
Wavefunction of Many Electrons: Fermion System 
Particles That Obey Quantum Mechanics Are Indistinguishable 
Theoretically, particles that obey classical mechanics are distinguishable from other 
particles, and detected its movement despite that the system are consisted of many  
particles of the same kind. For the particles that obey quantum mechanics have 
completely different situations; they eventually become indistinguishable even if each 
particle are kept far apart at certain time to avoid the wavefunctions from piling up. 
This is because the wavefunction expand and gradually lying on top of the other one. 
In order to describe this situation, we consider for a system of  number particles of 
the same kind. The particle coordinates  and the spin coordinates are arranged to 
be: 

      (1) 
The Hamiltonian of the system is defined as a function of  yet, in general, it 
remains unchanged in respect to the arbitrary coordinate interchanges. Thus, the 

operator  that interchanges the coordinates and  is written as: 

      (2) 

(2) represents the commutability of the Hamiltonian with   then we can define the 

state of  particles to be the eigenstate of . Now, we investigate the eigenstate of 
.  

For the simplification, we write the wavefunction for the eigenstate with two electrons 
to be: 

        (3) 
                                                                                                  
The subscript  specifies the eigenstate. To operate theoperator to the above, one 

obtains . Here, we take  as the eigenstate of 

, and  as its eigenvalue, and then we can write the equation: 
     (4) 

If  is operated again,  and  may be interchanged twice at the initial 
wavedunction, thus goes back to the initial wavefunction: 

  (5) 



From (5), square of the eigenvalue  is gained , therefore: 
         (6) 
In general, (6) is also given for  particles so, the particles that obey quantum 
mechanics are expressed in the wavefunctions of either symmetric ( =1) or 
antisymmetric ( =－1). The sign remains the same when the coordinates of two 
particles are interchanged (symmetry), and the sign changes when the coordinates are 
interchanged (antisymmetric). 

As (2) shows, a Hamiltonian and the interchange operator  are commutative thus 
conservation of symmetric property for the wavefunction can be established. This is 
established regardless of any existence of interactions among particles. All quantum 

mechanical particles have the state either  or  in coordinate 
interchange of particles, and have no mixed state. Moreover, the choice of the state: 

 or  depends upon the charectericics of the particles and not depending 
on the state of the particles. The particles that are expressed in the symmetric 
wavefunction are called bosons, while those particles expressed in antisymmetric 
wavefunction are called fermions. Bosons obey Bose-Einstein statistics, and fermions 
obey Fermi-Dirac statistics. Fermions are commonly known as particles with half odd 
integer spin such as electron, neutron, proton, etc., and bosons are known as particles 
with integer spin such as photon. It is possible to draw a logical explanation of this fact 
within the frame of relativistic quantum mechanics.  
Symmetric Wavefunction and Antisymmetric Wavefunction 
Now let us go deep on the wavefunctions for many particles. For simplification, we 
suppose there are two particles in the central force potential with no interaction 
between the particles, and no spin-orbit interaction. The Hamiltonian then be given as: 

     (7) 
The Hamiltonian is completely separated in terms of the coordinates hence we suppose 
the wavefunctions to form the separation of variables, also: 

      (8) 

When (8) is substituted into the two particles Schrodinger’s equations, we obtain: 

     (9) 

  



Divided each side by  then: 

     

The right side first term and the second term should be consisted of and  
respectively that the invariables in each term must have no or . We write the 
invariables  for each, the equations can be reformed to: 

      (11) 

The two-particle wavefuntion can be written out based on the solution of single particle 
Schrodinger’s equations, however we notice that this wavefunction is not the 
generalized form of eigenstate for the interchanging particles coordinates. 

     (12) 
Let us consider the following: 

       (13) 
This equation should have the same eigenenergy  and should satisfy the 
eigenfunction below: 

       (14) 
Even if we take the linear combination of  and : 

     (15) 

The equation above remains the eigenfunction, which has the eigenenergy  with an 
identical Hamiltonian. 
Next, we consider the possibility for forming the eigenfunction of the particles operator 

 in such form of wavefunctions above: 

    
So,  

    or    (16) 



On the one hand, if the wavefunction of and  stays the same, we should be careful 
that the wavefunction corresponding to  do not appear. While on the other hand, 

and  has different wavefunctions, they orthogonalize to be: 

       (17) 

For example, 

     (18) 
The subscripts specify the state that wavefunctions represent as well as the 
conditions of orbit, and the spin for the wavefunction all at the same time. The single 
particle wavefunction (17) is orthonormalized and the two particles wavefunction is 

normalized to be 1 then we must take : 

    
   (± correspond to {bosons and fermions})  (19) 
Actually, normalization can be verified in following: 

  
The antisymmetric wavefunction in (19) can be expressed with determinant: 



      (20) 

The rows in the determinant are corresponding to the state of the particles, and the 
columns are corresponding to the particles coordinates. The two-particle eigenstate 
taking the eigenstate in regard with the replacement of particle coordinates may be 
expressed with the linear combination of 2! two-particle wavefunction. This 
antisymmetric property corresponds to the characteristics of the determinant.  
According to the discussions above, we also verified for the general case;  particles 
involve the interactions as long as the single particle wavefunction is determined, then 
it becomes directly applicable. Using the orthonormalized single particle wavefunction 

, the state for the  particles can be expressed as: 
 Bosons: 

  
 Fermions: 

 (21) 

A determinant wavefunction for the fermions is called a Slater determinant. The sum  
is concerned with the permutation numbers 1~ . The permutation for  numbers is 

consisted of  all together thus we have normalization constant . The 

permutation  implies conducting rearrangement in regard with the particle 
coordinates in below: 

    
 is the value for ; an even permutation takes +1 while an odd permutation 

takes –1. In this way, we have obtained the wavefunction that satisfies the symmetric 
property for composite particles yet the procedures of determining single particle 
wavefunction should be considered separately.  
Let us study the meaning of -fermion wavefunction and its expression in the second 
equation of (21). Among the single particle wavefunctions for  particles , 
suppose  and  are identical. Based on the essential characteristics that when two 



rows become exactly the same, the value for the permutation turns 0, the second 
equation in (21) identitically becomes zero. To put in other words, a single particle state 
does not hold the property for no more than single fermion. This is called the Pauli 
exclusion principle. For bosons, the same restriction cannot be derived from the first 
equation (21) so, there exists no restrictions for the particles probability, and the single 
particle quantum state is capable of holding as much identical particles as possible.  
Property of Many-Particle Wavefunction  

The square of the absolute value for single particle wavefunction  refers to the 

probability to figure out a particle in certain spatial coordinates , and spin 
coordinates . For  particles: 

      (22) 

It is the probability of finding out  particles in . If we can 
determine -1particles within  particles then what is left out should be the 
probability for the single particle. In order to show a logic in this verification,  

     (23) 

(23) is the probability of figuring out the left out single particle in ,  

    (24) 

(24) is the probability of figuring out two particles in . To write out the equation 
in regard to : 

    (25) 

Then conduct summation and integration, then with (17), 

    (26) 

(26) represents the particle density when the particles are equally filled up in both 
states and . 



     (27a) 

Then, 

      (27b) 

If 

     (28a) 
Then, 

     (28b) 

In the examples above (27)~(28), the two states have different spin densities, however, 
the two share the same particle density.  

Now, we study the two-particle density  when (27a) and (28a). Using (25), 
we can directly calculate the density. When we have the same spin in two states: 

   
The density for different spins in two states on the other hand becomes: 

   

This is because  when (28a). The difference between (29a) and 

(29b): 

   
In the region : 

       
Therefore, the density difference makes negative contribution. In the space, two 
particles in the same spins have greater repellence of each other in comparison with 



the two in the different spins. This clearly shows the existence of the Pauli exclusion 
principle acting on among fermions in space and nothing else. 
In the case of  fermions, let us calculate the probability of two particles. We take 
the sum of spin coordinates and integrals of the spatial coordinates for ~2 particles 
from  to . Based on the definition of the determinant, we can put the 
permutation (21) to the wavefunction instead of the coordinates hence, 

    
According to the orthonormalization conditions (17),  
       (31) 
A set of state consisted of ~2 particles should agree with the corresponding state as 
is shown in (31). For the rest of the first two sets may be either, 

      (32a) 
Or,    

      (32b) 
We find  has  ways to choose from 1 to , and  has -1 ways, as there are 

 ways all together. We do not need to distinguish the rest of the 
permutations as long as we conduct integrations and summations in terms of ~ . 
Here, we write out the permutation  for 1 as  then obtain the following: 

    (33) 

This is the generalization of two-particle density that corresponds to (25). In addition, 

by conducting the integrations and summations on  then, with (17) we have: 

     (34) 

Summarizing, we find equal allocation of probability to figure out the single particle. 
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