Orbital Angular Momentum: Symmetry and Conservation (cont.)

Conservation of Orbital Angular Momentum (The momentum for a single particle in the central force field)

The central force is the "conservative force", and thus the potential energy can be defied.
Where the vector of the force is $\boldsymbol{F}(\boldsymbol{r})$,

$$
\begin{equation*}
F_{x}=-\frac{\partial V}{\partial x}, \quad F_{y}=-\frac{\partial V}{\partial y}, \quad F_{z}=-\frac{\partial V}{\partial z} \tag{12}
\end{equation*}
$$

We can define a univalent scalar function $V(\boldsymbol{r})$ (potential function, potential energy) about a position vector r. For the central force field, $V(r)$ is a function exclusively related to the distance from the origin $r=|\boldsymbol{r}|$, that is $V(\boldsymbol{r})=V(r)$. At this moment, Hamiltonian for a particle may be:

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r) \tag{13}
\end{equation*}
$$

By using the relational functions $(6 \mathrm{a} \sim \mathrm{b})(11 \mathrm{a} \sim \mathrm{b})$, we can establish the following for the Hamiltonian (13):

$$
\begin{equation*}
\left[\hat{\ell}_{\alpha}, H\right]=0, \quad\left[\hat{\ell}^{2}, H\right]=0 \quad(\alpha=x, y, z) \tag{14}
\end{equation*}
$$

$\hat{\ell}_{\alpha \text { is operated with a kinetic energy term }}\left(\hbar^{2} / 2 m\right) \Delta \rrbracket$ in (11a~b), and in (6a~b), $\hat{\ell}_{\alpha \text { is }}$ operated with a spherically symmetric potential term ${ }^{V}(r)$.

From what we have established in (14), each component of the orbital angular momentum operators $\hat{\ell}_{x}, \hat{\ell}_{y}, \hat{\ell}_{z}$ are operated with the Hamiltonian, hence we can define an eigenfunction of the Hamiltonian as to match with the eigenfunction of the orbital angular momentum operators $\cdot \hat{\ell}^{2}$ or either one of $\hat{\ell}_{x}, \hat{\ell}_{y}, \hat{\ell}_{z}$. This is the law of conservation of orbital angular momentum from quantum mechanical point of view. As we can find in (10), each component of the orbital angular momentum $\hat{\ell}_{x}, \hat{\ell}_{y}, \hat{\ell}_{z}$ does not operate with one another, if the energy eigenfunction is picked to match with the certain eigenfunctions $\hat{\ell}^{2}$ and $\hat{\ell}_{=}$simultaneously, there is no way that we can take the eigenfunctions of $\bar{\ell}_{x}$ or $\hat{\ell}_{u}$. In general, the energy eigenfunction may be taken to match with the eigenfunction of $\tilde{\mathscr{L}}^{2}$ and $\tilde{\ell}_{z}$.

Figure.6-1(polar coordinates: abbr.)

Orbital Angular Momentum in Polar Coordinates

It is possible to further the discussion on the orbit angular momentum operator without using any representations of ${ }^{\theta, \phi}$, however, in this section, we write off only the results represented with θ, ϕ. The polar coordinates r, θ, ϕ are defined as shown in the Fig.6.1. In formula, we can write as:

$$
\begin{align*}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \tag{15}\\
& z=r \cos \theta
\end{align*}
$$

Or inversely,

$$
\begin{align*}
r & =\sqrt{x^{2}+y^{2}+z^{2}}, \\
\cos \theta & =z / \sqrt{x^{2}+y^{2}+z^{2}}, \\
\tan \phi & =y / x, \\
0 & \leq \theta \leq \pi, \quad 0 \leq \phi<2 \pi
\end{align*}
$$

Based on these formulas, we can conduct polar coordinates transformation about (5):

$$
\begin{align*}
& \hat{\ell}_{x}=i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right), \\
& \hat{\ell}_{y}=i \hbar\left(-\cos \phi \frac{\partial}{\partial \theta}+\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right), \\
& \hat{\ell}_{z}=-i \hbar \frac{\partial}{\partial \phi}, \tag{16}\\
& \hat{\ell}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]
\end{align*}
$$

We leave this calculation of the variable transformation up to the readers.

Eigenfunction of Orbital Angular Momentum Operators $\hat{\ell}^{2}$ and $\hat{\ell}_{z}$

As a first step, we try to obtain the eigenfunction of $\hat{\ell}^{2}$. We define $\varphi_{\ell}(x, y, z)$ as, harmonic function (we call harmonic polynomial) of the ℓ degrees homogeneous polynomial of x, y, z. Harmonic function is the function that satisfies following:

$$
\begin{equation*}
\Delta \varphi=0 \tag{17}
\end{equation*}
$$

In this occasion, φ_{ℓ} can be expressed as:

$$
\begin{equation*}
\varphi_{\ell}(x, y, z)=\sum_{n_{x}, n_{y}, n_{z} \geq 0}^{\ell} \sum_{\left(n_{x}+n_{y}+n_{z}=\ell\right)} a_{n_{x} n_{y} n_{z}} x^{n_{x}} y^{n_{0}} z^{n_{x}} . \tag{18}
\end{equation*}
$$

In polar coordinates, the formula can be reformed as:

$$
\begin{equation*}
\varphi_{\ell}(x, y, z)=r^{\ell} \psi_{\ell}(\theta, \phi) \tag{19}
\end{equation*}
$$

By conducting Laplacian operation, and taking into account that the expression (9) and φ_{ℓ} : are the harmonic functions, we can get:

$$
\begin{equation*}
\Delta \varphi_{\ell}(x, y, z)=\frac{\ell(\ell+1)}{r^{2}} \varphi_{\ell}-\frac{1}{r^{2} \hbar^{2}} \hat{\ell}^{2} \varphi_{\ell}=0 \tag{20}
\end{equation*}
$$

Therefore, the harmonic polynomial function is considered to be the eigenfunction of $\hat{\ell}^{2}$ with an eigenvalue $\hbar^{2} \ell(\ell+1)$.

$$
\begin{equation*}
\hat{\ell}^{2} \varphi_{\ell}(x, y, z)=\hbar^{2} \ell(\ell+1) \varphi_{\ell}(x, y, z) . \tag{21}
\end{equation*}
$$

We emphasize again, that $\hat{\ell}^{2}$ does not include $(\partial / \partial r)$.
When $\hat{\ell}_{z}$ holds the eigenfunction $\varphi_{\ell m}$ with an eigenvalue $\hbar m$, and given that $\hat{\ell}_{z}=-i \hbar(\partial / \partial \phi)$ as stated in (16), we can write as:

$$
\begin{equation*}
\hat{\ell}_{z} \varphi_{\ell m}(x, y, z)=-i \hbar \frac{\partial}{\partial \phi} \varphi_{\ell m}(x, y, z)=\hbar m \varphi_{\ell m}(x, y, z) \tag{22}
\end{equation*}
$$

The differential equation (22) can be easily solved despite that it is the function of ϕ, in which $\varphi_{\ell m} \sim e^{i m \phi}$, with a reference to (19), we can obtain:

$$
\begin{equation*}
\varphi_{\ell m}(x, y, z)=r^{\ell} N_{\ell m} \frac{e^{i m \phi}}{\sqrt{2 \pi}} P_{\ell m}(\cos \theta) \tag{23}
\end{equation*}
$$

The above applies only if $N_{\ell m}$ was a constant number, and $P_{\ell m}(\cos \theta)$ was an angle θ, which being defined upon dependence of ℓ and $m . \theta$ is limited within the region $\pi \geq \theta \geq 0$, thus, there should be no confusion over the ways of expressing the angle θ or $\cos \theta$.
Now, let's consider over the polynomial function $\varphi_{\ell m}(x, y, z)$. The zero degree polynomial function is apparently:

$$
\begin{equation*}
\varphi_{00}(x, y, z)=\frac{1}{\sqrt{4 \pi}} \tag{24}
\end{equation*}
$$

For the first-degree homogeneous expression, there exists the following three:

$$
\begin{align*}
& \varphi_{1 x}=\frac{\sqrt{3}}{2 \sqrt{\pi}} x \\
& \varphi_{1 y}=\frac{\sqrt{3}}{2 \sqrt{\pi}} y \tag{25}\\
& \varphi_{1 z}=\frac{\sqrt{3}}{2 \sqrt{\pi}} z
\end{align*}
$$

which are the solutions for the Laplace's equation $\Delta \varphi=0$, also they are what should be obtained for $\ell=1$. As for $\varphi_{1 z}$, it is consisted of the eigenfunction that satisfies $\hbar m=0$ for $\hat{\ell}_{z}$, and satisfies the following condition:

$$
\hat{\ell}_{z} \varphi_{1 z}=0
$$

On the other hand, $\varphi^{1 x}$ and ${ }^{\varphi_{1 y}}$ may be stated as:

$$
\hat{\ell}_{z} \varphi_{1 x}=-\frac{\hbar}{i} \varphi_{1 y}, \quad \hat{\ell}_{z} \varphi_{1 y}=\frac{\hbar}{i} \varphi_{1 x}
$$

That are not consisted of the eigenfunction of $\hat{\ell}_{z}$, yet the two expressions above when combined together would be:

$$
\hat{\ell}_{z}\left(\varphi_{1 x} \pm i \varphi_{1 y}\right)=(\pm \hbar)\left(\varphi_{1 x} \pm i \varphi_{1 y}\right)
$$

Indicating that each and every value of φ may be consisting the eigenfunction with eigenvalue $\pm \hbar$ of $\hat{\ell}_{z}$. In this way:

$$
\begin{align*}
\varphi_{11} & =-\frac{1}{\sqrt{2}}\left(\varphi_{1 x}+i \varphi_{y}\right)=-\sqrt{\frac{3}{8 \pi}}(x+i y)=-\sqrt{\frac{3}{8 \pi}} r \sin \theta e^{i \phi}, \\
\varphi_{10} & =\varphi_{1 z}=\sqrt{\frac{3}{4 \pi}} z=\sqrt{\frac{3}{4 \pi}} r \cos \theta \\
\varphi_{1-1} & =\frac{1}{\sqrt{2}}\left(\varphi_{1 x}-i \varphi_{1 y}\right)=\sqrt{\frac{3}{8 \pi}}(x-i y)=\sqrt{\frac{3}{8 \pi}} r \sin \theta e^{-i \phi}
\end{align*}
$$

Each value of φ is the eigenfunction that takes eigenvalues $\ell=1, m=+1,0,-1$. In defining φ_{11}, there is not much of significance in the meanings for making a negative multiplication to the equation for now.

Although, when $\ell=2$, the homogeneous polynomials in the second degree are found to be $x^{2}, y^{2}, z^{2}, y z, z x, x y$, all of them would not necessarily turn out to be the solution for the Laplace's equation. Given $x^{2}+y^{2}+z^{2}=r^{2}$, among the six of the second-degree polynomials, five linear combinations of those can be the independent eigenfunction of $\ell=2$. In most of the times, the following five linear combinations are chosen:

$$
\begin{align*}
\varphi_{2,3 z^{2}-r^{2}} & =\sqrt{\frac{5}{16 \pi}}\left(3 z^{2}-r^{2}\right)=\sqrt{\frac{5}{16 \pi}} r^{2}\left(3 \cos ^{2} \theta-1\right), \\
\varphi_{2, x^{2}-y^{2}} & =\sqrt{\frac{15}{16 \pi}}\left(x^{2}-y^{2}\right)=\sqrt{\frac{15}{16 \pi}} r^{2} \sin ^{2} \theta \cos 2 \phi, \\
\varphi_{2, y z} & =\sqrt{\frac{15}{4 \pi}} y z=\sqrt{\frac{15}{4 \pi}} r^{2} \sin \theta \cos \theta \sin \phi, \tag{26}\\
\varphi_{2, z x} & =\sqrt{\frac{15}{4 \pi}} z x=\sqrt{\frac{15}{4 \pi}} r^{2} \sin \theta \cos \theta \cos \phi, \\
\varphi_{2, x y} & =\sqrt{\frac{15}{4 \pi}} x y=\sqrt{\frac{15}{4 \pi}} r^{2} \sin ^{2} \theta \sin 2 \phi .
\end{align*}
$$

These are the solutions for the Laplace's equation, and it is easy to notice the eigenfunction of $\hat{\ell}^{2}$, which correspond with $\ell=2$. Although, they are not the eigenfunction of $\hat{\ell}_{z}$, as it was for $\ell=1$, we can still obtain the eigenfunctions for $m= \pm 2$ and $m= \pm 1$ respectively by establishing the linear combination of $\varphi_{2, x^{2}-y^{2}}, \varphi_{2, x y}, \varphi_{2, y z}$, and $\varphi_{2, z x}$. In rewriting the eigenfunction in the actual form of $\hat{\ell}_{z}$:

$$
\begin{align*}
\varphi_{22} & =\frac{1}{\sqrt{2}}\left(\varphi_{2, x^{2}-y^{2}}+i \varphi_{2, x y}\right)=\frac{\sqrt{15}}{4 \sqrt{2 \pi}} r^{2} \sin ^{2} \theta e^{2 i \phi}, \\
\varphi_{21} & =-\frac{1}{\sqrt{2}}\left(\varphi_{2, z x}+i \varphi_{2, y z}\right)=-\frac{\sqrt{15}}{2 \sqrt{2 \pi}} r^{2} \sin \theta \cos \theta e^{i \phi}, \\
\varphi_{20} & =\varphi_{2,3 z^{2}-r^{2}}=\frac{\sqrt{5}}{2 \sqrt{4 \pi}} r^{2}\left(3 \cos ^{2} \theta-1\right), \\
\varphi_{2-1} & =\frac{1}{\sqrt{2}}\left(\varphi_{2, z x}-i \varphi_{2, y z}\right)=\frac{\sqrt{15}}{2 \sqrt{2 \pi}} r^{2} \sin \theta \cos \theta e^{-i \phi}, \\
\varphi_{2-2} & =\frac{1}{\sqrt{2}}\left(\varphi_{2, x^{2}-y^{2}}-i \varphi_{2, x y}\right)=\frac{\sqrt{15}}{4 \sqrt{2 \pi}} r^{2} \sin ^{2} \theta e^{-2 i \phi}
\end{align*}
$$

Based on the results showing above, where $\ell=0,1,2$, the eigenfunction of the angular momentum $\hbar \ell$ exists as many as $2 \ell+1$, and each one of them corresponds $m=\ell, \ell-1, \cdots,-\ell+1,-\ell$. Which indicates that it is also established at any ℓ. To derive $\ell \geq|m|$, we take the following steps:
Using the Hermitian of the following that are equally established, so we can derive:

$$
\begin{aligned}
& \int\left\{\varphi_{\ell m}^{*} \hat{\ell}_{\alpha}^{2} \varphi_{\ell m}\right\} \sin \theta d \theta d \phi=\int\left\{\left|\hat{\ell}_{\alpha} \varphi_{\ell m}\right|^{2}\right\} \sin \theta d \theta d \phi \geq 0 \\
& \int\left\{\varphi_{\ell m}^{*}\left(\hat{\ell}^{2}-\hat{\ell}_{z}^{2}\right) \varphi_{\ell m}\right\} \sin \theta d \theta d \phi \\
&=\left(\ell(\ell+1)-m^{2}\right) \hbar^{2} \int\left|\varphi_{\ell m}\right|^{2} \sin \theta d \theta d \phi \geq 0
\end{aligned}
$$

$\ell(\ell+1) \geq m^{2}$, and assume m to be the integer then:

$$
\begin{equation*}
\ell \geq m \geq-\ell \tag{27}
\end{equation*}
$$

For the appropriate selection of the constant numbers that are shown at the top of (25) $\sim\left(26^{\prime}\right)$, and $N_{\ell m}$ of (24), it is common and advantageous to normalize the wavefunctions of square-integrable measurable functions to be 1 :

$$
\begin{equation*}
\int\left|\varphi_{\ell m}(x, y, z)\right|^{2} \sin \theta d \theta d \phi=N_{\ell m}^{2} r^{2 \ell} \int_{0}^{\pi} \sin \theta d \theta\left|P_{\ell m}(\cos \theta)\right|^{2}=r^{2 \ell} \tag{28}
\end{equation*}
$$

Spherical Functions (Abbrev. in lectures)
Through (25) $\sim(26$ '), we have deepen our understanding over the angular momentum operator $\hat{\ell}^{2}$, as well as the eigenfunction $1 \varphi_{\ell m}$ of $\hat{\ell}_{z}$. To consider them in more generalized terms, it is possible to take (21) as differential equations in terms of θ. Moreover, the expression for $\hat{\ell}^{2}$ given in (16) and (23) clarifies the conditions for $P_{\ell m}(\cos \theta)$ to satisfy the following differential equations:

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P_{\ell m}(\cos \theta)}{d \theta}\right)+\left(\ell(\ell+1)-\frac{m^{2}}{\sin ^{2} \theta}\right) P_{\ell m}(\cos \theta)=0 \tag{29}
\end{equation*}
$$

To conduct the variable transformation with $\omega=\cos \theta$, we can also write as:

$$
\frac{d}{d \omega}\left[\left(1-\omega^{2}\right) \frac{d P_{\ell m}(\omega)}{d \omega}\right]+\left(\ell(\ell+1)-\frac{m^{2}}{1-\omega^{2}}\right) P_{\ell m}(\omega)=0
$$

The differential equation showing above is well scrutinized over a period of time that it is called the associated Legendre's differential equations, and its solution $P_{\ell m}(\omega)$ is called an associated Legendre function. As we have analyzed in (27), ${ }^{\ell}$ takes either 0 or the positive integer, and m takes either 0 or positive and negative integer within the region $\ell \geq m \geq-\ell$.
In (29'), where $m=0$, the differential equation can be:

$$
\begin{equation*}
\frac{d}{d \omega}\left[\left(1-\omega^{2}\right) \frac{d P_{\ell}(\omega)}{d \omega}\right]+\ell(\ell+1) P_{\ell}(\omega)=0 \tag{30}
\end{equation*}
$$

The differential equation showing above is called Legendre's differential equations, and its solution is called Legendre function. $P_{\ell}(\omega)$ takes ℓ_{1}-degree polynomials about ω, where ${ }^{\ell}$ is the integer or 0 , so we can write as:

$$
\begin{equation*}
P_{\ell}(\omega)=\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d \omega^{\ell}}\left(\omega^{2}-1\right)^{\ell}=\frac{(-1)^{\ell}}{2^{\ell} \ell!} \frac{d^{\ell}}{d \omega^{\ell}}\left(1-\omega^{2}\right)^{\ell} \tag{31}
\end{equation*}
$$

To make specific for the formations when $\ell=0,1,2,3$,

$$
\begin{aligned}
& P_{0}(\omega)=1 \\
& P_{1}(\omega)=\omega \\
& P_{2}(\omega)=(1 / 2)\left(3 \omega^{2}-1\right) \\
& P_{3}(\omega)=(1 / 2)\left(5 \omega^{3}-2 \omega\right)
\end{aligned}
$$

The coefficients $(-1)^{\ell} /\left(2^{\ell} \ell!\right)$ are arbitrarily decided.
Generally, the associated Legendre function $P_{t m}(\omega)$ is expressed by using Legendre function $P_{\ell}(\omega)$ when $m \neq 0$:

$$
\begin{equation*}
P_{\ell m}(\omega)=\left(1-\omega^{2}\right)^{|m| / 2} \frac{d^{|m|}}{d \omega^{|m|}} P_{\ell}(\omega) \tag{32}
\end{equation*}
$$

The constant $N_{\ell m}$ can be defined by the general expression of $P_{\ell m}$:

$$
\begin{equation*}
N_{\ell m}=\sqrt{\frac{2 \ell+1}{2} \frac{(\ell-|m|)!}{(\ell+|m|)!}} \tag{33}
\end{equation*}
$$

For $\ell=0,1,2$, it is not as difficult to prove the given equations (25) $\sim\left(26^{\prime}\right)$ satisfies the equations (31)~(33). In order to show this in generalization, we can apply the Leibniz rule over and over. (see. Tetsuro Inui "Tokushu-kansu" Iwanami zensho)
To put in order, we can say that the eigenfunction of orbital angular momentum $\hat{\ell}^{2}$ and $\hat{\ell}$, are:

$$
\begin{gather*}
Y_{\ell m}(\theta, \phi)=\Theta_{\ell m}(\theta) \Phi_{m}(\phi) \tag{34a}\\
\Theta_{\ell m}(\theta)=(-1)^{\frac{m+|m|}{2}}\left[\frac{2 \ell+1}{2} \frac{(\ell-|m|)!}{(\ell+|m|)!}\right]^{1 / 2} P_{\ell m}(\cos \theta) \tag{34b}\\
\Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi} \tag{34c}
\end{gather*}
$$

$Y_{\ell m}(\theta, \phi)$ is called spherical function or spherical surface harmonics, and the operation of $\hat{\ell}^{2}, \hat{\ell}_{z}$ can give the results:

$$
\begin{gather*}
\hat{\ell}^{2} Y_{\ell m}=\hbar^{2} \ell(\ell+1) Y_{\ell m} \tag{35a}\\
\hat{\ell}_{z} Y_{\ell m}=\hbar m Y_{\ell m} \tag{35b}
\end{gather*}
$$

The factor $(-1)^{\frac{m+|m|}{2}}$ in (34b) is usually taken, and the reason why we need this particular factor will be found in later on, but for now, think of it as an idiomatic expression. In (24) $\sim\left(25^{\prime}\right)$, what is written in terms of $\varphi_{\ell m}$ can be expressed in spherical function:

$$
\varphi_{\ell m}(r, \theta, \phi)=r^{\ell} Y_{\ell m}(\theta, \phi)
$$

Spherical function $Y_{\ell m}(\theta, \phi)$ is considered as the eigenfunction, which includes Hermitian operator $\hat{\ell}^{2}$ and $\hat{\ell}_{z}$ with the eigenvalue ${ }^{\hbar^{2} \ell(\ell+1)}$ and ${ }^{\hbar m}$. Commonly, it is known that the eigenfunctions of Hermitian operators with different eigenvalues are orthogonal to one another; hence there is an orthonormality relationship to be established. It is of course possible to make a proof by using the specific formations of the spherical function, though it may take a tremendous time and effort to complete.

Spatial Images of Spherical Function

To have an ability to picture the images of the wavefunctions can be a very essential matter henceforward. To provide an assistance to improve the skill, we will show the behaviors of the spherical functions in a space (Fig.6.2). In the figure, also seen in (24), (25), (26), the value ℓ represents the number of the nodal surface for the wavefunction on the spherical surface. (Momentum $/ \hbar$) corresponds to the number of nodes for the unit length of the plane waves, in the same way, (angular momentum $/ \hbar$) corresponds to the number of nodal surface for the oscillating body on spherical surface. The value $|m|$ characterizes the form of the wavefunction when rotated about the z-axis. Therefore, the parity of $\ell:(-1)^{\ell}$ may give a sign changing in wavefunction toward a space inversion $r \rightarrow-r$. Although, there is no reason for Hamiltonian and a space to have a special attention to z-axis, thus it may seem quite strange for the wavefunction and $\hat{\ell}_{z}$ of their eigenvalues to hold a special meaning; it is simply a matter of how the base is selected but nothing else.

-----Fig.6-2-----

Step-up Operator and Step-down Operator (abbrev. in lecture)
Let's take a closer look at the associated Legendre differential equations $P_{\ell m}(\omega)$. We define $m \geq 0$, and differentiate (32) in terms of ω then multiply by $\sqrt{1-\omega^{2}}$ to obtain:

$$
\begin{equation*}
\sqrt{1-\omega^{2}} \frac{d}{d \omega} P_{\ell m}=-\frac{m \omega}{\sqrt{1-\omega^{2}}} P_{\ell m}+P_{\ell m+1} \tag{37a}
\end{equation*}
$$

We can reform the associated Legendre differential equations (29'):

$$
\begin{aligned}
\left\{\sqrt{1-\omega^{2}} \frac{d}{d \omega}-\frac{(m+1) \omega}{\sqrt{1-\omega^{2}}}\right\} & \left\{\sqrt{1-\omega^{2}} \frac{d}{d \omega}+\frac{m \omega}{\sqrt{1-\omega^{2}}}\right\} P_{\ell m} \\
& +(\ell(\ell+1)-m(m+1)) P_{\ell m}=0
\end{aligned}
$$

Take (37a) for the first clause, and define $m+1 \rightarrow m$:

$$
\begin{equation*}
\sqrt{1-\omega^{2}} \frac{d}{d \omega} P_{\ell m}=\frac{m \omega}{\sqrt{1-\omega^{2}}} P_{\ell m}-(\ell+m)(\ell-m+1) P_{\ell m-1} \tag{37b}
\end{equation*}
$$

Keep in mind that $m \geq 1$ in (37b). Reconstitute the variable from ω : to ${ }^{\theta}$, by $\omega=\cos \theta$:

$$
\frac{d}{d \theta}=-\sin \theta \frac{d}{d(\cos \theta)}=-\sqrt{1-\omega^{2}} \frac{d}{d \omega}
$$

Each equation (37a~b) then, be reformed as:

$$
\begin{gather*}
m \geq 0: \quad \frac{d P_{\ell m}}{d \theta}=m \cot \theta P_{\ell m}-P_{\ell m+1} \\
m \geq 1: \quad \frac{d P_{\ell m}}{d \theta}=-m \cot \theta P_{\ell m}+(\ell+m)(\ell-m+1) P_{\ell m-1}
\end{gather*}
$$

In the next step, rewrite the equation of $P_{\ell m}$: by the terms of $\Theta_{\ell m}$ using (34b):

$$
\begin{array}{ll}
m \geq 0: & \frac{d \Theta_{\ell m}}{d \theta}=m \cot \theta \Theta_{\ell m}+\sqrt{(\ell-m)(\ell+m+1)} \Theta_{\ell m+1} \\
m \geq 1: & \frac{d \Theta_{\ell m}}{d \Delta}=-m \cot \theta \Theta_{\ell m}-\sqrt{(\ell+m)(\ell-m+1)} \Theta_{\ell m-1}
\end{array}
$$

Given $\Theta_{\ell 1}=-\Theta_{\ell-1}$, we can obtain the second equation by defining $m=0$ for the first equation. In this way, we can consider the limit of the second equation $m \geq 1$ as $m \geq 0$. Now, we substitute $\Theta_{\ell|m|}=(-1)^{m} \Theta_{\ell-|m|}$ into the first equation to obtain:

$$
\frac{d \Theta_{\ell-|m|}}{d \theta}=|m| \cot \theta \Theta_{\ell-|m|}+(-1)^{m} \sqrt{(\ell-|m|)(\ell+|m|+1)} \Theta_{\ell|m|+1}
$$

Where it is $m<0$, then $|m|=-m,|m|+1=-m+1=-(m-1)$,

$$
\Theta_{\ell|m|+1}=\Theta_{\ell-(m-1)}=(-1)^{m-1} \Theta_{\ell m-1}
$$

Therefore, the first equation can be finally reformed as:

$$
\frac{d \Theta_{\ell m}}{d \theta}=-m \cot \theta \Theta_{\ell m}-\sqrt{(\ell+m)(\ell-m+1)} \Theta_{\ell m-1}, \quad(m<0)
$$

Which indicates that the second equation is valid under the condition of $m<0$, and in the same way, through the second equation, we can derive the validity of the first equation under the condition of $m<0$. In general, without any concerns over the sings of m, the recurrence formula can be determined:

$$
\begin{align*}
\frac{d \Theta_{\ell m}(\theta)}{d \theta} & =+m \cot \theta \Theta_{\ell m}(\theta)+\sqrt{(\ell-m)(\ell+m+1)} \Theta_{\ell m+1}(\theta) \tag{38}\\
& =-m \cot \theta \Theta_{\ell m}(\theta)-\sqrt{(\ell+m)(\ell-m+1)} \Theta_{\ell m-1}(\theta)
\end{align*}
$$

We define new angular momentum operators $\hat{\ell}_{+}, \hat{\ell}_{-}$as follows:

$$
\begin{align*}
& \hat{\ell}_{+}=\hat{\ell}_{x}+i \hat{\ell}_{y}=\hbar e^{i \phi}\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) \\
& \hat{\ell}_{-}=\hat{\ell}_{x}-i \hat{\ell}_{y}=\hbar e^{-i \phi}\left(-\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) \tag{39}
\end{align*}
$$

In considering $\frac{\partial}{\partial \Delta} Y_{\ell m}=i \hbar m Y_{\ell m}$, the two equations from (38) represent the operation of the spherical function to $\hat{\ell}_{ \pm}$:

$$
\begin{equation*}
\hat{\ell}_{ \pm} Y_{\ell m}(\theta, \phi)=\hbar \sqrt{(\ell \mp m)(\ell \pm m+1)} Y_{\ell m \pm 1}(\theta, \phi) \tag{40}
\end{equation*}
$$

That is to say, the new operator $\hat{\ell}_{ \pm}$has an ability to change the eigenstate of the angular momentum (ℓ, m) to be ($\ell, m \pm 1$), and the reason why we picked a certain sign for the equations (25) $\sim\left(26^{\prime}\right)$ was to avoid the change in the signs of the equation at (40). $\hat{\ell}_{+}, \hat{\ell}_{-}$are often called step-up operator and step-down operator respectively. The commutation relation of $\hat{\ell}_{ \pm}$can be determined with definition equation (39) and (10) to be written as:

$$
\begin{align*}
& {\left[\hat{\ell}_{+}, \hat{\ell}_{-}\right]=2 \hbar \hat{\ell}_{z},} \tag{41a}\\
& {\left[\hat{\ell}_{ \pm}, \hat{\ell}_{z}\right]=\mp \hbar \hat{\ell}_{ \pm} .} \tag{41b}
\end{align*}
$$

As an appendix, we write out the equation of $\hat{\ell}^{2}$ reformed in terms of $\hat{\ell}_{ \pm}$as well as in $\hat{\ell}_{z}:$

$$
\begin{equation*}
\hat{\ell}^{2}=\frac{1}{2}\left(\hat{\ell}_{+} \hat{\ell}_{-}+\hat{\ell}_{-} \hat{\ell}_{+}\right)+\hat{\ell}_{z}^{2}=\hat{\ell}_{+} \hat{\ell}_{-}+\hat{\ell}_{z}^{2}-\hbar \hat{\ell}_{z}=\hat{\ell}_{-} \hat{\ell}_{+}+\hat{\ell}_{z}^{2}+\hbar \hat{\ell}_{z} . \tag{41c}
\end{equation*}
$$

