May 21 Lecture Schedule
Power series expansion of $e^{x}$ ([1] p. 42 Example 18, p. 44 Example 20, [2] p.85, [3] p. 145 Example 3.9)

$$
e^{x}-\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}\right)=\frac{e^{t} \cdot x^{n+1}}{(n+1)!} .
$$

The absolute value on the right side of the equation above is given by $\leq$ $\frac{e^{|x|} \cdot|x|^{n+1}}{(n+1)!}$, in which we have $\rightarrow 0$ at $n \rightarrow \infty$. Thus,

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

, which we call the power series expansion of $e^{x}$. In the same manner, we can determine the power series expansion

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

Using the summation formula of the geometric series, we can write down as in the following for $|x|<1$ :

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

We integrate the equation above termwise, and try to obtain

$$
\log (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}
$$

In general, the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ for the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is called the power series.

The convergence of power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ ([1] pp.190-192, [2] II pp. 131-133, [3] pp.231-232)

Theorem. Take a set of real numbers $S \subset T$ and define

$$
S=\left\{x \in \mathbf{R} \mid \sum_{n=0}^{\infty} a_{n} x^{n} \text { is convergent }\right\}
$$

,and

$$
T=\left\{x \in \mathbf{R} \mid a_{n} x^{n} \rightarrow 0(\text { atn } \rightarrow \infty)\right\}
$$

1. Whichever of the facts below must be held for $T$
(1) The real number $\mathrm{r} \geq 0$ exists while which satisfies $T=[r,-r]$.
(1') The real number $\mathrm{r} \geq 0$ exists while which satisfies $T=(r,-r)(2) T=\mathbf{R}$.
2 . One of the facts below must be held for $S$.
(1) $(r,-r) \subset S \subset[r, r]$ must be given if $T=[r,-r]$ or $(r,-r)$
(2) $S=\mathbf{R}$ when $T=\mathbf{R}$.

Definition. Under(1), $r$ is called the radius of convergence for the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$. For (2), we call the radius of convergence for $\sum_{n=0}^{\infty} a_{n} x^{n}$ is $\infty$.

Example. The radius of convergence for the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is $\infty$. The radius of convergence for $\sum_{n=0}^{\infty} x^{n}$ is 1 .
[Proof] 1. Note that $T=-T$. If and only $0 \leq x<t$ and $t \in T$ then we can write $x \in T$. So, we can let $r=\sup T$ if $T$ is bounded thereby, either (1) or (1') can be given while (2) can be given if $T$ is not bounded.

2 . It is clear that $S \subset T$. We now let $t \in T$.
By making the natural number $N$ large enough, we find that $\left|a_{n} t^{n}\right| \leq 1$ stands for all $n \geq N$. If we let $|x|<t$ we find that $\left|a_{n} x^{n}\right| \leq\left(\frac{|x|}{t}\right)^{n}$ stands for $n \geq N$ and thus, the majorant series method is used to learn that $\sum_{n=0}^{\infty} a_{n} x^{n}$ is absolutely convergent. So, $(-t, t) \subset S$ is given.

Thus, $\bigcup_{n=1}^{\infty}\left(-r+\frac{1}{n}, r-\frac{1}{n}\right)=(-r, r) \subset S \subset[-r, r]$ is provided when (1) while $\bigcup_{n=1}^{\infty}(-n, n)=\mathbf{R} \subset S \subset \mathbf{R}$ is given when (2).

The calculation for the radius of convergence ([1] p.192, [2] II p.133)
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=l\left(\right.$ or $\left.\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=l\right)$ exists, then $r=\frac{1}{l},(l \neq 0)$, and $r=\infty,(l=0)$ can be obtained.
[Proof] If we let $|x|<1 / l$ we can write $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right|<1$. so that if we let $a_{n} x^{n} \rightarrow 0(n \rightarrow \infty), x>1 / l$ then we have $\left.\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right|>1\right)$ thus, $\left|a_{n} x^{n}\right| \rightarrow \infty(n \rightarrow \infty)$.

