Chapter 5

Schroedinger Equation

5.1 Deduction of Schroedinger Equation

Classical particles in the free space has a relation £ = p?/2m. By Az — 0, we can
deduce the same equation from the eigen value in the previous section. Let Ax — 0
by keeping the relations A = (h/Ax)?/2m and Fy = 2A, then the eigen value E vs. p
reaches the classical relation. The equation of motion becomes
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Replace ¢ (x,t) into (z|¥(t)). When the position potential V' (x) varies, the Ey receives
an additional variable, and the equation will be modified as
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This is “Schroedinger equation”.

5.2 Solution of Schroedinger in One-Dimesional Space

Suppose the stationary solultion i(z,t) = V(x)exp(Et/ih), Schroedinger equation be-
comes
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EV(x) = o a2 T V(z)¥(z).
From the equation, the second derivative is
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This is an indication that the curvature of W(z) can be calculated if we knew the values
V(x), £ and ¥(z). The solution takes an exponential function when V' (z) > E, which
is like the sinusoidal function when V(z) < E. In getting a meaningful solution that



is finite in all space, it should be expanding to the exponetial function in a region
x — —oo where V(z) — 0, and should be converging to the exponential function in a
region x — oo where V(x) — 0. Calculate the function from the left side to the right
side, the value of E should be limited to the certain values in order to get the converging
exponential function in the right region.

These E values corresponds to eigen values of the equation, therefore, we can con-
clude that the wave function (eigen state) oscillates more in the region of V(z) < E
with the higher E.



