikx −ike−ikx

)
= −2ik

••••
~2

2m
G2(x, x′) = θ(x − x′)

sin k(x − x′)
k

•
~2

2m
G1(x, x′) = −θ(x′ − x)

sin k(x − x′)
k
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Thus, the solutions are independent where k ̸= 0. This allows us to expand the

equations 24

f−∞(k, x) = c11(k)f∞(k, x) + c12(k)f∞(−k, x)

f∞(k, x) = c21(k)f−∞(−k, x) + c22(k)f−∞(k, x)

We now consider x → ±∞ for tha latter equation above to write in the form

c21e
ikx + c22e

−ikx (x → −∞), eikx (x → ∞)

These are the solutions that satisfy the boundary conditions for the scattering thus,

the relation between the transmission coefficient and the reflection coefficient are

expressed as

R =
c22

c21

T =
1

c21

=
1

T11

: Referthetransfermatrix

Here we consider the Wronskians for each form of f∓∞(k, x) and f±∞(±k, x) to

derive

c11(k) = − 1

2ik
W (f−∞(k, x), f∞(−k, x))

c12(k) =
1

2ik
W (f−∞(k, x), f∞(k, x))

c21(k) = − 1

2ik
W (f∞(k, x), f−∞(k, x))

c22(k) =
1

2ik
W (f∞(k, x), f−∞(−k, x))

24b The successive substitution may give

f−∞(k) = c11(k)
(
c21(k)f−∞(−k) + c22(k)f−∞(k)

)
+ c12(k)

(
c21(−k)f−∞(k) + c22(−k)f−∞(−k)

)
=

(
c11(k)c22(k) + c12(k)c21(−k)

)
f−∞(k) +

(
c11(k)c21(k) + c12(k)c22(−k)

)
f−∞(−k)

Where k ̸= 0

c11(k)c22(k) + c12(k)c21(−k) = 1, c11(k)c21(k) + c12(k)c22(−k) = 0

Likewise

f∞(k) = c21(k)
(
c11(−k)f∞(−k) + c12(−k)f∞(k)

)
+ c22(k)

(
c11(k)f∞(k) + c12(k)f∞(−k)

)
=

(
c12(−k)c21(k) + c11(k)c22(k)

)
f∞(k) +

(
c11(−k)c21(k) + c12(k)c22(k)

)
f∞(−k)

thus,

c12(−k)c21(k) + c11(k)c22(k) = 1, c11(−k)c21(k) + c12(k)c22(k) = 0
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Especially the forms of c21(k), the equations are expressed in regular f±∞(k, x)

on the upper-half of the complex k plane, and the zero-point kB on the upper-half

of the plane gives the polar of T ; i.e., giving the bound states, because c21(k) is

also a regular function.

We may also show some other facts for c21(k).

• Where |k| → ∞ ,c21(k) = 1 + O( 1
k
)

In |k| → ∞, where the incident energu is large enough, the effects by the

potentials can be ignored, so that we understand from the transmission co-

efficient to take T → 1 or from the analyticity property.

• The zero-point c21(k) of kB exists on the imaginary axis, not on th real axis.
25

25It is clear from the discussion of the transfer matrix.
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• All the zero-points kB for c21(k) are in the first-order.Thus, ċ21(kB) ̸= 0. 26

We can integrate d
dk

log c21(k) along the integral path C where the path is ormed

by the real axis and the half circle on the upper-half plane. This integration may

completely detached ( ċ21
c21

= O( 1
k2 ), |k| → ∞ away from the half-circle. From the

26At the wave number kB , in which the bound states are allowed to exist, f±∞(kB , x) become
linearly dependent to each other.

c21(kB) = 0, c11(kB)c22(kB) = 1, c11(kB) ̸= 0, c22(kB) ̸= 0
f∞(kB , x) = c22(kB)f−∞(kB , x)

W (f∞(kB , x), f−∞(kB , x)) = 0

k differentiation is written by ˙,

ċ21(kB) = − 1
2ikB

(
W (ḟ∞(kB , x), f−∞(kB , x)) + W (f∞(kB , x), ḟ−∞(kB , x))

)
= − 1

2ikB

(
1

c22
W (ḟ∞(kB , x), f∞(kB , x)) + c22W (f−∞(kB , x), ḟ−∞(kB , x))

)
To evauate this we diffentiate the Schroedinger equation and equation above with respect to k.
Which gives,

f ′′ + k2f =
2m

~2
V f

ḟ ′′ + 2kf + k2ḟ =
2m

~2
V ḟ

With the potential terms being cancelled in the equation, we can rewrite

f ′′ḟ − ḟ ′′f − 2kf2 =
d

dx
W (ḟ , f) − 2kf2 = 0

This above equation is used for f∞ to give Im k > 0 limx→∞ f∞(k, x) = 0 thus

W (ḟ∞, f∞) = −2k

∫ ∞

x

dx′ [f∞(k, x′)]2

the same as Im k > 0 のとき limx→−∞ f−∞(k, x) = 0

W (ḟ−∞, f−∞) = 2k

∫ x

−∞
dx′ [f−∞(k, x′)]2

hence,

ċ21(kB) = − 1
2ikB

(
− 1

c22(kB)
2kB

∫ ∞

x

dx′ [f∞(kB , x′)]2 + c22(kB)(−2kB)
∫ x

−∞
dx′ [f−∞(kB , x′)]2

)
= −i

∫ ∞

−∞
dx′[f∞(kB , x′)f−∞(kB , x′)]

= −ic22(kB)
∫ ∞

−∞
dx′[f−∞(kB , x′)]2 = −i

1
c22(kB)

∫ ∞

−∞
dx′[f∞(kB , x′)]2

Thus, iċ21(kB)c22(kB) is not zero for f∞(kB , x).
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argument principle, the number of zero-point N for c21 on the upper-half plane

can be written

N =
1

2πi

∫
C

d

dk
log c21(k) =

1

2πi
log c21(k + i0)

∣∣∣∣∞
k=−∞

=
1

2π

(
Arg c21(−∞ + i0) − Arg c21(∞ + i0)

)
=

1

2π

(
Arg T11(−∞ + i0) − Arg T11(∞ + i0)

)
= − 1

2π

(
Arg T (−∞ + i0) − Arg T (∞ + i0)

)

Note that the changes in argument are measured on the straight line in which the

argument deviates infinitesimally on the real axis towards the upper-half plane.

k+ i δ

The N represents the number of bound states. It is defined by the transmission

coefficient T (more precisely, by what T is analytic continued to the complex k

plane), which provides the scattering information. This is called the Levinson’s

theorem.
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2 The Scattering Theory in Three Dimention

In this section, we discuss the scattering theory in three-dimension by following

the methods especially using the integral equation that are introduced in our earlier

discussions on one-dimensional scattering theory. More specifically, we consider a

spherically-symmetric scatterer at periphery of origin, in which the plane waves

incident in z-axis direction.

z

2.1 The Scattering Amplitude and the Differntial Cross

Sections

In such case shown in the figure bove, the boundary condition for the stationary

state be

Ψ(r⃗)
r⃗→∞−→ 1

(2π)3/2

(
eikz +

f(θ)

r
eikr

)
We can rewrite the above by using mv = ~k$, and V0 = (2π)3 27 28

27We can understand from
∫ π

−π
dx

∫ π

−π
dy

∫ π

−π
dz |Ψ|2 = 1 that Ψ(r⃗) = 1

(2π)3/2 eik⃗·r⃗ has a
particle for every volume v0 = (2π)3.

28Given

∇⃗f =
∂f

∂r
r̂ +

1
r

∂f

∂θ
θ̂ +

1
r sin θ

∂f

∂ϕ
ϕ̂

,

Ψ∗
s∇⃗Ψs =

1
(2π)3

f∗(θ)
r

e−ikr

(
− f(θ)

r2
eikr r̂ +

f(θ)
r

eikrikr̂ +
1
r

∂f(θ)
∂θ

1
r
eikr θ̂

)
=

1
(2π)3

|f |2

r2
ikr̂ + O(

1
r2

)
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Ψ0 =
1

(2π)3/2
eikz

j⃗0 =

(
~

2mi

)(
Ψ∗

0∇⃗Ψ0 − (∇⃗Ψ∗
0)Ψ0

)
=

1

(2π)3

~k

m
ẑ =

v

V0

ẑ

Ψs =
1

(2π)3/2

f(θ)

r
eikr

j⃗s =

(
~

2mi

)(
Ψ∗

s∇⃗Ψs − (∇⃗Ψ∗
s)Ψs

)
=

1

(2π)3

|f(θ)|2

r2

~k

m
r̂ + o(

1

r2
) ≈ v

V0

|f(θ)|2

r2
r̂

The boundary condition at infinite distance away is the superposition of the plane

waves and the spherical waves.

Let f(θ) be the scattering amplitude. We can write the differntial scattering

cross section σ(θ) given the ratio between the incidene flux per unit area Φ0 = j⃗z · ẑ
snf the scattering flux Φs = j⃗s · dS⃗ per surface element dS⃗ = r2dΩ⃗ (dΩ⃗ = dΩr̂)

Φs = σ(θ)dΩ · Φ0

This gives

σ(θ) = |f(θ)|2

Now that we call σT =
∫

dΩσ(θ) a total scattering cross section.

Now we can express the equation of continuity for the waveunction Ψ(r⃗, t), which

is the solution for the time-dependent Schroedinger equation,

∂ρ(r⃗, t)

∂t
+ ∇⃗ · j⃗(r⃗, t) = 0

ρ(r⃗, t) = |Ψ(r⃗, t)|2

j⃗(r⃗, t) =
~

2mi

(
Ψ∗(r⃗, t)∇⃗Ψ(r⃗, t) − h.c.

)
29 This gives the wavefunction for the stationary states, the main forcus of our

discussion

∇⃗ · j⃗(r⃗, t) = 0
29We use Schroedinger equation in the forms of time resolution ∂tN = ∂t

∫
V

dr⃗|Ψ(r⃗)|2 for the
number of particles N in an arbitrary volume V and write

∂tN =
∫

dr⃗

(
Ψ̇∗(r⃗)Ψ(r⃗) + Ψ∗(r⃗)Ψ̇(r⃗)

)
=

∫
V

dr⃗
1
i~

(
− HΨ∗(r⃗)Ψ(r⃗) + Ψ(r⃗)HΨ∗(r⃗)

)
= −

(
~

2mi

) ∫
V

dr⃗
(
− (∇2Ψ∗(r⃗))Ψ(r⃗) + Ψ∗(r⃗)∇2Ψ(r⃗)

)
= −

(
~

2mi

) ∫
∂V

dS⃗
(
− (∇⃗Ψ∗(r⃗))Ψ(r⃗) + Ψ∗(r⃗)∇⃗Ψ(r⃗)

)
= −

∫
∂V

dS⃗j⃗(r⃗)

j⃗(r⃗) =
(

~
2mi

)[
Ψ∗(r⃗)∇⃗Ψ(r⃗) − (∇⃗Ψ∗(r⃗))Ψ(r⃗)

]
which shows that j⃗ is the current operator so, given that the volume V is the arbitrary volume,
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Integrate the wquation above over a region bounded by a largy sphere SR having

a radius R with its center located origin. Applying the Gauss theorem to write 30

the equation of continuity
∂t|Ψ(r⃗)|2 + ∇⃗ · j⃗ = 0

is obeyed. We can also obtain the above equation directly without using the arbitral character-
istics of the volume.

30We consider a more unified expression for the behavior of spherical waves at infinite distant
away via analytic continuation given the wavefunction in bound states. So, we can write

Ψ(r⃗)−→ 1
(2π)3/2

(
eikz +

f(θ)
r

eik+r

)
k+ =k + i0 = k + iϵ

We further suppose Rϵ >> 1; i.e., we have the initial system of infinite large then, take the limit
of ϵ → 0 at the end. Thus,

Ψ =
1

(2π)3/2
(eikr cos θ +

f

r
eik+r)

V0Ψ∗∇Ψ
∣∣∣∣
r=R

=(e−ikr cos θ +
f∗

r
e−ik−r)(ikeikr cos θ + ik

f

r
eik+r)r̂

∣∣∣∣
r=R

+ O(1/R2)

=
(

ik cos θ + ik
f∗

R
cos θeiR(k cos θ−k−) + ik

f

R
e−iR(k cos θ−k+)

)
r̂

=
(

ik cos θ + ik
f∗

R
cos θeikR(cos θ−1)−ϵR + ik

f

R
e−ikR(cos θ−1)−ϵR

)
r̂

V0Ψ∗∇Ψ
∣∣∣∣
r=R

− h.c. =
(

2ik cos θ + ik
f∗

R
(1 + cos θ)eikR(cos θ−1)−ϵR + ik

f

R
(1 + cos θ)e−ikR(cos θ−1)−ϵR

)
r̂

In the following equations, the higher-prder terms are ignored (1/R2) ,and rewritten

0 =
∫

S

dS⃗ · j⃗∞

=
(

~
2mi

)∫
S

dS

(
Ψ∗ ∂Ψ

∂r
− h.c.

)
=

∫
S

dS⃗(ẑj⃗0 − ẑj⃗0) +
∫

dΩ
[
R2 · v

V0

|f(θ)|2

R2

]
+ O (

1
R

)

+
(

~
2mi

)∫
dΩ̂ R2 1

(2π)3

(
e−ikz(ik)

f(θ)
R

eikR r̂ +
f∗(θ)

R
e−ikR(ik)eikz ẑ − h.c.

)
=

v

V0

∫
dΩ|f(θ)|2

+
(

i~k

2mi

)∫
dΩ R2 1

(2π)3

(
eikR(1−cos θ) f(θ)

R
+

f∗(θ)
R

e−ikR(1−cos θ) cos θ

+ e−ikR(1−cos θ) f
∗(θ)
R

+
f(θ)
R

eikR(1−cos θ) cos θ

)
=

v

V0

∫
dΩ|f(θ)|2 +

~k

2m

1
(2π)3

R

∫
dΩ(1 + cos θ)(f(θ)eikR(1−cos θ) + f∗(θ)e−ikR(1−cos θ))

=
v

V0

∫
dΩ|f(θ)|2 +

~k

2m

1
(2π)3

R2 · 2π
1

kR
i(f(0) − f∗(0)) + const.e±ikR
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31 32

31∫
dΩ eikR(1−cos θ)f(θ) = 2πf(0)

∫ π

0

dθ sin θeikR(1−cos θ)f(θ) → 2πf(0)
∫ 1

−1

dt eikR(1−t), kR → ∞

= 2πf(0)
1

−ikR
eikR(1−t)

∣∣∣∣1
−1

= 2πf(0)
i

kR
(1 − e−2ikR)

= 2π
1

kR
if(0) + const.e−2ikR∫

dΩ e−ikR(1−cos θ)f∗(θ) = −2π
1

kR
if∗(0) + const.e2ikR

32Our discussion in general can be

0 =
∫

S

dS⃗ · j⃗∞

=
(

~
2mi

)∫
S

dS

(
Ψ∗ ∂Ψ

∂r
− h.c.

)
=

∫
S

dS⃗(ẑj⃗0 − ẑj⃗0) +
∫

dΩ
[
R2 · v

V0

|f(θ)|2

R2

]
+ O (

1
R

)

+
(

~
2mi

)∫
dΩ̂ R2 1

(2π)3

(
e−ikz(ik)

f(θ)
R

eikR r̂ +
f∗(θ)

R
e−ikR(ik)eikz ẑ − h.c.

)
=

v

V0

∫
dΩ|f(θ)|2

+
(

i~k

2mi

)∫
dΩ R2 1

(2π)3

(
eikR(1−cos θ) f(θ)

R
+

f∗(θ)
R

e−ikR(1−cos θ) cos θ

+e−ikR(1−cos θ) f
∗(θ)
R

+
f(θ)
R

eikR(1−cos θ) cos θ

)
=

v

V0

∫
dΩ|f(θ)|2 +

~k

2m

1
(2π)3

R

∫
dΩ(1 + cos θ)(f(θ)eikR(1−cos θ) + f∗(θ)e−ikR(1−cos θ))

=
v

V0

∫
dΩ|f(θ)|2 +

~k

2m

1
(2π)3

R2 · 2π
1

kR
i(f(0) − f∗(0)) + const.e±ikR

We can take average of the above at infinitesimal region of R, which we can leave out the last
term. Thus,

0 =
v

V0

∫
dΩ|f(θ)|2 +

v

V0

4π

k
(−)Im f(0)
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j⃗∞ =

(
~

2mi

)(
Ψ∗∂Ψ

∂r
− h.c.

)
0 =

∫
S

dS⃗ · j⃗∞

=

(
~

2mi

) ∫
S

dS

(
Ψ∗∂Ψ

∂r
− h.c.

)
=

∫
S

dS⃗(ẑj⃗0 − ẑj⃗0) +

∫
dΩ

[
R2 · v

V0

|f(θ)|2

R2

]
+ O (

1

R
)

+

(
~

2mi

) ∫
dΩ̂ R2 1

(2π)3

(
e−ikz(ik)

f(θ)

R
eikR r̂ +

f∗(θ)

R
e−ikR(ik)eikz ẑ − h.c.

)
We average the above by the infinitesimal area on R to obtain

Im f(0) =
k

4π

∫
dΩ|f(θ)|2 =

k

4π
σT

Such relation between the forward scattering amplitude and the total cross section

of the scatterer is called the optical theorem.

2.2 Lippmann-Schwinger Equation and the scattering Am-

plitude

We now consider determining the scattering amplitude via the integral equation

derived from the Lippmann-Schwinger equation, which we discussed in our previ-

ous section. To begin with, we difine the Green’s function G0(r⃗) = G±
0 (r⃗, E) of

the three-dimentional free-particle system as the solution of the equation

(E − H0(r⃗))G0(r⃗) = δ(r⃗)

H0(x) = −~2∇2

2m

Specific forms of the equation above can be obtained by using the Fourier analysis

in the same way we did to obtain the specific equation form in our previous section.
33

G0(E) =


G±

0 (r⃗) = −
(

2m

~2

)
1

4π

e±iKr

r
, K → K ± i0 =

√
2mE
~ ± i0, E → E ± i0, E > 0

G+
0 (r⃗, K ← iκ) = −

(
2m

~2

)
1

4π

e−κr

r
, κ =

√
2m|E|

~ , E < 0

33On the one hand where E ≥ 0, we may write

E ± i0 =
~2K2

±
2m

, G±
0 (x) =

1
(2π)3/2

∫
d3kĜ±

0 (k⃗)eik⃗·r⃗
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In out present case, we consider the scattering states where E > 0, and having

the plane wave of Φ(r⃗) = 1
(2π)3/2 e

ikz traveling in z-axis direction as homogeneous

solution to express the Lippmann-Schwinger integral equation

Ψ± = Φ +
1

E ± i0 − H0

V Ψ±

In more specifin form we can write

Ψ±(r⃗) =
1

(2π)3/2
eikz −

(
2m

~2

)
1

4π

∫
dr⃗′

e±ik|r−r′|

|r⃗ − r⃗′|
V (r⃗′)Ψ±(r⃗′)

Here we suppose there is the scatterer of a finite size (V (r⃗) ≈ 0, r >> a). We

consider the wavefunction at a point, a sufficient distance away from the scatterer.

The equation we initially defined and δ(r⃗) = 1
(2π)3

∫
d3keik⃗·r⃗ yields Ĝ±

0 (k⃗) =
(

2m
~2

)
1

(2π)3/2
1

K2−k2

so, we cn write

G±
0 (r⃗) =

1
(2π)3

(
2m

~2

)∫
d3k

1
K2 − k2

eik⃗·r⃗

This integral is evaluated in the polar coordinated (z-axis in r⃗ direction) such that∫
d3k

1
K2

± − k2
eik⃗·r⃗ =

∫ ∞

0

dkk2 1
K2

± − k2
(2π)

∫ π

0

dθ sin θeikr cos θ

=
π

i

1
r

∫
∞dk k

K2
±−k2 (eikr−e−ikr)= π

i
1
r 2

R

∞dk −k

K2
±−k2 eikr

=
π

i

1
r

∫ ∞

−∞
dk

(
1

k + K ± i0
+

1
k − K ∓ i0

)
(−eikr) =

π2

r
(−2)e±iKr

Thus,

G±
0 (r⃗) = −

(
2m

~2

)
1
4π

e±iKr

r

On the other where E < 0, same way we handled the one-dimensional systems, we write

K = iκ = i

√
2m|E|
~

, κ > 0

In this case, we may directly evaluate the integral, in which we can apply K → K+i0 (E → E+i0)
. Thus,

G0(r⃗) = −
(

2m

~2

)
1
4π

e−κr

r
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Having r >> a r′ ≈ a, we can write 34

|r⃗ − r⃗′| = r − r̂ · r⃗′ + O(

(
a

r

)
)

a

|r⃗ − r⃗′|
=

a

r
+ O(

(
a

r

)2

)

which giving

Ψ±(r⃗) =
1

(2π)3/2

[
eikz+

e±ikr

r

{
−

(
2m

~2

)
(2π)3/2

4π

∫
dr⃗′e∓ik⃗r·r⃗′V (r⃗′)Ψ±(r⃗′)

}]
+O(

(
a

r

)
)

Here we note that k⃗r = kr̂ is the k-vector in the direction of the scattering. This

in fact shows that Ψ+(r⃗) is the solution, which satisfies the boundary condition.

The scattering amplitude can be given from

f(θk⃗r
) = −

(
2m

~2

)
(2π)3/2

4π

∫
dr⃗′e−ik⃗r·r⃗′V (r⃗′)Ψ+(r⃗′)

Note that the incident wave is expressed as

Φk⃗z
(r⃗) = 1

(2π)3/2 e
ik⃗z ·r⃗, (k⃗z = kẑ) , we can write 35

f(θk⃗r
) = −

(
2m

~2

)
(2π)3

4π
⟨Φk⃗r

|V |Ψ+⟩

= −
(

2m

~2

)
(2π)3

4π
⟨Φk⃗r

|T |Φk⃗z
⟩

T = V + V
1

Ek − H + i0
V

2.3 Born Approximation

The approximation method that has solution Phi in the right side of Ψ± as the

lowest order of the successive approximation steps within the integral equation to

give a simplest form of approximation

Ψ± ≈ 1

(2π)3/2
eikz =

1

(2π)3/2
eikẑ·r⃗

34

|r⃗ − r⃗′| = (r2 + r′
2 − 2r⃗ · r⃗′)1/2 = r(1 − 2

r̂ · r⃗′

r
+

r′
2

r2
)1/2 = r(1 − 2

r̂ · r⃗′

r
+ O(

(
a

r

)2

))1/2

= r − r̂ · r⃗′ + O(
(

a

r

)
)

35We used Ψ+ = (1 + G+V )Φ
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Is called the (first) Born approximation. The scattering amplitude in this approx-

imation can be written

fB(θk⃗) = −
(

2m

~2

)
1

4π

∫
dr⃗ei(k⃗′−k⃗)·r⃗V (r)

k⃗′ = kẑ

Now let us have

K⃗ = k⃗′ − k⃗

Calculation is made with the polar coordinates (r̄, θ̄, ϕ̄) in K⃗ direction to give 36

fB(θk⃗) = −
(

2m

~2

)
1

4π

∫
dϕ̄

∫
dθ̄ sin θ̄

∫
dr̄r̄2eiKr̄ cos θ̄V (r̄)

= −
(

2m

~2

)
1

2

∫
dr̄r̄2 1

iKr̄
eiKr̄ cos θ̄

∣∣∣∣cos θ̄=1

cos θ̄=−1

V (r̄)

= −
(

2m

~2

)
1

K

∫
drr sin(Kr)V (r)

The differntial cross section can be written

σ =

(
2m

~2

)2∣∣∣∣ 1

K

∫ ∞

0

drV (r)r sin(Kr)

∣∣∣∣2

A Case for Born Approximation (Rutherford Scattering)

Consider scattering by Yukawa potential

V (r) =
Ae−µr

r

36

θ

k’

k
K

K = |K⃗| =
√

2k2(1 − cos θ) = 2k sin
θ

2

dK = k cos θ/2dθ

KdK = k2 sin θdθ

sin θdθ =
1
k2

KdK
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In which we can write 37

fB(θ) = −2m

~2

A

K2 + µ2

We can rewrite the above equation with µ → 0, A = −Ze2 to have

fB
µ→0−→ m

2(~k)2

Ze2

sin2 θ/2

This indeed is equivalent to the classical formula of the Rutherford scattering.

2.4 Partial Wave Decomposition

In the following sections we discuss the scattering problems with an approach

by the partial wave decomposition. 38

2.4.1 The Schroedinger Equation in Spherical Symmetric Field

The Schroedinger equation is expressed in the forms

HΨ(r⃗) = EΨ(r⃗)

H =
p⃗2

2m
+ V (r)

p⃗ =
~
i
∇⃗

Given that we consider to obtain the its eigenfunction in the following forms

Ψ(r⃗) = R(r) Θ(θ) Φ(ϕ)

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ

Let the angular momentum be

L⃗ ≡ r⃗ × p⃗

Li = ϵijkxjpk, x1 = x, x2 = y, x3 = z

37 ∫ ∞

0

dr sinKrrV (r) = A

∫ ∞

0

dre−µr sinKr =
A

2i

∫ ∞

0

dr

(
e(−µ+iK)r − e(−µ−iK)r

)
= A

−1
2i

(
1

−µ + iK
− 1

−µ − iK

)
=

AK

K2 + µ2

38Review the mathematical handbooks for the basic knowledge of the spherical function.
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giving 39

[Li, Lj] = i~ϵijkLk

This exchange relationship generally makes clear of the fact (from the algebraic

relation only) that the simultaneous eigenstates for L⃗2 and Lz can be obtained as

L⃗2Yℓm = ~2ℓ(ℓ + 1)Yℓm

LzYℓm = ~mYℓm

m = −ℓ, ℓ + 1, · · · , ℓ − 1, ℓ

Furthermore, we may write 40

∇⃗ = e⃗r
∂

∂r
+ e⃗θ

1

r

∂

∂θ
+ e⃗ϕ

1

r sin θ

∂

∂ϕ

e⃗r =
∂̂r⃗

∂r
= (sin θ cos ϕ, sin θ sin ϕ, cos θ),

e⃗θ =
∂̂r⃗

∂θ
= (cos θ cos ϕ, cos θ sin ϕ,− sin θ),

e⃗ϕ =
∂̂r⃗

∂ϕ
= (− sin ϕ, cos ϕ, 0),

r⃗ = e⃗rr

which gives a clear sense that L⃗ does not depend on r but depends on θ, and ϕ in

39[xi, pj ] = xipj − pjxi = i~δij

[Li, Lj ] = ϵiabϵjcd[xapb, xcpd] = ϵiabϵjcd(xa[pb, xcpd] + [xa, xcpd]pb) = ϵiabϵjcd(xa[pb, xc]pd + xc[xa, pd]pb)
= ϵiabϵjcd(−i~δbcxapd + i~δadxcpb) = −i~ϵiabϵjbdxapd + i~ϵiabϵjcaxcpb

= i~(δijδad − δidδaj)xapd − i~(δijδbc − δicδbj)xcpb

= i~(δijxapa − xjpi − δijxbpb + xipj) = i~(xipj − xjpi) = i~ϵijkLk

(= i~ϵijkϵkabxapb = i~(xipj − xjpi))

40It is cleat that
r⃗ = xe⃗x + ye⃗y + ze⃗z
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the function. We can write respsctively, 41

Lx = −i~
(
− sin ϕ

∂

∂θ
− cot θ cos ϕ

∂

∂ϕ

)
Ly = −i~

(
cos ϕ

∂

∂θ
− cot θ sin ϕ

∂

∂ϕ

)
Lz = −i~

∂

∂ϕ

L⃗2 = −~2

{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

}
We use these specific in the above to determine the eigenvalue ~2ℓ(ℓ + 1) for L⃗2.

In the first step, let us have Ylm(θ, ϕ) = Θ(θ)Φ(ϕ) and write out the equations

according to the eigenfunction to have{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

}
Θ(θ)Φ(ϕ) = −ℓ(ℓ + 1)Θ(θ)Φ(ϕ)

1

Θ
sin2 θ

{
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ ℓ(ℓ + 1)Θ

}
= − 1

Φ(ϕ)

d2Φ

dϕ2

41

L⃗ = r⃗× p⃗ = −i~e⃗ϕ
∂

∂θ
+i~e⃗θ

1
sin θ

∂

∂ϕ
= −i~(− sinϕ, cos ϕ, 0)

∂

∂θ
+i~(cot θ cos ϕ, cot θ sin ϕ,−1)

∂

∂ϕ

L2
x = − ~2

(
sin ϕ∂θ + cot θ cos ϕ∂ϕ

)(
sinϕ∂θ + cot θ cos ϕ∂ϕ

)
, (cot θ)′ = − 1

sin2 θ

= − ~2
(
sin2 ϕ∂2

θ − 1
sin2 θ

sinϕ cos ϕ∂ϕ + cot θ sin ϕ cos ϕ∂θ ∂ϕ

+ cot θ cos2 ϕ∂θ + cot θ cos ϕ sinϕ∂ϕ ∂θ

− cot2 θ sin ϕ cos ϕ∂ϕ + cot2 θ cos2 ϕ∂2
ϕ

)
L2

y = − ~2
(
cos ϕ∂θ − cot θ sinϕ∂ϕ

)(
cos ϕ∂θ − cot θ sinϕ∂ϕ

)
= − ~2

(
cos2 ϕ∂2

θ +
1

sin2 θ
sin ϕ cos ϕ∂ϕ − cot θ sinϕ cos ϕ∂θ ∂ϕ

+ cot θ sin2 ϕ ∂θ − cot θ sinϕ cos ϕ∂θ ∂ϕ

+ cot2 θ sin ϕ cos ϕ∂ϕ + cot2 θ sin2 ϕ∂2
ϕ

)
L2

x + L2
y = − ~2

(
∂2

θ + cot θ ∂θ + cot2 θ ∂2
ϕ

)
L2

z = − ~2 ∂2
ϕ

L2 = − ~2

(
∂2

θ + cot θ ∂θ +
1

sin2 θ
∂)ϕ2

)
= − ~2

(
1

sin θ
∂θ(sin θ ∂θ) +

1
sin2 θ

∂)ϕ2

)
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We separate the equations above to give

d2Φ

dϕ2
= −m2Φ

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ {ℓ(ℓ + 1) − m2

sin2 θ
}Θ = 0

The first equations above to give

Φ(ϕ) = eimϕ, m = 0,±1,±2,±3, · · · ,

The condition for the m is being satisfied given the monodromy of the function.

If we require the finite property in the whole region for θ in the function of Θ, we

may use the associated Legendre differntial equation to write

Θ(θ) ∝ P
|m|
l (θ), ℓ = 0, 1, 2, · · · , m = −ℓ, ℓ + 1, · · · , ℓ

42 With all the iformation we obtained from above, we now determine the normal-

ization constant as in the following form

Yℓm(θ, ϕ) = (−1)
m+|m|

2

√
2ℓ + 1

4π

(ℓ − |m|)!
(ℓ + |m|)!

P
|m|
l (cos θ)eimϕ

Thus, we can write the orthonormality,

⟨Yℓ′m′|Yℓm⟩ ≡
∫

dΩY ∗
ℓ′m′(θ, ϕ)Yℓm(θ, ϕ) = δℓ,ℓ′δmm′

the effects of ladder operator as,

L±Yℓm = ~
√

(ℓ ∓ m)(ℓ ± m + 1)Yℓm±1

and the complex conjugation as,

Y ∗
ℓm(θ, ϕ) =(−)mYℓ−m(θ, ϕ)

42With x = cos θ, we know d
dθ = dx

dθ
d
dx = − sin θ d

dx thus, we have 1
sin θ

d
dθ

(
sin θ dΘ

dθ

)
=

d
dx

(
sin2 θ dΘ

dx

)
= d

dx

(
(1 − x2)dΘ

dx

)
From that we obtain

{
(1 − x2)

dΘ
dx

}
+

(
ℓ(ℓ + 1) − m2

1 − x2

)
Θ = 0

(associated Legendre differntial equation)
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43

43Here we demonstrate step-by-step of deriving the spherical harmonics Yℓm(θ, ϕ) =
Θℓm(θ)Φm(ϕ) via algebraic functions alone. First, we have LzYℓm = m~Yℓm , which gives.
Φm = 1√

2π
eimϕ We may also write

L+ =Lx + iLy = ~eiϕ(∂θ + i cot θ∂ϕ)

L− =Lx − iLy = ~e−iϕ(−∂θ + i cot θ∂ϕ)

So, from L+Yℓℓ = 0, we can write

Θ′
ℓℓ − ℓ cot θΘℓℓ =0,→ Θℓℓ(θ) = Cℓ sinℓ θ

Normalization may give

1 =|Cℓ|2
∫ π

0

dθ sin θ sin2ℓ θ = 2|Cℓ|2
∫ π/2

0

dθ sin2ℓ+1 θ = C2
ℓ B(ℓ + 1, 1) = |Cℓ|2

Γ(ℓ + 1)Γ(1/2)
Γ(ℓ + 3/2)

=|Cℓ|2
ℓ!Γ(1/2)

(ℓ + 1/2)(ℓ − 1/2)(ℓ − 3/2) · · · (1/2)Γ(1/2)

=|Cℓ|2
ℓ!2ℓ

(ℓ + 1/2)(2ℓ − 1)!!
= |Cℓ|2

ℓ!2ℓ · (2ℓ + 1)2ℓℓ!
(ℓ + 1/2)(2ℓ + 1)!

= |Cℓ|2
2(ℓ!2ℓ)2

(2ℓ + 1)!

Cℓ =eiδ

√
(2ℓ + 1)!

2
1

ℓ!2ℓ

Thus, we write

Yℓm−1 =
1√

(ℓ + m)(ℓ − m + 1)
e−iϕ(−∂θ + i cot θ∂ϕ)Yℓm

=
1√

(ℓ + m)(ℓ − m + 1)
(−)(∂θ + m cot θ)ΘℓmΦm−1(ϕ) = Θℓm−1Φm−1(ϕ)

Θℓm−1 = − 1√
(ℓ + m)(ℓ − m + 1)

(∂θ + m cot θ)Θℓm

Here we note that

sin1−m θ
d

d cos θ
(sinm θΘ) = sin1−m θ

(
d cos θ

dθ

)−1
d

dθ
(sinm θΘ) = − sin−m θ(Θm sinm−1 θ cos θ + sinm θ∂θΘ)

= − (Θm cot θ + ∂θΘ)
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which giving,

Θℓm−1 =
1√

(ℓ + m)(ℓ − m + 1)
sin1−m θ

d

d cos θ
(sinm θΘℓm)

Θℓm−2 =
1√

(ℓ + m − 1)(ℓ − m + 2)
sin2−m θ

d

d cos θ
(sinm−1 θΘℓm−1)

=
1√

(ℓ + m)(ℓ + m − 1) · (ℓ − m + 1)(ℓ − m + 2)
sin1−m θ

(
d

d cos θ

)2

(sinm θΘℓm)

Θℓm−k =

√
(ℓ + m − k)!(ℓ − m)!√
(ℓ + m)!(ℓ − m + k)!

sink−m θ

(
d

d cos θ

)k

(sinm θΘℓm)

Letusnowhavem → ℓ, k → ℓ − mso,werewriteintheform

Θℓm =

√
(ℓ + m)!(0)!√
(2ℓ)!(ℓ − m)!

sin−m θ

(
d

d cos θ

)ℓ−m

(sinℓ θΘℓℓ)

=eiδ

√
2ℓ + 1

2
(ℓ + m)!
(ℓ − m)!

1
ℓ!2ℓ

1
sinm θ

(
d

d cos θ

)ℓ−m

(sin2ℓ θ)

Weespeciallyconsiderm = 0toobtai

Θℓ0 =eiδ

√
2ℓ + 1

2
1

ℓ!2ℓ

(
d

d(cos θ)

)ℓ

(sin2ℓ θ) = eiδ(−)ℓ

√
2ℓ + 1

2
1

ℓ!2ℓ

d

d(cos θ)
(cos2 θ − 1)ℓ

=eiδ(−)ℓ

√
2ℓ + 1

2
Pℓ(cos θ)

so, weputeiδ = (−)ℓ

Θℓ0 =

√
2ℓ + 1

2
Pℓ(cos θ)

Θℓm =(−)ℓ

√
2ℓ + 1

2
(ℓ + m)!
(ℓ − m)!

1
ℓ!2ℓ

1
sinm θ

(
d

d cos θ

)ℓ−m

(sin2ℓ θ)

m ≤ 0,

Θℓm =

√
2ℓ + 1

2
(ℓ + m)!
(ℓ − m)!

1
sinm θ

(
d

d cos θ

)−m

Pℓ(cos θ)

=

√
2ℓ + 1

2
(ℓ − |m|)!
(ℓ + |m|)!

sin|m| θ

(
d

d cos θ

)|m|

Pℓ(cos θ)

On the other hand, we have

Yℓm+1 =
1√

(ℓ − m)(ℓ + m + 1)
eiϕ(∂θ + i cot θ∂ϕ)Yℓm

=
1√

(ℓ − m)(ℓ + m + 1)
(∂θ − m cot θ)ΘℓmΦℓm+1

Θℓm+1 =
1√

(ℓ − m)(ℓ + m + 1)
(∂θ − m cot θ)Θℓm
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While we can write using the algebraic functions alone, 44

L⃗2 = r2p⃗2 − r2p2
r, p2

r = −~2(∂2
r +

2

r
∂r)

Thus,
p⃗2

2m
=

1

2m
p2

r +
1

2m

L⃗2

r2

sinm+1 θ
d

d cos θ
(sin−m θΘ) = sinm+1 θ

(
d cos θ

dθ

)−1
d

dθ
(sin−m θΘ) = − sinm θ(−Θm sin−m−1 θ cos θ + sin−m θ∂θΘ)

=(Θm cot θ − ∂θΘ)

which giving,

Θℓm+1 =(−)
1√

(ℓ − m)(ℓ + m + 1)
sinm+1 θ

d

d cos θ
(sin−m θΘℓm)

Θℓm+2 =(−)
1√

(ℓ − m − 1)(ℓ + m + 2)
sinm+2 θ

d

d cos θ
(sin−m−1 θΘℓm+1)

=(−)2
1√

(ℓ − m)(ℓ − m − 1) · (ℓ + m + 1)(ℓ + m + 2)
sinm+2 θ

(
d

d cos θ

)2

(sin−m θΘℓm)

Θℓm+k =(−)k

√
(ℓ − m − k)!(ℓ + m)!√
(ℓ − m)!(ℓ + m + k)!

sinm+k θ

(
d

d cos θ

)k

(sin−m θΘℓm)

Weputm → 0, k → m(m > 0)

Θℓm =(−)m

√
(ℓ − m)!ℓ!√
ℓ!(ℓ + m)!

sinm θ

(
d

d cos θ

)m

Θℓ0

=(−)m

√
2ℓ + 1

2
(ℓ − m)!
(ℓ + m)!

sinm θ

(
d

d cos θ

)m

Pℓ(cos θ)

Now, fromP
|m|
ℓ (cos θ) = sin|m| θ

(
d

d cos θ

)|m|

Pℓ(cos θ)weobtain,

Θℓm =(−1)
m+|m|

2

√
2ℓ + 1

2
(ℓ − |m|)!
(ℓ + |m|)!

P
|m|
ℓ (cos θ)

Withm ≤ 0, wecanwriteΘℓ−m = (−)mΘℓm

44GIven that we have r⃗ · p⃗ = −i~xi∂i = −i~r xi

r ∂i = −i~r ∂xi

∂r ∂i = −i~r∂r ,

L⃗2 = ϵijkϵilmxjpkxlpm = (δjlδkm − δjmδkl)xjpkxlpm

= xjpkxjpk − xjplxlpj = xj(xjpk − i~δjk)pk − xj(xlpl − i~δll)pj

= r2p⃗2 − i~r⃗ · p⃗ − xj(pjxl + i~δlj)pl + 3i~r⃗ · p⃗ = r2p⃗2 − (r⃗ · p⃗)2 + i~r⃗ · p⃗
= r2p⃗2 − r2p2

r

p2
r =

1
r2

{
(r⃗ · p⃗)2 − i~r⃗ · p⃗

}
=

~2

r2

{
− r∂rr∂r − r∂r

}
= −~2(∂2

r +
2
r
∂r)
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Here we suppose Ψ(r⃗) = R(r)Ylm(θ, ϕ), the Schroedinger equation may give{
−

(
d2

dr2
+

2

r

d

dr

)
+

ℓ(ℓ + 1)

r2
+ U(r)

}
Rℓ(r) = k2Rℓ(r)

~2k2

2m
= E,

~2

2m
U(r) = V (r)

Especially in the case where the potential employs the constant V = V0, we define

x = kr, E − V0 = ~2k2

2m
, and write{(
d2

dx2
+

2

x

d

dx

)
+ 1 − ℓ(ℓ + 1)

x2

}
Fℓ(x) = 0

This equation is caled the spherical Bessel equation, and its second-order of the

differntial equation has two independent solutions. 45 General solutions of the

Schroedinger equaiton can be obtained by using those two independent solutions,

and written

Ψ(r⃗) =
∑
ℓm

cℓmRℓ(r)Yℓm(θ, ϕ), E =
~2k2

2m

Here we summarize the requirements for the radial of the wavefunction Rℓ.

• Behavior at origin periphery

Where V (r) has no uniqueness at origin periphery 46

Rℓ(kr)
r⃗→0−→ (kr)ℓ

• Conservation

45Either the pairs of the spherical Bessel function jℓ(x) and the spherical Neumann function
nℓ(x), or the Hankel function of the first kind h

(1)
ℓ (x) and the Hankel function of the second kind

h(2)ℓ(x), can be used as the independent solutions.

Fℓ(x) = Aℓjℓ(x) + Bℓnℓ(x) = Cℓh
(1)
ℓ (x) + Dℓh

(2)
ℓ (x)

and more specifically given

jℓ(x) = (−x)ℓ

(
1
x

d

dx

)ℓ( sinx

x

)
x→0−→ xℓ

(2ℓ + 1)!!

nℓ(x) = −(−x)ℓ

(
1
x

d

dx

)ℓ(cos x

x

)
x→0−→ − (2ℓ − 1)!!

xℓ+1

46Let us suppose Rℓ ∼ rn at the origin periphery, the Schoedinger equation may give {−n(n−
1) − 2n + ℓ(ℓ + 1)}rn−2 ∼ 0. From which, we write

−n2 − n + ℓ2 + ℓ = (ℓ − n)(ℓ + n + 1) = 0

This gives rℓ,and 1
rℓ+1 yat, the probability amplitude is required not to diverge at the origin.
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Especially the case where the potential is the real 47

det

(
rRℓ rR∗

ℓ

(rRℓ)
′ (rR∗

ℓ )
′

)
= 0

This becomes the conserved quantity; independent of the coordinate systems.

(Consider where r → 0)

2.4.2 Phase Shift

We now consider the potential that is resticted to the finite region. In this case,

the region with no potential possesses the free particles, and the wavefunction can

be written 48

Ψ(r⃗) =
∑

ℓ

Aℓ

{
Sℓh

(1)
ℓ (kr) + h

(2)
ℓ (kr)

}
Pℓ(cos θ)

47Suppose we define, R(x) = xnR(x) we can write, R′ = nxn−1R + xnR′, R′′ = n(n −
1)xn−2R + 2nxn−1R′ + xnR′′ which giving

R′′+2x−1R′ = n(n−1)xn−2R+2nxn−1R′+xnR′′+2nxn−2R+2xn−1R′ = xnR′′+2(1+n)xn−1R′+· · ·

If we take R(x) = x−1R(x), there are no first order differntials for the differntial equation of
R so, Wronskians will be invariable when solutions for the differential equation be R1, and R2.
Especially in this case, we consider the Wronskians of R and R∗ for the real potential, giving

det
(

rR rR∗

(rR)′ (rR∗)′

)
This does not depend on the coordinate system

48The point of measurement for the angle of ϕ can be selected at any points, and therefore,
the wavefunction does not depend on ϕ but, depends only on Yℓm=0.
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. Let us first define the amplitude Aℓ of each partial wave as we consider the

asymptotic conditions for the point where infinite distance away. We can write 49

Ψ(r⃗) =
1

(2π)3/2

∞∑
ℓ=0

(2ℓ + 1)

2
iℓ
{
Sℓh

(1)
ℓ (kr) + h

(2)
ℓ (kr)

}
Pℓ(cos θ)

−→
∑

ℓ

1

(2π)3/2

−i(2ℓ + 1)

2

1

kr

{
Sℓe

ikr − (−1)ℓe−ikr
}
Pℓ(cos θ)

49The asymptotic form for a large argument can be written

jℓ(x) x→∞−→ 1
x

sin
(
x − ℓπ

2
)
, nℓ(x) x→∞−→ − 1

x
cos

(
x − ℓπ

2
)

h
(1)
ℓ (x) x→∞−→ (−i)ℓ+1 eix

x
h

(2)
ℓ (x) x→∞−→ (i)ℓ+1 e−ix

x

giving,

Ψ(r⃗) −→
∑

ℓ

Aℓ
(−i)ℓ+1

kr

{
Sℓe

ikr − (−1)ℓe−ikr
}
Pℓ(cos θ)

We expand the scattering amplitude in terms of the complete set f(θ) =
∑∞

ℓ=0 aℓPℓ(cos θ), and
further expand the incident wave in terms of the partial wave as following

eikr cos θ =
∞∑

ℓ=0

(2ℓ + 1)iℓjℓ(kr)Pℓ(cos θ)

jℓ(x) x→∞−→ 1
x

sin
(
x − ℓπ

2
)

=
1

2ix

(
eix−i ℓπ

2 − e−ix+i ℓπ
2

)
=

1
2ix

(
(−i)ℓeix − iℓe−ix

)
From the above, we can express the expansion of the boundary condition at infinity point in
terms of the Partial wave in the followin form

1
(2π)3/2

(
eikr cos θ +

f(θ)
r

eikr

)
=

1
(2π)3/2

1
2ikr

∞∑
ℓ=0

{
(2ℓ + 1)iℓ

(
(−i)ℓeikr − iℓe−ikr

)
+ 2ikaℓe

ikr

}
Pℓ(cos θ)

=
1

(2π)3/2

1
2ikr

∞∑
ℓ=0

(2ℓ + 1)
{(

1 +
2ikaℓ

(2ℓ + 1)
)
eikr − (−)ℓe−ikr

}
Pℓ(cos θ)

Compare the two equqaions from above and write

aℓ =
(2ℓ + 1)

2ik
(Sℓ − 1)

Aℓ
(−i)ℓ+1

kr
=

1
(2π)3/2

(2ℓ + 1)
2ikr

Thus,

Aℓ =
1

(2π)3/2

(2ℓ + 1)
2

iℓ
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We use Sℓ to write the scattering amplitude as

f(θ) =
1

2ik

∞∑
ℓ=0

(2ℓ + 1)(Sℓ − 1)Pℓ(cos θ)

Note that this undefined coefficient Sℓ is called the scattering matrix, which can

be difined by the boundary condition of a region with a presence of the potential.

We precede the rest of our discussion based on that we assume having defined the

coefficient.

Now we apply the conservation law from our earlier discussion to each partial

wave ℓ of the radial part, which corresponds to the conservation law for the number

of the particle, and gives 50

|Sℓ| = 1

Thus,

Sℓ = ei2δℓ , δ: real

Rewrite the asymptotic form as 51

Ψ(r⃗) −→ 1

(2π)3/2

∑
ℓ

(2ℓ + 1)

kr
iℓeiδℓ sin(kr − π

2
ℓ + δℓ)Pℓ(cos θ)

Compare the above with the asymptotic form for no potential,

1

(2π)3/2
eikr cos θ =

1

(2π)3/2

∞∑
ℓ=0

(2ℓ + 1)

kr
iℓ sin(kr − π

2
ℓ)Pℓ(cos θ)

This makes us aware that there is a shift in the phase, and the shift occurred as

much as δℓ. δℓ is called the phase shift.

50

0 = det
(

Sℓe
ikr − (−1)ℓe−ikr S∗

ℓ e−ikr − (−1)ℓeikr

ikSℓe
ikr + ik(−1)ℓe−ikr −ikS∗

ℓ e−ikr − ik(−1)ℓeikr

)
= det

(
Sℓe

ikr − (−1)ℓe−ikr S∗
ℓ e−ikr − (−1)ℓeikr

2ik(−1)ℓe−ikr −2ikS∗
ℓ e−ikr

)
= det

(
Sℓe

ikr − (−1)ℓe−ikr {|Sℓ|2 − 1}(−1)ℓeikr

2ik(−1)ℓe−ikr 0

)
= −2ik{|Sℓ|2 − 1}

51

ei(2δℓ+kr) − ei(πℓ−kr) = ei(δℓ+
π
2 ℓ)(ei(δℓ+kr−π

2 ℓ) − ei(−δℓ+
π
2 ℓ−kr))

= ei(δℓ+
π
2 ℓ)2i sin(kr − π

2
ℓ + δℓ)
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The total scattering cross section satisfies 52

σT =
4π

k
f(0) =

∑
ℓ

4π

k2
(2ℓ + 1) sin2 δℓ

This first equation is called the optical theorem. We understand that when δℓ =

(n + 1
2
)π, n : (integer), the scattering cross section of ℓ becomes the largest, while

the area becomes 0 when δℓ = nπ.

2.4.3 Lograrithmic Differntiation and the Phase Shift

In determining the phase shift more exactly, let us first consider the junction

conditions for the wavefunction within the radius r = a and the wavefunction in

radius part; outside the radius, by each partial wave.

Rin
ℓ (a) = Rout

ℓ (a)

Rin
ℓ

′
(a) = Rout

ℓ
′
(a)

We can write the wavefunction of the outer part as

Rout
ℓ (r) = C(Sℓh

(1)
ℓ (kr) + h

(2)
ℓ (kr))

Since the noemalization factor C is unknown, the condition we can obtain now is

d log Rin
ℓ (r)

dr

∣∣∣∣
r=a

=
d log Rout

ℓ (r)

dr

∣∣∣∣
r=a

= k
Sℓh

(1)
ℓ

′
(ka) + h

(2)
ℓ

′
(ka)

Sℓh
(1)
ℓ (ka) + h

(2)
ℓ (ka)

Here we have

h(1,2)′(ka) =
dh(1,2)(x)

dx

∣∣∣∣
x=ka

from which we write the effects of the potential for the inner part

f in
ℓ =

1

k

d log Rin
ℓ (r)

dr

∣∣∣∣
r=a

52

σT =
∫

dΩ|f(θ)|2 =
1

4k2

∑
ℓ

(2ℓ + 1)2|Sℓ − 1|22π
2

(2ℓ + 1)

=
π

k2

∑
(2ℓ + 1)|Sℓ − 1|2

f(0) =
f(0) − f∗(0)

2i
=

1
2i

1
2ik

∑
(2ℓ + 1)(Sℓ + S∗

ℓ − 2)Pℓ(cos θ)

= − 1
4k

∑
ℓ

(2ℓ + 1)(−1)(1 − Sℓ)(1 − S∗
ℓ ) =

1
4k

∑
ℓ

(2ℓ + 1)|1 − Sℓ|2 =
1
4k

4
∑

ℓ

(2ℓ + 1) sin2 δℓ
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We parametralize the above to write

Sℓ = −h
(2)
ℓ (ka)f in

ℓ − h
(2)
ℓ

′
(ka)

h
(1)
ℓ (ka)f in

ℓ − h
(1)
ℓ

′
(ka)

While we have 53

tan δℓ =
jℓ(ka)f in

ℓ − j′ℓ(ka)

nℓ(ka)f in
ℓ − n′

ℓ(ka)

This indicates that the wavefunction in the outer oart region is defined only by

the logarithmic differntiation of the boundary of the scattering region, and not by

the details of the potential.

The Low Energy Scattering

In the case for the low energy scattering

ka << 1

This gives 54 55

δℓ ∝ (ka)2 ℓ = 0(ka)2ℓ+1 ℓ ≥ 1

Thus, 56

f(θ) =
δ0

k

53

tan δℓ =
1
i

Sℓ − S∗
ℓ

Sℓ + S∗
ℓ + 2

54

tan δℓ → − 1
(2ℓ + 1)!!(2ℓ − 1)!!

(ka)2ℓ+1 f in
ℓ − ℓ/(ka)

f in
ℓ + (ℓ + 1)/(ka)

= − 1
(2ℓ + 1)!!(2ℓ − 1)!!

kaf in
ℓ − ℓ

kaf in
ℓ + ℓ + 1

(ka)2ℓ+1

∝ (ka)2 ℓ = 0(ka)2ℓ+1 ℓ ≥ 1

55This does not apply hor the hard sphere.
56

f(θ) =
1

2ik

∞∑
ℓ=0

(2ℓ + 1)(Sℓ − 1)Pℓ(cos θ)

→ 1
2ik

2iδ0 =
δ0

k
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The Hard Sphere Case

Suppose we have a hard sphere of radius r = a we can assume R(a) = 0 when

r = a, and written

f in
ℓ = ∞

Based on the above, we can write

tan δℓ =
jℓ(ka)

nℓ(ka)

Here in particular, we consider the low energy case where ka << 1, and using the

asymptotic form, which gives 57

tan δℓ = − (ka)2ℓ+1

(2ℓ + 1)!!(2ℓ − 1)!!

2.4.4 Jost Function and the Bound States

The equation for the partial wave of the radius part in terms of

R(r) = rR(r)

can be written as we discussed earlier,

R′′ −
(

U(r) +
ℓ(ℓ + 1)

r2

)
R = −k2R

The first order differential terms are absent in the equation above, and that

the Wronskians for the equation will become the conserved quantity. Now, let us

consider the solutions, which satisfy the three different boundary conditions.

• Solutions in physical term

Require the regularity at the origin to have normalization

R = ψℓ(k, r) → rℓ+1 (r → 0)

This is the solution, which we have been discussing expect for the normal-

ization.

57

jℓ(x) x→0→ xℓ

(2ℓ + 1)!!

nℓ(x) x→0→ − (2ℓ − 1)!!
xℓ+1
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• Jost solution

R = f ℓ
±(k, r) → e±ikr (k > 0, r → ∞)

Here we calculate the Wronskians among these solutions, which giving the con-

served quantity for all. Thus, solution is independent of the coordinate systems
58

W (f ℓ
+(k, r), f ℓ

−(k, r)) = −2ik

Now, let us write down

W (f ℓ
±(k, r), ψℓ(k, r)) = f ℓ

±(k)

in which we call

f ℓ
±(k)

the Jost function.

Given the function is the second order, the solution for the physical terms can

be multiplied by the Jost solution. Whose coefficient can be given by the Jost

function in the form,

ψℓ(k, r) =
−i

2k
{f ℓ

−(k)f ℓ
+(k, r) − f ℓ

+(k)f ℓ
−(k, r)}

Furthermore, we consider the asymptotic form of the solution in the physical

terms, and which bein compared with the definition of the scatterin matrix to give
59

f ℓ
±(k) = (±)ℓf ℓ(k)e∓iδℓ(k)

Note that

Sℓ = (−1)ℓ f
ℓ
−

f ℓ
+

58

W (f ℓ
+(k, r), f ℓ

−(k, r)) = det
(

f+ f−
f ′
+ f ′

−

)
= det

(
eikr e−ikr

ikeikr −ike−ikr

)
= det

(
eikr e−ikr

2ikeikr 0

)
= −2ik

59

ψℓ(k, r) =
−if ℓ

+(k)
2k

(
f ℓ
−

f ℓ
+

eikr − e−ikr

)
(r → ∞)

The definition of the scattering matrix gives

Sℓ = (−1)ℓ f ℓ
−

f ℓ
+

Thus,
f ℓ
±(k) = (±i)ℓf ℓ(k)e∓iδℓ(k)
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We consider carrying out the analytic continuation of the wave number k to

reach the comlex number with the real energy, we have で

k = iκ, κ > 0

Whose physical terms solution can be

ψ(iκ, r) → f ℓ
−(iκ)e−κr − f ℓ

+(iκ)eκr

As long as we have

f ℓ
+(k = iκ) = 0

The solution can be normalized in the whole space thus; the solution represents

the bound state. the above equation also indicates that the

scattering mtrix possesses the polar in the bound state energy.

1

S(k = iκ)
= 0

Since the potential is real, the following symmetric properties are being also

obeyed.

• ψℓ(k, r) = ψℓ(−k, r) = ψℓ∗(k, r)

• f ℓ
+(k, r) = f ℓ

−(−k, r) thus giving f ℓ
+(k) = f ℓ

−(−k)

• f ℓ
+
∗
(k, r) = f ℓ

−(k, r) giving f ℓ
+
∗
(k) = f ℓ

−(k)

In our discussion of carrying the analytic continuations of the Jost function and

the phase shift on the complexplanes, we can observe that

the number of the bound states is defined by the phase shift analysis. This we

call, Levinson’s theorem.

The S-wave Scattering in the Three-dimentional Square Well Potential

Now we consider the function that the wavefunction R = rR satisfies, and

consider especially the case for the s-waves ℓ = 0.

R′′＋ (k2 − U(r))R = 0

For the square well potential we suppose

U(x) =

{
U0 r ≤ a

0 otherwise
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and we define

K2 = k2 − U0

Which gives 60

f in
0 =

1

ka
(Ka cot Ka − 1)

Thus, 61

tan δ0 =
ka cot ka − Ka cot Ka

ka + Ka cot Ka cot ka

Under the low energy ka << 1, we can write 62

tan δ0 = ka
1 − a

√
−U0 cot a

√
−U0

a
√
−U0 cot a

√
−U0

For the hard sphere, we have U0 → ∞, which gives

tan δ0 = −ka

This matches with our first result. Generally speaking, we may expand the equa-

tion above about a
√
−U0 if we have the potential that is very weak. So, we have

60Require the boundary condition

R|r=0 = rR|r=0 = 0

Thus, we write

R = C sinKr
d log R

dr
=

d log(r−1R)
r

= −1
r

+ K
cos Kr

sin Kr

f in
0 =

1
k

d log R

dr

∣∣∣∣
r=a

=
1
ka

(Ka cot Ka − 1)

61

j0(x) =
sinx

x
, j′0(x) =

x cos x − sinx

x2
, n0(x) = −cos x

x
, n′

0(x) =
x sin x + cos x

x2
,

From the above, we let x = ka, and write

tan δ0 =
j0(x)f in

0 − j′0(x)
n0(x)f in

0 − n′
0(x)

=
sin x

x
1
x (Ka cot Ka − 1) − x cos x−sin x

x2

− cos x
x

1
x (Ka cot Ka − 1) − x sin x+cos x

x2

=
sin xKa cot Ka − x cos x

− cos xKa cot Ka − x sinx
=

ka cot ka − Ka cot Ka

ka + Ka cot Ka cot ka

62

Ka
ka→0→ a

√
−U0

tan δ0
ka→0→ ka

1 − a
√
−U0 cot a

√
−U0

a
√
−U0 cot a

√
−U0
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63

tan δ0 → −U0ka3

3
≈ δ0

In other words, the gravity may give δ0 > 0 while the repulsion may give δ0 < 0.

In order to discuss the bound states by the method using the integral equation;

that is inndeed the main focus of our present section, recall that we define k, which

is defined by E = ~2k2

2m
in E < 0 to be as k を k → iκ, (κ > 0):

R ≈ Sℓh
(1)(kr) + h(2)(kr) = Sℓh

(1)
0 (iκr) + h

(2)
0 (iκr)

h
(1)
0 (iκr) = j0(iκr) + in0(iκr) =

e−κr

iκr
, h

(2)
0 (iκr) = j0(iκr) − in0(iκr) =

eκr

iκr
,

This clearly tells that we need

Sℓ → ∞

for the wavefunctions that are not being normalized. We ensured that the energy

in the bound state indeed gives the polar of the scattering matrix. In our specific

case, we have 64

tan δ0 + i = 0

3 Time-dependent Scattering Theory

3.1 Lippmann-Schwinger Equation

In this section we aim to understand the scatering theory in the time-dependent

forms, which contrasting with the scattering in the stationary states from our ealier

discussions. The Schroedinger equation can be written

i~
∂

∂t
|Ψ(t)⟩S =H|Ψ(t)⟩S

H =H0 + V

63

cot x =
1
x
− 1

3
x · · ·

Thus,

tan δ0 → ka
1
3
(a

√
−U0)2 = −U0ka3

3

64

S0 =
eiδ0

e−iδ0
=

cot δ0 + i

cot δ0 − i
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To be careful with the formal solution at V = 0, and we write

|Ψ(t)⟩S =e−iH0t/~|Ψ(t)⟩

This gives, (|Ψ(t)⟩ is called the interaction representation) 65

i~
∂

∂t
|Ψ(t)⟩ =V (t)|Ψ(t)⟩

V (t) =eiH0t/~V e−iH0t/~

Given that we write

|Ψ(t)⟩ =U+(t)|Ψ(−∞)⟩

Thus, 66

U+(t) =1 +
1

i~

∫ t

−∞
dτ V (τ)U+(τ)

Especially in our case, we let

|Ψ(+∞)⟩ =S|Ψ(−∞)⟩

be given, and have S = U+(+∞) thus,

S =1 +
1

i~

∫ ∞

−∞
dτ V (τ)U+(τ)

65

i~
∂

∂t
|Ψ(t)⟩S =H0e

−iH0t/~|Ψ(t)⟩ + e−iH0t/~i~
∂

∂t
|Ψ(t)⟩ = (H0 + V )e−iH0t/~|Ψ(t)⟩

i~
∂

∂t
|Ψ(t)⟩ =eiH0t/~V e−iH0t/~|Ψ(t)⟩

i~
∂

∂t
|Ψ(t)⟩ =V (t)|Ψ(t)⟩

V (t) =eiH0t/~V e−iH0t/~

66

i~
∂

∂t
U+(t) =V (t)U+(t)

U+(−∞) =1

In the integral form we have

U+(t) =1 +
1
i~

∫ t

−∞
dτ V (τ)U+(τ)
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We now consider a case where the interactoin vanishes adiabatically at t → ±∞
to have H → H0. For that we suppose

V (t) →V (t)e−0|t|/~ = V ϵ(t)

Under such condition, we take the eigenstate |Φi⟩ = 1√
(2π)3

eiki·r for H0 for the

initial state. 67 68 Which we write

|Ψ(−∞)⟩ =|Φi⟩
H0|Φi⟩ =Ei|Φi⟩
⟨Φi|Φj⟩ =1ij = δ(ki − kj)

We write the transition probability Wji at t : −∞ → +∞ as

Wji =|⟨Φj|SΦi⟩|2 = |Sji|2

Here we define

T =S − 1

which gives

i ̸= j, Wji = |Tji|2

Tji =
1

i~

∫ ∞

−∞
dτ ⟨Φj|V ϵ(τ)U ϵ

+(τ)|Φi⟩

=
1

i~

∫ ∞

−∞
dτ eiEjτ/~⟨Φj|V e−iH0τ/~e−0|τ |/~U+(τ)|Φi⟩

Thus, we can write

|Ψ(+)
i (E)⟩ =

∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~U+(τ)|Φi⟩

This equation yields,

Tji =
1

i~
⟨Φj|V |Ψ(+)

i (Ej)⟩

67The wavefunction for the interaction representation at V = 0 will be the wavefunction for
the stationary states.

68

⟨Φi|Φj⟩ =
1

(2π)3

∫
dr e−i(ki−kj)·r = 1ij = δ(ki − kj)
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The integral equation for U+ gives 69 70

69

|Ψ(+)
i (E)⟩ =

∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~

( ∫ τ

−∞
dτ ′ V ϵ(τ ′)U ϵ

+(τ ′)
)
|Φi⟩

=
∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

−∞
dτ ′

∫ ∞

τ ′
dτ ei(E−H0)τ/~e−0|τ |/~V ϵ(τ ′)U ϵ

+(τ ′)|Φi⟩

=
∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

−∞
dτ ′

∫ ∞

τ ′
dτ ei(E−H0)τ/~e−0|τ |/~e−0|τ ′|/~eiH0τ ′/~V e−iH0τ ′/~U ϵ

+(τ ′)|Φi⟩

=
∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

−∞
dτ ′e−0|τ ′|/~

∫ ∞

τ ′
dτe−0|τ |/~ ei(E−H0)τ/~eiH0τ ′/~V e−iH0τ ′/~U ϵ

+(τ ′)|Φi⟩

=
∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

−∞
dτ ′e−0|τ ′|/~

∫ ∞

τ ′
dτe−0|τ |/~ ei(E−H0)(τ−τ ′)/~V ei(E−H0)τ

′/~U ϵ
+(τ ′)|Φi⟩

=
∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

−∞
dτ ′e−0|τ ′|/~

∫ ∞

0

dτe−0|τ |/~ ei(E−H0)τ/~V ei(E−H0)τ
′/~U ϵ

+(τ ′)|Φi⟩

=
∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

0

dτe−0|τ |/~ ei(E−H0)τ/~V

∫ ∞

−∞
dτ ′e−0|τ ′|/~ ei(E−H0)τ

′/~U ϵ
+(τ ′)|Φi⟩

=
∫ ∞

−∞
dτ ei(E−H0)τ/~e−0|τ |/~|Φi⟩

+
1
i~

∫ ∞

0

dτe−0τ/~ ei(E−H0)τ/~V |Ψ(+)
i (E)⟩

70Recall the definition of the delta function

1
x ± i0

=P
1
x
∓ iπδ(x)

δ(x) = − 1
2πi

(
1

x + i0
− 1

x − i0

)
=

1
π

Im
1

x − i0
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|Ψ(+)
i (E)⟩ =

∫ ∞

−∞
dτ ei(E−Ei)τ/~e−0|τ |/~|Φi⟩

+
1

i~

∫ ∞

0

dτe−0τ/~ ei(E−H0)τ/~V |Ψ(+)
i (E)⟩

=2π~δ(E − Ei)|Φi⟩ +
1

E + i0 − H0

V |Ψ(+)
i (E)⟩

We can write the eqution above in the form

|Ψ(+)
i (E)⟩ =2π~δ(E − Ei)|Ψ(+)

i ⟩ (∗)

This enables us to derive the Lippmann-Schwinger equation

|Ψ(+)
i ⟩ =|Φi⟩ +

1

E + i0 − H0

V |Ψ(+)
i ⟩

Note that (∗) is 71

e−iH0t/~U+(t)|Φi⟩ =e−iEit/~|Ψ(+)
i ⟩

The left-hand side of the equation above represents the wavefunction for the

Schroedinger representation, while we regard |Ψ(+)
i ⟩ as the wavefunction for the

stationary states. 72

∫ ∞

0

dτ e−0 τ/~+i(E−H0)τ/~ =
∫ ∞

0

dτ ei(E+i0−H0)τ/~ = −~
i

1
E + i0 − H0

= −~
i

(
P

1
E − H0

− iπδ(E − H0)
)

71

|Ψ(+)
i (E)⟩ =

∫ ∞

−∞
dτ ei(E−H0)τ/~U+(τ)|Φi⟩

=
∫ ∞

−∞
dτ ei(E−Ei)τ/~|Ψ(+)

i ⟩

e−iH0τ/~U+(τ)|Φi⟩ =e−iEiτ/~|Ψ(+)
i ⟩

72The relationship between the state vector |Ψ(t)⟩ in the interaction representation and the
state vector |Ψ(t)⟩S in the Schroedinger representation gives

e−iH0t/~U+(t)|Φi⟩ =e−iH0t/~|Ψi(t)⟩ = |Ψi(t)⟩S = e−iEit/~|Ψ(+)
i ⟩

In our last discussion, we let |Ψi(t)⟩ prossess the same energy Ei of |Φi⟩. Precisely, we consider
the system in the box with the length of each ede to be L. The interaction is adiabactically
applied slower than the energy resolution occurring the same time. We assume the interaction
to take the limit of L → ∞ knowing that the interaction may give the energy hift of about 1/L3

from the fact that the potential is much local.
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3.2 Optical Theory

We further write 73

Tji ≡− 2πiδ(Ei − Ej)T jitogive

T ji =⟨Φj|V |Ψ(+)
i ⟩

The scattering probability for i → j per unit of time can be written 74

wji =
2π

~
δ(Ei − Ej)|T ji|2

If the equation above is approximated by |Ψ(+)
i ⟩ ≈ |Φi⟩, which will be called the

Fermi’s golden rule.

We write the Green’s function first;

G+
0 =

1

E + i0 − H0

G+ =
1

E + i0 − H
=

1

E + i0 − H0 − V
= [(G+

0 )−1 − V ]−1 = [(1 − V G+
0 )G+

0
−1

]−1

=G+
0 (1 − V G+

0 )−1 = G+
0 + G+

0 (V G+
0 ) + G+

0 (V G+
0 )2 + · · ·

=G+
0 + (G+

0 V )G+
0 + (G+

0 V )2G+
0 + · · · = (1 − G+

0 V )−1G+
0

73

|Ψ(+)
i (E)⟩ =2π~δ(E − Ei)|Ψ(+)

i ⟩

Tji =
1
i~

⟨Φi|V |Ψ(+)
i (Ej)⟩

= − 2πiδ(Ej − Ei)T jigives

T ji =⟨Φj |V |Ψ(+)
i ⟩

74

Wji =4π2
(
δ(Ei − Ej)

)2|T ji|2

=4π2δ(Ei − Ej)|T ji|2(
1

2π~
)
∫ ∞

−∞
dτ ei(Ei−Ej)τ/~

=
2π

~
δ(Ei − Ej)|T ji|2

∫ ∞

−∞
dτ 1

wji =
Wji∫ ∞

−∞ dτ 1
=

2π

~
δ(Ei − Ej)|T ji|2
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Here we rewrite the Lippmann-Schwinger equation:

|Ψ(+)
i ⟩ =|Φi⟩ + G

(+)
0,i V |Ψ(+)

i ⟩ = (1 + G+
0,iV + (G+

0,iV )2 + · · · )|Φi⟩ = (1 + G+
i V )|Φi⟩,

G+
0,i = G+

0 (Ei), G+
i = G+(Ei)

V |Ψ(+)
i ⟩ =V (1 + G+

i V )|Φi⟩ ≡ T (Ei)|Φi⟩
T (E) =V (1 + G+(E)V )

|Ψ(+)
i ⟩ =

(
1 + G+

0 (Ei)T (Ei)
)
|Φi⟩

Since |Ψ(+)
i ⟩ and |Φi⟩ are linked by a unitary transformation, we can write

⟨Ψ(+)
j |Ψ(+)

i ⟩ =⟨Φj|Φi⟩

While we can write

T ji =⟨Φj|V |Ψ(+)
i ⟩ = ⟨Φj|Ti|Φi⟩

which yields to

⟨Ψ(+)
j |Ψ(+)

i ⟩ =⟨Φj|Φi⟩ + ⟨Φj|G+
0iTi|Φi⟩ + ⟨Φj|T ∗

j G+∗
0,j |Φi⟩ + ⟨Φj|T ∗

j G+∗
0,jG

+
0,iTi|Φi⟩

Thus, 75

−Im T ii =π
∑

k

δ(Ei − Ek)|T ik|2

75

0 =
1

Ei − Ej + i0
⟨Φj |Ti|Φi⟩ +

1
Ej − Ei − i0

⟨Φj |T ∗
j |Φi⟩

+
∑

k

⟨Φj |T ∗
j G+∗

0,j |Φk⟩⟨Φk|G+
0,iTi|Φi⟩

=
1

Ei − Ej + i0
⟨Φj |Ti|Φi⟩ +

1
Ej − Ei − i0

⟨Φj |T ∗
j |Φi⟩

+
∑

k

1
Ej − Ek − i0

1
Ei − Ek + i0

⟨Φj |T ∗
j |Φk⟩⟨Φk|Ti|Φi⟩

=
(

P
1

Ei − Ej
− iπδ(Ei − Ej)

)
(T ji − T ∗

ij)

+
1

Ej − Ei − i0

∑
k

(
1

Ei − Ek + i0
− 1

Ej − Ek − i0

)
T ∗

kjT ki

=
(

P
1

Ei − Ej
− iπδ(Ei − Ej)

)
(T ji − T ∗

ij)

+
1

Ej − Ei − i0

∑
k

(
P

1
Ei − Ek

− P
1

Ej − Ek
− iπ

(
δ(Ei − Ek) + δ(Ej − Ek)

))
T ∗

kjT ki

=
(

P
1

Ei − Ej
− iπδ(Ei − Ej)

)
(T ji − T ∗

ij)

−
(

P
1

Ei − Ej
− iπδ(Ei − Ej)

) ∑
k

(
P

1
Ei − Ek

− P
1

Ej − Ek
− iπ

(
δ(Ei − Ek) + δ(Ej − Ek)

))
T ∗

kjT ki
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This equation in fact is equivalent to S†S = 1. 76

The optical theorem written below takes the same value as the equation above.
77

Im f(0) =
ki

4π

∫
dΩk|f(θk)|2

Thus,

(T ji − T ∗
ij) =

∑
k

(
P

1
Ei − Ek

− P
1

Ej − Ek
− iπ

(
δ(Ei − Ek) + δ(Ej − Ek)

))
T ∗

kjT ki

Let us have i = j, and we obtain

2iIm T ji =
∑

k

−2iπδ(Ei − Ek)|T ki|2

76

(1 + T †)(1 + T ) =1

−(T + T †) =T †T

2πiδ(Ei − Ej)(T ij − T †
ij) = − (2πi)2

∑
k

δ(Ei − Ek)δ(Ek − Ej)T
†
ikT kj

2πiδ(Ei − Ej)(T ij − T ∗
ji) =4π2δ(Ei − Ej)

∑
k

δ(Ei − Ek)T ∗
kiT kj

wherei = j, weobtain − Im T ii =π
∑

k

δ(Ei − Ek)|T ik|2

77

∑
k

δ(Ei − Ek) =
∫

dk k2
kδ(

~2

2m
(k2

i − k2
k))

∫
dΩk

=
2m

~2

∫
dk k2

k

1
2kk

δ(ki − kk)
∫

dΩk

f(θij) = − 2m

~2

(2π)3

4π
T ij

Im f(0) =π
2m

~2

∫
dkk

1
2kk

δ(ki − kk)k2
k

~2

2m

4π

(2π)3

∫
dΩk|f(θk)|2

=
ki

4π

∫
dΩk|f(θk)|2




