

東京大学工学部計数工学科/物理工学科 応用音響学:音声分析(5)

CSM分析と等価パラメータセット

嵯峨山 茂樹 <sagayama@hil.t.u-tokyo.ac.jp> 東京大学 工学部 計数工学科 http://hil.t.u-tokyo.ac.jp/

- 複合正弦波モデル(CSM) とその解法
- CSM パラメータの性質
- CSMとLSPの関係: 拘束条件つき複合正弦波モデル
- ■直交多項式理論から見たLPCとCSMの対称性: 統一理論
- スペクトルパラメータの相互変換

複合正弦波モデル (CSM) の motivation

全極型フィルタの問題点

- 計算語長が必要 (巡回型 > 16 bits では不足,約24bits)
- ■振幅制御性が問題 異常振幅現象
- パラメータ量子化に細心の注意が必要
- ■時変フィルタ 解析,制御が困難
- 周波数領域のパラメータが有利
 - 音声のフォルマント (音響音声学の分野)
 - ■聴覚的にはピーク周波数が重要(共振帯域幅はあまり効かない)
 - 音声認識にはスペクトルが直結

正弦波形モデル

- Non-harmonic な正弦波の重ね合わせで formant 表現
- 波形合成:制御性,計算量,必要語長ともに有利.頑健.

複合正弦波モデル (CSM) 1979

■ モデルパラメータ
$$2n$$
個 $\begin{cases} n$ 個の周波数 $\{\omega_1, \omega_2, \cdots, \omega_n\} \\ n$ 個の強度 $\{m_1, m_2, \cdots, m_n\} \end{cases}$

 $y_t = A_1 \sin \omega_1 t + A_2 \sin \omega_2 t + \dots + A_n \sin \omega_n t$, $t \in \mathcal{L}$ $A_i = \sqrt{2m_i}$

(位相は無視 — 聴覚特性,情報圧縮目的,認識特徴量)

CSM自己相関方程式:モデル自己相関と標本自己相関を等置

$$m_1 \cos \tau \omega_1 + m_2 \cos \tau \omega_2 + \dots + m_n \cos \tau \omega_n = v_{\tau}, \quad \tau = 0, 1, \dots, 2n-1$$

$$n = 2 (2 次) の例: \begin{cases} m_1 + m_2 = v_0 \\ m_1 \cos \omega_1 + m_2 \cos \omega_2 = v_1 \\ m_1 \cos 2\omega_1 + m_2 \cos 2\omega_2 = v_2 \\ m_1 \cos 3\omega_1 + m_2 \cos 3\omega_2 = v_3 \end{cases}$$

CSM自己相関方程式の意味 — 相関領域のマッチング例

図:相関領域のマッチングの例

CSM 自己相関方程式の解法の導出 (<math>n = 2の例)

1. 変数置換 $x = \cos \omega$ により, $\cos k \omega$ の Tchebychef 展開

但し $\cos 2\omega = 2\cos^2 - 1$, $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega$ より, $u_0 = v_0$, $u_1 = v_1$, $u_2 = \frac{1+u_1}{2}$, $u_3 = \frac{4v_1+3v_3}{4}$ 2. $\{x_1, x_2\}$ を根とするCSM多項式 $P(x) = x^2 + p_1x + p_2$ $0 \equiv m_1 P(x_1) x_1^k + m_2 P(x_2) x_2^k \qquad (k = 0, 1)$ $= m_1(x_1^2 + p_1x_1 + p_2)x_1^k + m_2(x_2^2 + p_1x_2 + p_2)x_2^k$ $= (m_1 x_1^{k+2} + m_2 x_2^{k+2}) + p_1 (m_1 x_1^{k+1} + m_2 x_2^{k+1}) + p_2 (m_1 x_1^k + m_2 x_2^k)$ $u_{k+2} + p_1 u_{k+1} + p_2$ u_k $\Rightarrow \quad \begin{array}{l} u_2 + p_1 u_1 + p_2 u_0 = 0\\ u_3 + p_1 u_2 + p_2 u_1 = 0 \end{array} \Rightarrow \quad \begin{pmatrix} u_0 & u_1\\ u_1 & u_2 \end{pmatrix} \begin{pmatrix} p_2\\ p_1 \end{pmatrix} = \begin{pmatrix} u_2\\ u_3 \end{pmatrix}$ 3. CSM 多項式 P(x)の根を求めれば, $\omega_i = \cos^{-1} x_i$

4. *x*_{*i*} を代入すれば, 連立一次方程式

CSM自己相関方程式の解法

音声波形 $\{Y_1, Y_2, \cdots, Y_N\}$

CSM 周波数/強度の例

CSM パラメータの時間パターン例

図: 音声 CSM 分析時間パターン例 (「こしらえる」) — 線幅は強度の平方根に比例

LSP 周波数の時間パターン例 (比較)

時間方向に滑らかに動くため、補間特性が優れている。

線形予測極の時間パターン例 (比較)

図: 音声の13次線形予測極の時間パターン例(「こしらえる」)

CSM 周波数分布の性質 – 異なる分析次数

- n次CSM分析のCSM周波数は、(n-1)次CSM分析のCSM周波 数と交番する。
- n次より高いCSM分析のCSM周波数は、n次CSM分析のCSM 周波数の間ごとに1つ以上配置される。

(b) 異なる次数の CSM 周波数分布の関係

拘束条件つき CSM と LSP の 関係

■4種の自己相関方程式が存在(他には存在しない)

 $m_1 \cos l\omega_1 + \dots + m_n \cos l\omega_n$ = v_l (拘束なし) $m_0 + m_1 \cos l\omega_1 + \dots + m_n \cos l\omega_n$ = v_l (直流を含む) $m_1 \cos l\omega_1 + \dots + m_n \cos l\omega_n$ + $(-1)^l m_{n+1}$ = v_l (上限周波数を含む) $m_0 + m_1 \cos l\omega_1 + \dots + m_n \cos l\omega_n$ + $(-1)^l m_{n+1}$ = v_l (直流と上限周波数)

■解法:拘束なしCSM方程式へ変換

- 解の存在: 0 < ω₁ < · · · < ω_n < π, [m₀,] m₁, · · · , m_n, [m_{n+1}] > 0 の必要十分条件: 自己相関関数が正定値列
- 奇数変数の場合のCSM 周波数対 ≡ 奇数次のLSP 周波数 偶数変数の場合のCSM 周波数対 ≡ 偶数次のLSP 周波数

多数のLSP/CSMの性質が導かれる。

直交多項式理論から見た LPC と CSM

CSM の本質は,音声スペクトル密度随伴直交多項式 P_n(x)
 (実軸上の変数 x = cos ω)

 $\int_{-\pi}^{\pi} P_k(\cos\omega) P_l(\cos\omega) f(\omega) d\omega = \int_{-1}^{1} P_k(x) P_l(x) g(x) dx = \begin{cases} Q_k > 0 & k = l \\ 0 & k \neq l \end{cases}$

音声スペクトル密度随伴直交多項式の他の可能性は? LPC (単位円上の変数 $z = e^{j\omega}$) 単位円上の直交多項式理論(Szegő 1921) 音声のパワースペクトルを重みとするzの直交多項式 $A_p(z)$

$$\int_{-\pi}^{\pi} A_k(e^{j\omega}) A_l^*(e^{j\omega}) f(\omega) d\omega = \oint_C A_k(z) A_l^*(z) h(z) dz = \begin{cases} \sigma_k^2 > 0 & k = l \\ 0 & k \neq l \end{cases}$$

変数の物理的意味:

z = exp jω: 遅れ(進み)演算子, x = cos ω = ^{z + z⁻¹}/₂: 補間演算子
 最適逆フィルタ設計問題 (a₀ = p₀ = 1の拘束で出力パワーmin)
 ■ LPC: 最小(最大)位相フィルタ
 ■ CSM: 直線(零)位相フィルタ

音声スペクトルと直交多項式の例

直交多項式理論による LPC と CSM の統一 (1980)

	LPC	CSM
基本演算子	$z = e^{j\omega}$ 遅れ演算子	$x = \cos \omega$ 補間演算子
幕関数列	$\{1, z, z^2, z^3, \cdots\}$	$\{1, x, x^2, x^3, \dots\}$
幕関数間の内 積	$(z^k, z^l) = \int_{-\pi}^{\pi} z^k (z^l)^* dF(\omega)$	$(x^k, x^l) = \int_{-\pi}^{\pi} x^k (x^l)^* dF(\omega)$
	$=\int_{-\pi}^{\pi} z^{k-l} dF(\omega) = \int_{-\pi}^{\pi} \cos^{k-l} \omega dF(\omega) = v_{k-l} \text{(自己相関関数)}$	$=\int_{-\pi}^{\pi} x^{k+l} dF(\omega) = \int_{-\pi}^{\pi} \cos^{k+l} \omega dF(\omega) = u_{k+l} (\ `` ``$
直交多項式	$A_p(z) = z^p + a_1 z^{p-1} + a_2 z^{p-2} + \dots + a_p = \frac{T_p(z)}{ V_p }$	$P_n(x) = x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_n = \frac{H_n(x)}{ U_n }$
連立方程式(正 規方程式)	$ \begin{pmatrix} v_{0} & v_{1} & v_{2} & \cdots & v_{p-1} \\ v_{1} & v_{0} & v_{2} & \cdots & v_{p-2} \\ v_{2} & v_{1} & v_{0} & \cdots & v_{p-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{p-1} & v_{p-2} & v_{p-3} & \cdots & v_{0} \end{pmatrix} \begin{pmatrix} a_{p} \\ a_{p-1} \\ a_{p-2} \\ \vdots \\ a_{1} \end{pmatrix} = - \begin{pmatrix} v_{p} \\ v_{p-1} \\ v_{p-2} \\ \vdots \\ v_{1} \end{pmatrix} $ (Toeplitz)	$\begin{pmatrix} u_0 & u_1 & u_2 & \cdots & u_{n-1} \\ u_1 & u_2 & u_3 & \cdots & u_n \\ u_2 & u_3 & u_4 & \cdots & u_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ u_{n-1} u_n u_{n+1} \cdots & u_{2n-2} \end{pmatrix} \begin{pmatrix} p_n \\ p_{n-1} \\ p_{n-2} \\ \vdots \\ p_1 \end{pmatrix} = - \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \\ \vdots \\ u_{2n-1} \end{pmatrix} $ (Hankel (行列方程式)
逐次式	$A_0(z) = 1$, (Levinson-Durbin-板倉の逐次式, Schur)	$P_{-1}(x) = 0$, $P_0(x) = 1$, (直交多項式の漸化式, Jacobi)
中間変数	$\begin{array}{c} A_i(z) = zA_{i-1}(z) - k_i z^{i-1}A_{i-1}(1/z), (i = 1, 2, 3, \cdots, p) \\ \\ k_i = \frac{(zA_{i-1}(z), 1)}{ A_{i-1}(z) ^2} \textbf{(偏相関 (PARCOR) 関数 , 反射係数)} \end{array}$	$P_{i}(x) = (x - q_{i})P_{i-1}(x) - r_{i-1}P_{i-2}(x), (i = 1, 2, 3, \dots, n)$ $q_{i} = \frac{(xP_{i-1}(x), P_{i-1}(x))}{ P_{i-1}(x) ^{2}}, r_{i-1} = \frac{ P_{i-1}(x) ^{2}}{ P_{i-2}(x) ^{2}} (\ulcorner \text{Jacobi 係数 })$
中間変数の計 算法	$\prod_{i=1}^{l-1} (1-k_i^2) = A_{l-1}(z) ^2 = \frac{1}{v_0} \sum_{i=0}^{l-1} a_i^{(l-1)} v_i$ $\prod_{i=1}^{l-1} (i-k_i^2) = (i-A_{l-1}(z)) = \frac{1}{v_0} \sum_{i=0}^{l-1} (i-1) v_i$	$\prod_{i=1}^{l-1} r_i = P_{l-1}(x) ^2 = \frac{1}{u_0} \sum_{i=0}^{l-1} p_i^{(l-1)} u_{2l-i-2}$ $\left(\sum_{i=1}^{l} r_i\right) \binom{l-1}{\prod_{i=1}^{l} r_i} = (B_{l-1}(r_i) r_i^{l}) = \frac{1}{1} \sum_{i=1}^{l-1} r_i^{(l-1)} r_i^{l}$
	$\kappa_{l} \prod_{i=1}^{l} (i - \kappa_{i}) = (2A_{l-1}(2), 1) = \frac{1}{v_{0}} \sum_{i=0}^{l} a_{i} \qquad v_{l-i}$	$\left(\sum_{i=1}^{r} q_i\right) \left(\prod_{i=1}^{r} r_i\right) = (r_{l-1}(x), x) = \frac{1}{u_0} \sum_{i=0}^{r} p_i \qquad u_{2l-i-1}$
拘束	$-1 < k_i < 1$ $(i = 1, 2, 3, \cdots, p)$	$-1 < q_i < 1, 0 < r_{i-1} < 1 (i = 1, 2, 3, \cdots, n)$
周波数領域の パラメータ	$\lambda_i = \arg z_i, b_i = -\log z_i , w = \frac{v_0}{ A_p(z) ^2}$ (フォルマント)	$\omega_i = \arccos x_i, m_i = \frac{ P_{n-1}(x) ^2}{P_{n-1}(x_i)P'_n(x_i)}$ (CSM 周波数と強度)
 周波数領域の 表現	$f(\omega) = rac{w}{2\pi} \prod_{i=1}^{p} (e^{j\omega} - e^{j\lambda_i - b_i})$ (全極スペクトル)	$f(\omega) = \sum_{i=1}^{n} \frac{m_i}{2} (\delta(\omega - \omega_i) + \delta(\omega + \omega_i))$ (線スペクトル)
時間領域の表 現	$y_t + a_1 y(t-1) + \dots + a_p y(t-p) = \sqrt{w} \epsilon_t$ (線形予測モデル)	$y_t = \sqrt{2m_1}\sin(\omega_1 t + \phi_1) + \dots + \sqrt{2m_n}\sin(\omega_n t + \phi_n)$ (複合正弦波モデル)
二次形式の最 小化:	$T_F[\mathbf{a}] = \int_{-\pi}^{\pi} \left z^p + a_1 z^{p-1} + a_2 z^{p-2} + \dots + a_p \right ^2 dF(\omega)$	$H_F[\mathbf{p}] = \int_{-\pi}^{\pi} \left x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_n \right ^2 dF(\omega)$
	$z=e^{j\omega}$ (Toeplitz 形式) 最小位相フィルタの出力パワー	$x = \cos \omega$ (Hankel 形式) 直線位相フィルタの出力パワー

音声スペクトルパラメータ群の相互変換関係

等価な音声スペクトルパラメータセットのまとの

● 量子化特性 — Ⅰ	● 量子化特性 — bit 数削減 ● 時間補間特性 — フレームレート削減				
● 安定条件 — rec	● 安定条件 — recursive filter ● 合成フィルタ				
パラメータ	記号	安定性条件	合成フィルタ		
線形予測係数	a_i	(下項参照)	直接型		
LPC多項式 $A_p(z)$ の根	z_i	単位円内部 $ z_i < 1$	縦続フィルタ		
自己相関関数	v_i	Toepliz 型行列が正定値	なし		
PARCOR 係数	k_i	$-1 < k_i < 1$	格子型フィルタ		
	λ_i	$-\pi < \lambda_i \pi$	サ塩フィルタ縦结		
LIC 夕境以低 帯域幅	b_i	$b_i > 0$	六加ノイルノイルア間に向け		
補間相関関数	u_i	Hankel型行列が正定値	なし		
CSM多項式係数対	$p_i^{(n-1)}, p_i^{(n)}$	根が交番	なし		
$CSM 多項式対rac{P_n(x)}{P_{n-1}(x)}の根$	$\begin{array}{c} x_i^{(n)} \\ x_i^{(n-1)} \end{array}$	区間[-1,1]で交番	なし		
Jacobi 係数	p_i, q_i	-1 < q _i < 1, 0 < r _i < 1 (必要条件)	なし		
B波数 CSM	λ_i	区間 $[-\pi,\pi]$ で相異なる	油形生成		
└ऽ™ 強度	m_i	$m_i > 0$			
LSP周波数	ω_i	区間[- <i>π</i> , <i>π</i>]内で相異なり順 序保存	LSPフィルタ		