June 25 Lecture Schedule

Definite integral ([1] p.82, [2] p.101-104, 127-133, [3] p.153-158)
We let $f(x)$ be a continuous function defined on a closed interval $[a, b]$. We also define the definite integral $\int_{a}^{b} f(x) d x$ as follows. Suppose $\Delta: a=$ $a_{0} \leq a_{1} \leq \cdots \leq a_{i-1} \leq a_{i} \leq \cdots \leq a_{n-1} \leq a_{n}=b$ is a partition of the closed interval $[a, b]$. Take x_{i} to satisfy $a_{i-1} \leq x_{i} \leq a_{i}$ for each $i=1, \ldots, n$, and consider the sum $S=\sum_{i=1}^{n} f\left(x_{i}\right)\left(a_{i}-a_{i-1}\right)$. The limit of S exists when the diameter of the partition $|\Delta|=\max _{i}\left(a_{i}-a_{i-1}\right)$ is approached to 0 , where we define the limit $\int_{a}^{b} f(x) d x$.

For each $i=1, \ldots, n$, we let m_{i} be the minimum value and M_{i} be the maximum value of $f(x)$ at $a_{i-1} \leq x \leq a_{i}$. If we let $s_{\Delta}=\sum_{i=1}^{n} m_{i}\left(a_{i}-a_{i-1}\right)$ and $S_{\Delta}=\sum_{i=1}^{n} M_{i}\left(a_{i}-a_{i-1}\right)$, we can write $s_{\Delta} \leq S \leq S_{\Delta}$ so that giving $S_{\Delta}-s_{\Delta}=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(a_{i}-a_{i-1}\right) \leq \max _{i}\left(M_{i}-m_{i}\right)(b-a)$.

Now, we let Δ^{\prime} be another partition of the interval. If $\Delta^{\prime \prime}$ is a common refinement of Δ and Δ^{\prime} then, we may express $s_{\Delta} \leq s_{\Delta^{\prime \prime}} \leq S_{\Delta^{\prime \prime}} \leq S_{\Delta}$ and $s_{\Delta^{\prime}} \leq s_{\Delta^{\prime \prime}} \leq S_{\Delta^{\prime \prime}} \leq S_{\Delta^{\prime}}$. To show the existence of a limit, we need to demonstrate $\max _{i}\left(M_{i}-m_{i}\right) \rightarrow 0$ at $|\Delta| \rightarrow 0$.

In this case, note that we assume $f(x)$ to be continuously differentiable for the simplicity of calculations.

Let M^{\prime} be the maximum value of $\left|f^{\prime}(x)\right|$ at $a \leq x \leq b$, in which provides $M_{i}-m_{i} \leq M^{\prime}\left(a_{i}-a_{i-1}\right)$. Thus, $\max _{i}\left(M_{i}-m_{i}\right) \leq M^{\prime}|\Delta| \rightarrow 0($ when $|\Delta| \rightarrow 0$.) Example,

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)=\log 2
$$

We take $f(x)=\frac{1}{x}$ と and define the partition of the interval [1,2] as $1=$ $\frac{n}{n} \leq \frac{n+1}{n} \leq \cdots \frac{n+i-1}{n} \leq \frac{n+i}{n} \leq \cdots \leq \frac{2 n}{n}=2$ so that we let $x_{i}=\frac{n+i}{n}$. Here, the sum $S^{n}=\sum_{i=1}^{n} f^{n}\left(x_{i}\right)\left(a_{i}-a_{i-1}\right)$ can be written as $\sum_{i=1}^{n}\left(\frac{n+i}{n}\right)^{-1} \frac{1^{n}}{n}=\sum_{i=1}^{n} \frac{1}{n+i}$. Thus, the limit is given by $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n+i}=\int_{1}^{2} \frac{1}{x} d x=[\log x]_{1}^{2}=\log 2$..

Fundamental theorem of differential and integral calculus ([1] p. 85 Theorem 9, [2] p.101, [3] p. 165 Theorem 4.4)

$$
\frac{d}{d x} \int_{a}^{x} f(x) d x=f(x)
$$

The left side of the equation represents the common values of $\lim _{h \rightarrow+0} \frac{1}{h} \int_{x}^{x+h} f(x) d x$ and $\lim _{h \rightarrow+0} \frac{1}{h} \int_{x-h}^{x} f(x) d x$. If we let the maximum values and the minimum
values of $f(y)$ be M_{h} and m_{h} at $x-h \leq y \leq x+h$, which allows us to write as

$$
m_{h} h \leq \int_{x}^{x+h} f(x) d x, \int_{x-h}^{h} f(x) d x \leq M_{h} h .
$$

Divide the both sides of the equation by h and let $h \rightarrow 0$ then we obtain $m_{h} \rightarrow f(x)$, and $M_{h} \rightarrow f(x)$.

