
Chapter 6

Symmetry and Conservation Law

6.1 Symmetrical Operation and Symmetry Opera-

tor

Suppose some operations such as a mirror reflection, one motion can be deduced from
the equation of motion. If the whole motion was obtained by the operation of original
motion, it is called reflected motion. If it also satisfies the same equation of motion,
then we call it “symmetrical operation”.

If T̂ fell into such operation and |ψ(t)〉 was a solution to the equation of motion,

while the other motion T̂ |ψ(t)〉 satisfies the operation, it is considered to be symmetrial.

Under the condition, i~ dT̂ |ψ(t)〉 /dt = ĤT̂ |ψ(t)〉, the left hand side can be rewritten

as i~ dT̂ |ψ(t)〉 /dt = T̂ i~ d |ψ(t)〉 /dt = T̂ Ĥ |ψ(t)〉 based on the fact that |ψ(t)〉 satifsies
the original equation of motion.

When the operation is symmetrical, we can conclude that,

ĤT̂ = T̂ Ĥ.

This relation is often said in a way that two operators Ĥ and T̂ ”commutes” each other.

6.2 Conservation Law

It is proved by the matrix mathematics, that all the eigen states of two commuting
operators stay in common. In degeneration, we can deliverately select the common
eigen states. At any eigen states of the Hamiltonian operator, Ĥ is stationary, thus any
eigen states of the symmetrical operator can be stationary.

• Eigen value of any symmetrical operator is conserved. (Conservation Law)

6.3 Bi-Symmetry and Parity

There are many bi-symmetrical operations; repeating the same operations twice results
in identical to the initial state, which include mirror reflection, origin symmetry, particle
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exchange, etc. Apparently, T̂ 2 = Î. Suppose the eigen value of T̂ is t, then the relations
t2 = 1 is derived and we get the eigen value t = ±1. If T̂ was the symmetrical operator,
then these eigen values should be conserved. We call t = 1 an even parity, and t = −1
an odd parity.

Exchanging the operations of two identical integer-spin particles keeps the parity in
even, and derives Bose-Einstein statics. When the operation is exchanged by the two
identical half-integer-spin particles that keep odd parity, then it derives Fermi-Dirac
statistics.

6.4 Transversal Symmetry and Momentum

If there was no notch or potential variations in a tranversal motion of a particle, the
transversal operator T̂ (x) corresponding to the leftside motion of x becomes symmetrical

and any eigen value of T̂ (x) will be conserved. Like the deduction of Hamiltonian

Ĥ(t) from the time progress operator Û(t, t′), we can define an infinitesimal operator

−i~ dT̂ (x)/dx, with its eigen value, which is also conserved. This operator is apparently
the momentum operator p̂, therefore, again, the momentum can be conserved.

6.5 Rotational Symmetry and Angular Momentum

Based on the observation of the rotational operator R̂z(θ) corresponding to the left turn
θ along z axis, an angular momentum operator Jz can be deduced. Although, rotation
operations are not additional to the bigger rotation, the rotational operator along x axis
and that along y axis do not commute each other.

[R̂x(θ), R̂y(φ)] = Î − R̂z(θφ) + O3.

This piece of information tells us so much:

[Ĵx, Ĵy] = i~Ĵz

[Ĵy, Ĵz] = i~Ĵx

[Ĵz, Ĵx] = i~Ĵy,

these are the most important characterisitics of the angular momentum.

• Square of a total angular momentum takes the value j(j + 1)~2, when j is integer
or half integer positive number.

• If we measured an angular momentum along certain fixed axis of the total angular
momentum the values are detected between the minima −j~ and the maxma j~
at an interval of ~.

6.6 Hydrogen Atom

Abbreviated.
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