October 29 Lecture Schedule
If $f(x, y)$ is partial differentiable at each point then partial derivative $f(x, y) \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)$ can be defined.

Example $\frac{\partial x y}{\partial y}(x, y)=x$
Since it is quite difficult to prove that the function is total differentiable by using the definition above, we use a simple way of testing.

The function is total differentiable if the partial derivative is continuous. [Proof]

$$
\begin{aligned}
& f(x, y)-\left(f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)\right) \\
= & \left(f(x, b)-f(a, b)-f_{x}(a, b)(x-a)\right)+\left(f(x, y)-f(x, b)-f_{y}(a, b)(y-b)\right)
\end{aligned}
$$

For the first term of the equation, we use the definition of partial differential and write as

$$
\frac{\left|f(x, b)-f(a, b)-f_{x}(a, b)(x-a)\right|}{\sqrt{(x-a)^{2}+(y-b)^{2}}} \leq \frac{\left|f(x, b)-f(a, b)-f_{x}(a, b)(x-a)\right|}{|x-a|} \rightarrow 0
$$

For the second term, we use the mean value theorem and write as

$$
f(x, y)-f(x, b)-f_{y}(a, b)(y-b)=\left(f_{y}(x, t)-f_{y}(a, b)\right)(y-b)
$$

t satisfying above exists between y and b. If the partial derivative $f_{y}(x, y)$ is continuous at $(x, y)=(a, b)$ then $(x, t) \rightarrow(a, b)$ when $(x, y) \rightarrow(a, b)$ such that

$$
\frac{\left|\left(f_{y}(x, t)-f_{y}(a, b)\right)(y-b)\right|}{\sqrt{(x-a)^{2}+\left(y^{b}\right)^{2}}} \leq\left|f_{y}(x, t)-f_{y}(a, b)\right| \rightarrow 0 .
$$

