
April 23 Lecture Schdule
Inverse trigonometric function: ([1] p.12-15,p.28-29, [2] p.35-37, p.58-59, [3]

p.87, p.115, p.167-170.)
We call (a, b) = {x ∈ R|a < x < b}an open interval, and [a, b] = {x ∈ R|a ≤

x ≤ b} a closed interval.
A rule that defines a single real number y for each a ≤ x ≤ b is called a

function defined on the closed interval [a, b].
Let f(x) be the strictly monotone increasing continuous function defined on

the closed interval [a, b], and let c = f(a),and d = f(b).
Now, the strictly monotone increasing continuous function g(x) defined on

[c, d] gives values which satisfy y = g(x) ⇔ x = f(y) for the arbitrary x ∈ [c, d],
and y ∈ [a, b]. Such function is called the inverse function of f .

If f(x) is differentiable then, g(x) is also differentiable so that g′(x) =
1/f ′(g(x)) can be given.

[Proof of the continuity of g] will be discussed next week.
Given f(x) = ex ,and (a, b) = R, we can write (c, d) = (0,∞), g(x) = log x.
Given f(x) = sin x ,and [a, b] = [−π/2, π/2], we can write [c, d] = [−1, 1],

g(x) = Arcsinx, where Arcsinx is the odd function.
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In other words, the above describes the arc length formed by a point P (x,
√

1 − x2)
which connects to a point A(0, 1) found on the circle of radius 1 with a center
at the origin.
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If f(x) = tan x, and (a, b) = (−π/2, π/2), we can write (c, d) = R, g(x) =
Arctanx, where Arctanx is the odd function.
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In other words, the above describes the length of the arc AQ wherein A is
the point (0, 1) and Q is the intersection point formed between a circle having
the radius 1 with a center at origin O and a line OP where P is the point (x, 1).
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