
May 21 Lecture Schedule
Power series expansion of ex ([1] p.42 Example 18, p.44 Example 20, [2] p.85,

[3] p.145 Example 3.9)

ex −
(

1 + x +
x2

2
+

x3

3!
+ · · · + xn

n!

)
=

et · xn+1

(n + 1)!
.

The absolute value on the right side of the equation above is given by ≤
e|x|·|x|n+1

(n+1)! , in which we have → 0 at n → ∞. Thus,

ex =
∞∑

n=0

xn

n!
.

, which we call the power series expansion of ex. In the same manner, we can
determine the power series expansion

cos x =
∞∑

n=0

(−1)nx2n

(2n)!
, sinx =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

.
Using the summation formula of the geometric series, we can write down as

in the following for |x| < 1:

1
1 + x

=
∞∑

n=0

(−1)nxn

.
We integrate the equation above termwise, and try to obtain

log(1 + x) =
∞∑

n=1

(−1)n−1 xn

n

In general, the series
∞∑

n=0

anxn for the sequence a0, a1, a2, . . . is called the

power series.

The convergence of power series
∞∑

n=0

anxn ([1] pp.190-192, [2] II pp. 131-133,

[3] pp.231-232)
Theorem. Take a set of real numbers S ⊂ T and define

S = {x ∈ R|
∞∑

n=0

anxnis convergent}

,and
T = {x ∈ R|anxn → 0 (atn → ∞)}

1．Whichever of the facts below must be held for T
(1) The real number r≥ 0 exists while which satisfies T = [r,−r].
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(1’) The real number r≥ 0 exists while which satisfies T = (r,−r) (2) T = R.
2．One of the facts below must be held for S.
(1) (r,−r) ⊂ S ⊂ [r, r] must be given if T = [r,−r] or (r,−r)
(2) S = R when T = R.
Definition.　 Under(1), r is called the radius of convergence for the power

series
∞∑

n=0

anxn. For (2), we call the radius of convergence for
∞∑

n=0

anxn is ∞.

Example. The radius of convergence for the power series
∞∑

n=0

xn

n!
is ∞. The

radius of convergence for
∞∑

n=0

xn is 1.

[Proof] 1．Note that T = −T . If and only 0 ≤ x < t and t ∈ T then we can
write x ∈ T . So, we can let r = supT if T is bounded thereby, either (1) or (1’)
can be given while (2) can be given if T is not bounded.

2．It is clear that S ⊂ T . We now let t ∈ T .
By making the natural number N large enough, we find that |antn| ≤ 1

stands for all n ≥ N . If we let |x| < t we find that |anxn| ≤
(
|x|
t

)n

stands for

n ≥ N and thus, the majorant series method is used to learn that
∞∑

n=0

anxn is

absolutely convergent. So, (−t, t) ⊂ S is given.
Thus,

⋃∞
n=1(−r + 1

n , r − 1
n ) = (−r, r) ⊂ S ⊂ [−r, r]is provided when (1)

while
⋃∞

n=1(−n, n) = R ⊂ S ⊂ R is given when (2).
The calculation for the radius of convergence ([1] p.192, [2] II p.133)

If limn→∞

∣∣∣∣an+1

an

∣∣∣∣ = l (or limn→∞ |an|
1
n = l) exists, then r =

1
l
, (l ̸= 0) ，

and r = ∞, (l = 0) can be obtained.

[Proof] If we let |x| < 1/l we can write limn→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ < 1. so that if

we let anxn → 0(n → ∞), x > 1/l then we have limn→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ > 1) thus,

|anxn| → ∞(n → ∞).
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