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Oct. 18 Combination and probability
Oct. 25 Random variables and probability distributions
Nov. 1 Representative probability distributions
Nov. 8 (First half) Random walk and gambler's
ruin problem

(Latter half) Brownian motion and diffusion
Nov. 22 Noise theory

Stochastic process

Only exercises are provided on
Nov. 15.
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Nov. 8 (Latter half) Brownian motion and diffusion
 Autocorrelation function
 Langevin equation

HERE S
EEERRAYAY | Mnmsﬂ&— No. 3



Mathematical Statistics (Kenichi ISHIKAWA)

5-1 Brownian Motion

e Robert Brown, English botanist, 1827

— Observed pollen grains suspended in water performing an erratic movement

under a microscope.

Brownian Motion

Erratic movement generated under the
influence of thermal agitations of
surrounding molecules

Mechanical descriptions of
Brownian motion at the level
of a single minute grain

&

Langevin equation

T

Movement in response to
collisions of solvent molecules
under thermal agitation

Microscopic thermodynamic
descriptions (Diffusion)
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5-1 Brownian Motion Mathematical Statistics (Kenichi ISHIKAWA)

Autocorrelation Function

» Generally, the random variable x(t) takes each different value; x(t) and x(t+t), at each
different time; t and t+t in most cases.

— t— 0:x(t) and x(t+t) are the values approximate to one another.
— t — Infinite: x(t) and x(t+t) completely independent of each another.
» Correlation between successive events — Depends on time interval t

=) Autocorrelation Function  G(z) = (x(t)x(t+ 7)) = !im% _[OT X(t)x(t+ 7)dt

\

Time average
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ﬁﬁ?ﬁﬂﬁ%ﬂo:—z No. 5



4-3 Random Walk And Diffusion Mathematical Statistics (Kenichi ISHIKAWA)

e - Fluctuation-dissipation theorem
 Random walk and diffusion phenomenon

, Fluctuation (in equilibrium) Dissipation/
P(t,x)= Lexp[— X J |2 ) Transportation]
\ 4Dt 4Dt D=~ ) (x*)=2Dt
T

2
» . ~ Variance of positionO x
e Initial Conditions

— What will concentration distribution be at £ = 0?

J‘_“’ P(t,x)dx =1 h Dirac’s delta function
x#0=P(t—+0,%)=0 ] 50 = lim | expl‘ XZJ
x=0=P(t—>+0,x=0)=00 | 40\ 4 7Dt 4Dt

—) Distribution concentrating on x =0

Random walk is one model of one-dimensional

diffusion equation i Dﬁ P(t=0,x)=0d(x)
A X’

HERE 25
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5-2 Langevin Equation - refernce oo, psc

« Equation of motion of fine particles in a solvent
— Introducing stochastic force — Langevin equation

2
md_z(:F Fz—m}/%‘FR(t)
dt / dt \
) ) — Random Force
Viscous resistance force R®))=0
i RUOR, () 5,001
m P F F=—mu+R(1) Random forces are not correlated

Averaged, in regard to
fine particles

4

m—(u)=—-my{u)

ngna 2 ARG,

with each other, if:
- Directional elements are different,
- Time elements are different.
Also the random force differs
depending on each fine particle.
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_ _ Mathematical Statistics (Kenichi ISHIKAWA)
5-2 Langevin Equation

* Relation with diffusion coefficient

2
md—xz—m d_x+ R(t)
dt’ dt
Consider by focusing on element x only. 1 < dx 2> KT
2 At atemperature T, —M (—j =—
md—z(:—m d_x+ R(t) 2 \\dt 2
dt dt |
J_L  Multiply both sides by x.
d®x dx
MX —-=—mX—+ XR(t
@ Averaged, in regard to time average or fine particles J
d2 dx d2 2 d 2
m{ X—- )=-—m 1 X 1 X
< dt” > 7< dt> —m < >—kT:——m7/ < >

- 2 dt? 2 dt
X 1d(x) = Xd—%(zédz(xz)—(zsz

dt 2 dt dt> 2 dt?
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_ _ Mathematical Statistics (Kenichi ISHIKAWA)
5-2 Langevin Equation

 Relation with diffusion coefficient

1 M_kT:_lm7d<X2> f:d<X2>
2 dt? 2 dt dt
lmg—sz—lmﬂ :> ﬂ_ﬁ

2 dt 2

=) =0 =) e
2kT Attenuated on a 1012 sec - basis

If we take t large enough, then; <X2> =——1

According to diffusion equation; <x2> = 2Dt

kT Boltzmann constant k can be fixed
Einstein’s relation, 1905 D= my through measurement of macroscopic
quantum.
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5-2 Langevin Equation Mathematical Statistics (Kenichi ISHIKAWA)

e Summary: Equation of motion of fine particles in a solvent
— Introducing stochastic force — Langevin Equation

2
md—f:F F——my 4 Ret)
dt Vs dt
Viscous resistance force Random Force
(R(t))=0
<X2> _2kT, 2kT (e_ﬂ - 1) (R,(DR,(t)) o 8,,6(t—t")
my m72 N\ Random forces are not correlated with

each other, if:
- Directional elements are different,
- Time elements are different.
ooy 2KT Also the random force differs
If we take t large enough, then; <X >: —t depending on each fine particle.

Attenuated on a 10713 sec basis

my

According to diffusion equation, Einstein’s relation, 1905 D= KT

The Special Theory of Relativity and the Light Quantum

N - Hypothesis were also published in the same year !
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5-3 Representation based on velocity correlation function
— Reference book [3], p. 95

Velocity Correlation Function ¢(z) = (u(t,)u(t,)) == (u(t,)u(t, + 7))
Average of large amount of fine particles

Mean square displacement of particles

If we take t large enough; <x2>: 2Dt

) Regard D= Iimi<x2> as the definition of diffusion constant.

o0 2‘[

x=[luwyar = D_nm1 Jldt, dt, (utu(e,))

t—)oo

Diffusion coefficient is represented as the time
integration of velocity correlation function.

(u(t,)u(t,)) in equilibrium serves as a function of time difference only. =) ¢(t, —t,) = (u(t,)u(t,))

D=lim* ‘at, | dt, gt —t,)

t—>oo t
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_Inn]'j dt, | dt,g(t, -

t—owo t

t) T

Mathematical Statistics (Kenichi ISHIKAWA)
5-3 Representation based on velocity correlation function

D=lim j;(l—%)ﬂr)dr

[Proof]
L: dtl _[Ot dt1¢(t1 _tz) = ,.Ot dtl ,.Otl dt2¢(t1 _tz) . Otdtl Lt dt2¢(t1 _tz)
= [l [ Fdtpt,—t)+ | dt, [ "t -t,)
= [ dt, [ aty gt —t,)+ [ o, | “at, gt 1)
= [l [Pdefp(+g-0)=2] ot [ Tdeg(n) o=t
—2['de [ dtg(r) =2 (t- Dp(r)de P-7)=9(2)
o~ tim [ 1 Jo(eyes
If ¢(7)is a rapidly decaying function, then; | p— Iw¢(r)dr
naee YR aflmENCe, No. 12



Mathematical Statistics (Kenichi ISHIKAWA)
5-3 Representation based on velocity correlation function

¢(7)=(u(t)u(t,))==(u(t,)u(t,+ 7))  Velocity Correlation Function

If #(7) is a rapidly decaying function, D= IOOO ¢(7)dz
then:

Diffusion coefficient is a coefficient obtained by integrating velocity correlation function.

o(7)= k—Te‘”TC 7. :Correlation Time
—> pkT
Correlation Resistance
ﬁ> Time ¢ =y Coefficient
Einstein’s relation, 1905 D——

R ZATLRIE No. 13

Information Systems



	Mathematical Statistics
	Reference books
	5-1　Brownian Motion
	5-1　Brownian Motion
	4-3　Random Walk And Diffusion
	5-2　Langevin Equation
	5-2　Langevin Equation
	5-2　Langevin Equation
	5-2　Langevin Equation
	5-3　Representation based on velocity correlation function
	5-3　Representation based on velocity correlation function
	5-3　Representation based on velocity correlation function

