## Mathematical Statistics

## Kenichi ISHIKAWA

http://ishiken.free.fr/lecture.html

Oct. 18 Combination and probability
Oct. 25 Random variables and probability distributions
Nov. 1 Representative probability distributions
Nov. 8 (First half) Random walk and gambler's ruin problem
(Latter half) Brownian motion and diffusion $\}$ Stochastic process
Noise theory
Only exercises are provided on Nov. 15.

## Reference books

[1] Satsuma, J. (2001). "Probability /Statistics" -Beginning course of mathematics of science and technology 7, Iwanami Shoten
[2] Kolmogorov, A.N., Žurbenko, I. G., Prokhorov, A.V. (2003). "Beginning of Kolmogorov's Probability Theory". (Trans. Murayama , T. \& Baba, Y.): Morikita Shuppan
[3] Kitahara, K. (1997). "Nonequilibrium Statistical Mechanics" - Iwanami Fundamental Physics Series 8, Iwanami Shoten

# Mathematical Statistics Kenichi ISHIKAWA 

Nov. 8 (Latter half) Brownian motion and diffusion

- Autocorrelation function
- Langevin equation


## 5-1 Brownian Motion

- Robert Brown, English botanist, 1827
- Observed pollen grains suspended in water performing an erratic movement under a microscope.



Movement in response to collisions of solvent molecules under thermal agitation

| Mechanical descriptions of |
| :--- |
| Brownian motion at the level |
| of a single minute grain |



Microscopic thermodynamic descriptions (Diffusion)

Langevin equation

## Autocorrelation Function

- Generally, the random variable $x(t)$ takes each different value; $x(t)$ and $x(t+t)$, at each different time; $t$ and $t+t$ in most cases.
- $\quad t \rightarrow 0: x(t)$ and $x(t+t)$ are the values approximate to one another.
- $t \rightarrow$ Infinite: $x(t)$ and $x(t+t)$ completely independent of each another.
- Correlation between successive events $\rightarrow$ Depends on time interval $t$
$\Rightarrow$ Autocorrelation Function $G(\tau)=\langle x(t) x(t+\tau)\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) x(t+\tau) d t$

Time average

## 4－3 Random Walk And Diffusion

－Random walk and diffusion phenomenon

$$
P(t, x)=\sqrt{\frac{1}{4 \pi D t}} \exp \left\lfloor-\frac{x^{2}}{4 D t}\right\rfloor
$$

Fluctuation－dissipation theorem

$$
\begin{array}{ll}
\text { Fluctuation (in equilibrium) } & \begin{array}{l}
\text { Dissipation/ } \\
\text { Transportation] }
\end{array} \\
D=\frac{l^{2}}{2 \tau} \square\left\langle x^{2}\right\rangle=2 D t &
\end{array}
$$

－Initial Conditions
－What will concentration distribution be at $t=0$ ？

$$
\begin{aligned}
& \int_{-\infty}^{\infty} P(t, x) d x=1 \\
& x \neq 0 \Rightarrow P(t \rightarrow+0, x)=0 \\
& x=0 \Rightarrow P(t \rightarrow+0, x=0)=\infty
\end{aligned}
$$



Dirac＇s delta function

$$
\delta(x)=\lim _{t \rightarrow 0} \sqrt{\frac{1}{4 \pi D t}} \exp \left\lfloor-\frac{x^{2}}{4 D t}\right\rfloor
$$

## $\Rightarrow$ Distribution concentrating on $x=0$

Random walk is one model of one－dimensional
diffusion equation $\quad \frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}} \quad P(t=0, x)=\delta(x)$

## 5-2 Langevin Equation $\rightarrow$ Reference book $[3]$ p.90

- Equation of motion of fine particles in a solvent
- Introducing stochastic force $\rightarrow$ Langevin equation

$$
\begin{gathered}
m \frac{d^{2} \mathbf{x}}{d t^{2}}=\mathbf{F} \quad \mathbf{F}=-m \gamma \frac{d \mathbf{x}}{d t}+ \\
m \frac{d \mathbf{u}}{d t}=\mathbf{F} \quad \mathbf{F}=-m \gamma \mathbf{u}+\mathbf{R}(t) \\
\text { Viscous resistance force } \\
m \frac{d}{d t}\langle\mathbf{u}\rangle=-m \gamma\langle\mathbf{u}\rangle \\
\text { fine paraged, in regard to }
\end{gathered}
$$

$$
\mathbf{F}=-m \gamma \frac{d \mathbf{x}}{d t}+\mathbf{R}(t)
$$

- Random Force

$$
\begin{aligned}
& \langle\mathbf{R}(t)\rangle=0 \\
& \left\langle R_{\alpha}(t) R_{\beta}\left(t^{\prime}\right)\right\rangle \propto \delta_{\alpha \beta} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

Random forces are not correlated with each other, if:

- Directional elements are different,
- Time elements are different.

Also the random force differs depending on each fine particle.

- Relation with diffusion coefficient

$$
m \frac{d^{2} \mathbf{x}}{d t^{2}}=-m \gamma \frac{d \mathbf{x}}{d t}+\mathbf{R}(t)
$$

Consider by focusing on element $x$ only.

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=-m \gamma \frac{d x}{d t}+R(t) \\
& \square \text { Multiply both sides by } x \text {. } \\
& m x \frac{d^{2} x}{d t^{2}}=-m \gamma x \frac{d x}{d t}+x R(t) \\
& \square \text { Averaged, in regard to time average or fine particles } \\
& m\left\langle x \frac{d^{2} x}{d t^{2}}\right\rangle=-m \gamma\left\langle x \frac{d x}{d t}\right\rangle \longrightarrow \frac{1}{2} m \frac{d^{2}\left\langle x^{2}\right\rangle}{d t^{2}}-k T=-\frac{1}{2} m \gamma \frac{d\left\langle x^{2}\right\rangle}{d t} \\
& x \frac{d x}{d t}=\frac{1}{2} \frac{d\left(x^{2}\right)}{d t} \quad \square \quad x \frac{d^{2} x}{d t^{2}}=\frac{1}{2} \frac{d^{2}\left(x^{2}\right)}{d t^{2}}-\left(\frac{d x}{d t}\right)^{2}
\end{aligned}
$$

## 5-2 Langevin Equation

- Relation with diffusion coefficient

$$
\begin{aligned}
& \frac{1}{2} m \frac{d^{2}\left\langle x^{2}\right\rangle}{d t^{2}}-k T=-\frac{1}{2} m \gamma \frac{d\left\langle x^{2}\right\rangle}{d t} \quad f=\frac{d\left\langle x^{2}\right\rangle}{d t} \\
& \frac{1}{2} m \frac{d f}{d t}-k T=-\frac{1}{2} m \gamma f \quad \square \quad \frac{d f}{d t}+\gamma f-\frac{2 k T}{m}=0 \\
& \square f=\frac{2 k T}{m \gamma}\left(1-e^{-\gamma}\right) \square\left\langle x^{2}\right\rangle=\frac{2 k T}{m \gamma^{2}}\left(\lambda t+e^{-\lambda}-1\right)
\end{aligned}
$$

If we take $t$ large enough, then; $\left\langle x^{2}\right\rangle=\frac{2 k T}{m \gamma} t$
Attenuated on a $10^{-13} \mathrm{sec}$ - basis

According to diffusion equation; $\left\langle x^{2}\right\rangle=2 D t$

$$
\text { Einstein's relation, } 1905 \quad D=\frac{k T}{m \gamma}
$$

Boltzmann constant $k$ can be fixed through measurement of macroscopic quantum.

- Summary: Equation of motion of fine particles in a solvent
- Introducing stochastic force $\rightarrow$ Langevin Equation

$$
\begin{gathered}
m \frac{d^{2} \mathbf{x}}{d t^{2}}=\mathbf{F} \quad \mathbf{F}=-m \gamma \frac{d \mathbf{x}}{d t} \\
\text { Viscous resistance for } \\
\left\langle x^{2}\right\rangle=\frac{2 k T}{m \gamma} t+\frac{2 k T}{m \gamma^{2}}\left(e^{-\lambda}-1\right) \\
\text { Attenuated on a } 10^{-13} \mathrm{sec} \text { basis }
\end{gathered}
$$

$$
\mathbf{F}=-m \gamma \frac{d \mathbf{x}}{d t}+\mathbf{R}(t)
$$

$$
\text { Viscous resistance force } \quad \square \text { Random Force }
$$

If we take $t$ large enough, then; $\left\langle x^{2}\right\rangle=\frac{2 k T}{m \gamma} t$

$$
\begin{aligned}
& \langle\mathbf{R}(t)\rangle=0 \\
& \left\langle R_{\alpha}(t) R_{\beta}\left(t^{\prime}\right)\right\rangle \propto \delta_{\alpha \beta} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

Random forces are not correlated with each other, if:

- Directional elements are different,
- Time elements are different. Also the random force differs depending on each fine particle.

According to diffusion equation,

$$
\left\langle x^{2}\right\rangle=2 D t
$$

Einstein's relation, $1905 \quad D=\frac{k T}{m \gamma}$
The Special Theory of Relativity and the Light Quantum Hypothesis were also published in the same year !

## 5-3 Representation based on velocity correlation function

$\rightarrow$ Reference book [3], p. 95
Velocity Correlation Function $\phi(\tau)=\left\langle u\left(t_{1}\right) u\left(t_{2}\right)\right\rangle==\left\langle u\left(t_{1}\right) u\left(t_{1}+\tau\right)\right\rangle$
Average of large amount of fine particles
Mean square displacement of particles

$$
\begin{aligned}
& \text { If we take } t \text { large enough; }\left\langle x^{2}\right\rangle=2 D t \\
& \qquad
\end{aligned}
$$

$\left\langle u\left(t_{1}\right) u\left(t_{2}\right)\right\rangle$ in equilibrium serves as a function of time difference only. $\Rightarrow \phi\left(t_{1}-t_{2}\right)=\left\langle u\left(t_{1}\right) u\left(t_{2}\right)\right\rangle$

$$
D=\lim _{t \rightarrow \infty} \frac{1}{2 t} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \phi\left(t_{1}-t_{2}\right)
$$

5-3 Representation based on velocity correlation function

$$
D=\lim _{t \rightarrow \infty} \frac{1}{2 t} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \phi\left(t_{1}-t_{2}\right) \quad \square \quad D=\lim _{t \rightarrow \infty} \int_{0}^{t}\left(1-\frac{\tau}{t}\right) \phi(\tau) d \tau
$$

[Proof]

$$
\begin{aligned}
\int_{0}^{t} d t_{1} \int_{0}^{t} d t_{1} \phi\left(t_{1}-t_{2}\right) & =\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \phi\left(t_{1}-t_{2}\right)+\int_{0}^{t} d t_{1} \int_{t_{1}}^{t} d t_{2} \phi\left(t_{1}-t_{2}\right) \\
& =\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \phi\left(t_{1}-t_{2}\right)+\int_{0}^{t} d t_{2} \int_{0}^{t_{2}} d t_{1} \phi\left(t_{1}-t_{2}\right) \\
& =\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \phi\left(t_{1}-t_{2}\right)+\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \phi\left(t_{2}-t_{1}\right) \\
& =\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d \tau[\phi(\tau)+\phi(-\tau)]=2 \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d \tau \phi(\tau) \quad \tau=t_{1}-t_{2} \\
& =2 \int_{0}^{t} d \tau \int_{\tau}^{t} d t_{1} \phi(\tau)=2 \int_{0}^{t}(t-\tau) \phi(\tau) d \tau \quad \phi(-\tau)=\phi(\tau \\
& \therefore D=\lim _{t \rightarrow \infty} \int_{0}^{t}\left(1-\frac{\tau}{t}\right) \phi(\tau) d \tau
\end{aligned}
$$

If $\phi(\tau)$ is a rapidly decaying function, then;

$$
D=\int_{0}^{\infty} \phi(\tau) d \tau
$$

5-3 Representation based on velocity correlation function

$$
\phi(\tau)=\left\langle u\left(t_{1}\right) u\left(t_{2}\right)\right\rangle==\left\langle u\left(t_{1}\right) u\left(t_{1}+\tau\right)\right\rangle \quad \text { Velocity Correlation Function }
$$

If $\phi(\tau)$ is a rapidly decaying function,

$$
D=\int_{0}^{\infty} \phi(\tau) d \tau
$$ then:

Diffusion coefficient is a coefficient obtained by integrating velocity correlation function.

$$
\phi(\tau)=\frac{k_{B} T}{m} e^{-\tau / \tau_{c}} \quad \tau_{c}: \text { Correlation Time }
$$

$$
\square D=\frac{k_{B} T}{m} \tau_{c}
$$

Einstein's relation, $\left.1905 D=\frac{k_{B} T}{m \gamma}\right\} \stackrel{\square}{\square}$

| Correlation |  |
| :--- | :--- |
| Time $\quad \tau_{c}=\gamma^{-1}$ | Resistance <br> Coefficient |

