January 21 Lecture Schedule

Integration of rational functions ([Takahashi, Kato] p.78, 3.3, [Kaneko] I p.113, [Kodaira] n/a)

We can conduct differentiation to confirm $\int \frac{1}{\sqrt{x^{2}-1}} d x=\log \left(x+\sqrt{x^{2}-1}\right)$.:

$$
\frac{d}{d x} \log \left(x+\sqrt{x^{2}-1}\right)=\frac{x+\sqrt{x^{2}-1}}{1+\frac{2 x}{2 \sqrt{x^{2}-1}}}=\frac{1}{\sqrt{x^{2}-1}}
$$

To be able to write the equation, we let $\int f\left(x, \sqrt{x^{2}-1}\right) d x, x=\frac{t^{2}+1}{2 t}=\frac{1}{2}\left(t+\frac{1}{t}\right), 1<t$ and change the variables. $y=\frac{t^{2}-1}{2 t}, \frac{d x}{d t}=\frac{1}{2}\left(1-\frac{1}{t^{2}}\right)=\frac{t^{2}-1}{2 t^{2}}, t=x+y=x+\sqrt{x^{2}-1}$ thus,

$$
\int f\left(x, \sqrt{x^{2}-1}\right) d x=\int f\left(\frac{1+t^{2}}{2 t}, \frac{1-t^{2}}{2 t}\right) \frac{t^{2}-1}{2 t^{2}} d t
$$

In case where $f(x, y)=\frac{1}{y}$,

$$
\int \frac{1}{\sqrt{x^{2}-1}} d x=\frac{2 t}{t^{2}-1} \frac{t^{2}-1}{2 t^{2}} d t=\int \frac{1}{t} d t=\log t=\log \left(x+\sqrt{x^{2}-1}\right)
$$

To be able to change the variables, we consider the asymptotic line $y= \pm x$. where $y^{2}=x^{2}-1$. We note two lines which are parallel to the asymptotic line: $y=x+t$ and $x+y=t$. The asymptote intersect with $x+y=t$ at $(x, y)=\left(\frac{t^{2}+1}{2 t}, \frac{t^{2}-1}{2 t}\right)$.

Other method of changing the variables. The line that passes through the point $(-1,0)$ on $y^{2}=x^{2}-1$ can be given by $y=t(x+1)$. The intersecting point between the given line and $y^{2}=x^{2}-1$ other than $(-1,0)$ can be given by $(x, y)=\left(\frac{1+t^{2}}{1-t^{2}}, \frac{2 t}{1-t^{2}}\right)$.

