
Orbital Angular Momentum: Symmetry and Conservation (cont.2) 
 
Algebraic Handling for Eigenstate of Angular Momentum  
The relational equations for the eigenfunction of angular momentum (35)(40) are 
expressed with specific formations of eigenfunction. The derivation of an equation (40) 
is considered relatively difficult. Indeed, these equations can be solved solely by the 
commutation relations (41a~c) without any knowledge for specific formations of the 
eigenfunction. In order to explain this fact, we take eigenfunction as: 

  

To derive (27), we used only , and Hermitian of  as a tool. 

Thus, in the same manner, we can describe the following for (42): 

     
In other words, an inclusion of the upper and lower limit of  is found. In the next step, 

the commutator  of (41b) is operated upon ,  

  

We can say that  takes the eigenfunction that belongs to the eigenvalue 

 of . To describe this: 

    
With a fixed , the upper limit of  we write , and the lower limit: , then it 
should be: 

   
Conduct an operation for the first equation on , and for the latter equation, conduct 
an operation on , also, to transform the equation (41c) by using (42) then: 

  
So, we can say: 

    
From (43), the possible values of should be the numbers with the difference 1, (we 
have not yet defined them as integer) hence: 



    positive integer or 0 
With the equation (45), the following is derived: 

    
What the equation above implies is the fact  takes a half integer or 0. To write the 

upper limit as , then  takes either 0 or positive integer, therefore: 

    
From the equation (45): 

    
In comparison with (47) to (35a), we can find what is described by  in here, 
corresponds to what we have written in . 

Moreover, the inner product of  can be calculated by using (43): 

  

Thus, the coefficient of (43) is defined as: 

   
The phase factor is yet to be defined, though we usually put 1. 
By following these steps, relationships such as (27), (35a), (35b), (40) are defined, 
however, it is important to be aware of the fact that in the discussions above, the value 

of (here expressed as ) are defined as 0, integer or a half odd integer, thus the integer 
is not necessarily taken, as we can see in (46). We can intuitively learn of the value  
when it is a half odd integer, for example, the wavefunction cannot take univalence 

spatially, by picturing the images of a specific wavefunction. An example for  taking a 
half odd integer can be  spin. 
 
Invariant for Infinitesimal Transformation 
As we have learned, Hamiltonian is related to the time progress operator, and the 
invariant for the operator can be considered as energy. In the same way, conservation of 
momentum and conservation of angular momentum are linked to the symmetry of 
general systems 
----Fig.6-3------- 



First, let’s consider for a new coordinate system, in which the coordinate axis is 
conducted a parallel translation by . (fig.6.3a) An old point for  moved to: 

    
The momentum of both coordinate systems remains constant: 

    
We write the wavefunction in an old coordinate system as , and the one in a new 
coordinate system as . Since  and  represents the same points, the values for the 
wavefunction supposed to remain constant even after the coordinate translation is 
conducted: 

    
Or rather, rewrite  in the form , and operate Tayler’s expansion in terms of : 

   
The equation above refers to the operator that represents the infinitesimal coordinate 
transformation of (49) to be the following: 

    

In correspondence to the coordinate transformation, Hamiltonian is also transformed to 
be: 

      
In accordance with the infinitesimal parallel transformation, we can conclude that 

Hamiltonian is invariable against the event: , and the displacement 

directional component of the momentum  is transformed with Hamiltonian that is 
equivalance. Inversely, if there was an existence of the potential within a system that 
can possibly break its uniformity, the momentum will not be conserved because the 
particles are scattered and the momentum is exchanged.  
Now, we consider a new coordinate system, in which the coordinate axis is rotated about 

a fixed unit vector  by . (fig.6.3b) The point  from an old coordinate 
system can be found in the new coordinate system at: 

    
Also, 

    



For Tayler’s expansion: 

  

The angular momentum operator is found in the equation, which implies 

the operator with infinitesimal rotation: 

   
For the infinitesimal transformation , Hamiltonian is: 

  
Therefore, when the system holds the invariance of Hamiltonian at infinitesimal 

rotation: , we can also conclude that component of angular momentum  

toward its axis direction and Hamiltonian can be exchanged. These two facts are 
understood to be identical. 
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