April 23 Lecture Schdule

Inverse trigonometric function: ([1] p.12-15,p.28-29, [2] p.35-37, p.58-59, [3] p.87, p.115, p.167-170.)

We call $(a, b)=\{x \in \mathbf{R} \mid a<x<b\}$ an open interval, and $[a, b]=\{x \in \mathbf{R} \mid a \leq$ $x \leq b\}$ a closed interval.

A rule that defines a single real number y for each $a \leq x \leq b$ is called a function defined on the closed interval $[a, b]$.

Let $f(x)$ be the strictly monotone increasing continuous function defined on the closed interval $[a, b]$, and let $c=f(a)$, and $d=f(b)$.

Now, the strictly monotone increasing continuous function $g(x)$ defined on $[c, d]$ gives values which satisfy $y=g(x) \Leftrightarrow x=f(y)$ for the arbitrary $x \in[c, d]$, and $y \in[a, b]$. Such function is called the inverse function of f.

If $f(x)$ is differentiable then, $g(x)$ is also differentiable so that $g^{\prime}(x)=$ $1 / f^{\prime}(g(x))$ can be given.
[Proof of the continuity of g] will be discussed next week.
Given $f(x)=e^{x}$, and $(a, b)=\mathbf{R}$, we can write $(c, d)=(0, \infty), g(x)=\log x$.
Given $f(x)=\sin x$, and $[a, b]=[-\pi / 2, \pi / 2]$, we can write $[c, d]=[-1,1]$, $g(x)=\operatorname{Arcsin} x$, where $\operatorname{Arcsin} x$ is the odd function.

$$
\begin{gathered}
\operatorname{Arcsin} 0=0, \operatorname{Arcsin} \frac{1}{2}=\frac{\pi}{6}, \operatorname{Arcsin} \frac{1}{\sqrt{2}}=\frac{\pi}{4}, \operatorname{Arcsin} \frac{\sqrt{2}}{2}=\frac{\pi}{3}, \operatorname{Arcsin} 1=\frac{\pi}{2} . \\
\operatorname{Arcsin}^{\prime} x=\frac{1}{\sin ^{\prime}(\operatorname{Arcsin} x)}=\frac{1}{\cos (\operatorname{Arcsin} x)}=\frac{1}{\sqrt{1-x^{2}}} .
\end{gathered}
$$

In other words, the above describes the arc length formed by a point $P\left(x, \sqrt{1-x^{2}}\right)$ which connects to a point $A(0,1)$ found on the circle of radius 1 with a center at the origin.

$$
\begin{aligned}
\operatorname{Arcsin}^{\prime} x & =\int_{0}^{x} \sqrt{1+\left(\frac{d}{d x} \sqrt{1-x^{2}}\right)^{2}} d x=\int_{0}^{x} \sqrt{1+\left(\frac{x}{\sqrt{1-x^{2}}}\right)^{2}} d x \\
& =\int_{0}^{x} \frac{1}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

If $f(x)=\tan x$, and $(a, b)=(-\pi / 2, \pi / 2)$, we can write $(c, d)=\mathbf{R}, g(x)=$ $\operatorname{Arctan} x$, where $\operatorname{Arctan} x$ is the odd function.

$$
\begin{gathered}
\operatorname{Arctan} 0=0, \operatorname{Arctan} \frac{1}{\sqrt{3}}=\frac{\pi}{6}, \operatorname{Arctan} 1=\frac{\pi}{4}, \operatorname{Arctan} \sqrt{3}=\frac{\pi}{3} \\
\lim _{x \rightarrow \infty} \operatorname{Arctan} x=\frac{\pi}{2} \\
\operatorname{Arctan}^{\prime} x=\frac{1}{\tan ^{\prime}(\operatorname{Arctan} x)}=\cos ^{2}(\operatorname{Arctan} x)=\frac{1}{1+x^{2}} .
\end{gathered}
$$

$$
\lim _{x \rightarrow \infty} x\left(\frac{\pi}{2}-\operatorname{Arctan} x\right)=\lim _{y \rightarrow \frac{\pi}{2}-0} \tan y\left(\frac{\pi}{2}-y\right)=\lim _{z \rightarrow 0+0} \frac{\cos z}{\sin z} z=1
$$

In other words, the above describes the length of the $\operatorname{arc} A Q$ wherein A is the point $(0,1)$ and Q is the intersection point formed between a circle having the radius 1 with a center at origin O and a line $O P$ where P is the point $(x, 1)$.

Coordinates for Q are given by $\left(\frac{x}{\sqrt{1+x^{2}}}, \frac{1}{\sqrt{1+x^{2}}}\right)$.

$$
\begin{aligned}
\operatorname{Arctan}^{\prime} x & =\int_{0}^{x} \sqrt{\left(\frac{d}{d x} \frac{x}{\sqrt{1+x^{2}}}\right)^{2}+\left(\frac{d}{d x} \frac{1}{\sqrt{1+x^{2}}}\right)^{2}} d x \\
& ==\int_{0}^{x} \sqrt{\left(\frac{1}{\sqrt{1+x^{2}}}-\frac{x^{2}}{{\sqrt{1+x^{2}}}^{3}}\right)^{2}+\left(-\frac{x}{\sqrt{1+x^{2}}}\right)^{2}} d x \\
& =\int_{0}^{x} \frac{1}{1+x^{2}} d x
\end{aligned}
$$

