
Workshop on World Modeling・Workshop on Methods of Human Security Studies
2005 Summer Semester

Presiding Professor: Susumu Yamakage
TA; Takuto Sakamoto, Kazutoshi Suzuki,
 Hiroyuki Hoshiro, Katsuma Mitsutsuji
 Kazuya Yamamoto

Lecture Twelve: Streamline Complex Agents (July 12th)

Today’s Target:
If you make agents do complex processing, the rules get complex and that makes it hard
to read. Thus, this time we will discuss how to consolidate and streamline the rules. We
will also discuss how to intricately designate execution order and how to synchronize
agents.

● Write down complex rules in a simple fashion.
If you come to make models of a certain size, there are many instances where you would
have to repeat the same processing over and over again. Especially when the
overlapping parts contain complex nesting of conditional statements, it would be hard
to read. And it may lead to detrimental errors and mistaking the number of if and endif.
In such cases, by using subroutines and functions you can consolidate the duplicated
parts at one place and be able to call them to order quite easily.

＊ Functions (user defined functions)
In cases where you need a return value (value you want to use again that was used
inside a calculation and has returned to its original rule) there is a function. Stipulate
the following after closing Agt_step by「 } 」at the very end of the rule:

 Function< name of function>(parameter declaration)As <type of function return
value>

｛
 < variable declarations section >
<execution section>
Return (name of variable) ← You can have as many as you like. You can return a

 1

specified value per differentiation.

}
For example, if you want to create AgtSet in the foreground;

 Function countagtsahead(distance as Double) As Integer
 {
 dim set as agtset
 dim kazu as integer

 forward(distance) ← proceed the designated distance
 MakeAllAgtsetAroundOwn(set, distance, False) ← create set
 kazu = Countagtset(set) ← count number of agents
 forward(-distance) ← return to original position
 Return(kazu) ← return what’s inside kazu
 }

Then you can list the agents inside the figure below, the round range. According to the
rules of Agt_Init and Agt_Step,this is how it will appear.

if countagtsahead(1.2) > 0 then ←if from1.2 frontward within a radius of 1.2

 there is something.
 my.speed = 0 ← speed down to zero
 end if

It can now be used in the same manner as other functions. As long as there are no
mutual reference user-defined functions can be used with the definition of other
functions.

 2

＊ Subroutine (consolidate a part of the rule)

use this subroutine:

Sub<name>(parameter declaration)｛

If you want to simply process the overlapping,

 <variable declarations section>
 <execution section>
 ｝

Then it will be called with「name ()」inside the rule. Write in () of the parameter

Sub forwardspace(dist as double, sight as double){

dim set as agtset

forward(dist) ←first of all proceed 1
ceeded

declaration only when there is a value that needs to be handed down. Let’s say you
made the following subroutine: 「Proceed when there is empty space in front. Decide on
your own the distance you are to proceed and at which range of view you will judge as
being empty space.」

 makeallagtsetaroundown(set, sight, false) ← look around after having pro
 if countagtset(set) > 0 then ← what if there is something
 forward(-dist) ← retrieve
 end if
 }

If you next input forwardspace(1,1) with Agt_Step, the following order will be executed;
「Proceed forward by 1, if there is no one within 1 space of that space stay. If there is
someone within one space of that space, return to the original position.」There is no
return value in a subroutine. This means that unlike functions, we can not find a
replacement with,「if processing 1() > 0 then ･･･」So in the following case, we must use
a function;「We are at the edge of space and are unable to move, in this case, we are ・
１」

Example ①

space of 50×50 (no loop). In this space things fall right. With each step Let’s make a

 3

from the bottom left a single ball appears and falls towards the right side. If there are
no obstacles, the ball will keep on falling till the edge, one every step. If there is a ball
to the right of this ball, if there is open space above, it will slide there. Let’s write this
function. We will create one agent every time in the Universe.

gt_Step{

tAhead(0.5) == 0 then ← if there is nothing within a radius of 0.5 from

 forward(1) ←
thing

 here,

← will return to original direction

A
if CountAg

0.5 ahead･･･
will proceed 1

else ← if there is some
 turn(90) ←will look upward
 if CountAgtAhead(0.5) == 0 then ←if nothing
 forward(1) ← will move upward
 end if
 turn(-90)
end if
}

Bonus: If you are chasing something and you’ve used Forward() or when you are
heading somewhere, then there arises a need to know the direction of your destination.
You will use arctangent but this could be a bit tricky With a lot of conditional
statements. I have uploaded a function that will help you in such situations, please copy
it.

● Execution Order

ich the agent executes so and so; Execution Order
t, proves to be

＊ The order in wh
Though it may seem to be not so important, the execution, order, in fac
one of the key settings. Though on the surface it may seem as if everything is going
well, there are instances where, in fact things exactly the opposite to what you have
imagined are taking place. Execution order can be established in detail with「Set＞
Execution Environment Setting＞Execution Order」.At present the following four types
of execution orders can be designated:

1. Random

e shuffled regardless of the type of agent.
･

All agents ar

 4

･2. Random (change execution order on the first time only)

shuffled. From the second

n the type of agent. The agents of the

1, wolf

hen the wolf comes first, and later the sheep and goats are executed all mixed together.

n also shuffle

Only at the first time, regardless of the type, all agents are
step, the execution will be identical to the first.
･3. Random (designation of the type of agent)
Execution order can be designated depending o
same type are shuffled at every step. The numbers on the left side show the execution
order.

2, sheep
2, goat

T
･4. Random by agent type (change execution order on the first time only)
Here you can designate an execution order for each type of agent. You ca
the execution order within the agents of the same type for the first time only.

This option of being able to shuffle on the first time only is relatively important. Let’s

step1 step2 step3 step4

ven if the speed of ▲■ is the same, the distance between them does shrink and

step1 step2 step3 step4

n this way the first order must be obeyed.

say that ■ is a running away model and that ▲ is a chasing model. Then the order
will be such;

 ■→▲ ▲→■ ▲→■ ■→▲

E
widen.

 ■→▲ ■→▲ ■→▲ ■→▲

I

 5

＊ Techniques to adjust the execution order.

 comes to complex models that respond to the reactions of the opponent, there
･ Flag
When it
are cases where one line of action can not be written in one step alone. Let’s say three
steps are necessary to complete a line of action. One turn after every three steps and it
would be necessary to repeat this. In this case a Flag is used. We will make a variable
that represents a phase, right under the Universe. We will write down a rule,
 0→1→2→0→1→2→0, so that it will change.

universe.phase = universe.phase + 1
if universe.phase == 3 then

 universe.phase

verse.phase = getcountstep() mod 3)
And, in t

 1 then

f phase 3

of the rules of each phase, it does become simpler and more

 Skipping steps
r to memory of past ten turns, AND if you are still short of eleven

= 0
end if
(Or,uni
he agent rule, we will write

 if universe.phase == 0 then
 rule of phase 1
elseif universe.phase ==

 rule of phase 2
 else
 rule o
 end if
By making subroutine
comprehensible.

･

If you attempt to refe
steps, you will be referring to the memory before the 0 step. This would be a problem
because you would be referring to a memory of a world before it came into being. This
can be also dealt with the “flag”, by enabling the rule only after eleven steps. As to
that which is short of eleven steps, you can simply skip the rule or execute an entirely
different rule instead. With the same method, we can call for initial positioning or
modify conditions in the course of a run.

 6

Assignment
 bonus function, please make a model where two agents chase each other ① Using the

around. The space is better looped. The chasing agent chases automatically. The
escaping agent escapes in a straight line from a randomly-chosen place toward a
randomly-chosen direction. The speed is 1 for both. (Set the garbage collection at 1 in
Execution Environment Setting. If the speed is too fast, put a value after “wait for” and
adjust with effective wait. You will use Getagt or For each. Be very careful about your
execution order. The agent escaping goes first.)
②Make it possible to operate the direction of the escaping agent with the control panel.

Study the figure below and make a function that looks forward at one angle of vision.

Also make them start from the same place. The agent chasing will start after waiting 10
steps.

③

 7

