
January 21 Lecture Schedule
Integration of rational functions ([Takahashi, Kato] p.78, 3.3, [Kaneko] I p.113,

[Kodaira] n/a)
We can conduct differentiation to confirm
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To be able to write the equation, we let
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In case where f(x, y) = 1
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To be able to change the variables, we consider the asymptotic line y = ±x. where
y2 = x2 − 1. We note two lines which are parallel to the asymptotic line: y = x+ t and
x + y = t. The asymptote intersect with x + y = t at (x, y) = ( t2+1

2t
, t2−1
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).

Other method of changing the variables. The line that passes through the point
(−1, 0) on y2 = x2 − 1 can be given by y = t(x + 1). The intersecting point between
the given line and y2 = x2 − 1 other than (−1, 0) can be given by (x, y) = (1+t2
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).
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