June 18 Lecture Schedule
Alternating series convergence ([1] p.188 Theorem 8, [2] p.24 Theorem
1.4, [3] p.45 Theorem 1.23)
> o o(=1)"a, converges if it is monotonically decreasing and a,, > 0, lim,,_o a,, =
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Power series expansion for other functions. ([1] p.44 Example 20(5), p.194
Exercise 3, [2] p.73, [3] p.239 Example 5.11)
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Differential equation: ([1] p.197, [2] p.134.)

The equations which include f(z) and f’(z) (or higher order derivatives.)

Solving the differential equation: find the function f(x) which satisfies
the equation.

Example. O f'(z) = f(x). Solution is f(z) = Ce®(C' is held constantO]
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the equation.

Initial condition: arrange some values such as f(a) ,and f'(a).

Example. Equation f’(z) = f(z)O initial condition f(0) = 1; solution is
f@) = e,

is held constant. In general, f(z) cannot be defined uniquely by

Another proof of e* = 5 x_' flz) = g x_' stands for f'(z) = f(z)
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;and f(0) =
Defined on —1 < x < 1, (14 x)® satisfies the initial condition f(0) =1, i
which the only existing solut1on for the differential equation (1+x)f’(x)=af(x
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Thus, we know that I is held constant[]
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Given ](nH)/(n)\ = |22 — 1, the radius of convergence for ZO (n)yc
is 1. -

So, the function f(x) = Z (a) x" is defined on —1 <z < 1.
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This satisfies the initial condition f(0) = 1, thus we can write

fl(a) = i (Z) nz" 1,

n() = a(t1), () + () = (%) provides

(1+2)f(z) = i(a(zii) +a<a;1))x” s (Z)x" — af(a).



