クレジット:

UTokyo Online Education 統計データ解析 I 2017 小池祐太

ライセンス:

利用者は、本講義資料を、教育的な目的に限ってページ単位で利用 することができます。特に記載のない限り、本講義資料はページ単 位でクリエイティブ・コモンズ 表示-非営利-改変禁止 ライセンスの下 に提供されています。

http://creativecommons.org/licenses/by-nc-nd/4.0/

本講義資料内には、東京大学が第三者より許諾を得て利用している 画像等や、各種ライセンスによって提供されている画像等が含まれ ています。個々の画像等を本講義資料から切り離して利用すること はできません。個々の画像等の利用については、それぞれの権利者 の定めるところに従ってください。

統計データ解析 I (平成29年度)

東京大学大学院数理科学研究科 統計データ解析教育研究グループ

> 村田 昪 (早稲田大学, 東京大学) 吉田朋広 (東京大学) 小池祐太 (首都大学東京, 東京大学)

第3章 データの加工・整理と入出力

3.1. データの抽出

データから必要な部分集合を取り出すためには, 添え字を指定するのが最も基本的 な方法である. 添え字の指定の仕方には, 番号を指定する以外に, 論理値で指定する 方法がある. この場合, TRUE は要素の「選択」を, FALSE は要素の「除外」を意味す る. また, 前にも述べたように, 要素に名前が付けられている場合は, その名前によっ てアクセス可能である. また, マイナス記号をつけて添え字番号を指定すると, その 添え字番号の要素を除外する.

> ### ベクトルの例 > x <- c(4, 1, 2, 9, 8, 3, 6) > x[c(5, 2)] # 5番目と2番目の要素をこの順で抽出 [1] 8 1 > x[-c(2, 3, 7)] # 2,3,7番目以外の要素を表示 [1] 4 9 8 3 > (idx <- x > 3) # 3 より大きい要素は TRUE, 3 以下の要素は FALSE [1] TRUE FALSE FALSE TRUE TRUE FALSE TRUE > x[idx] # 3 より大きい要素をすべて表示 [1] 4 9 8 6 > x[x > 3] # 上と同じ [1] 4 9 8 6 > x[-c(2, 3, 7)] # 2,3,7番目以外の要素を表示 [1] 4 9 8 3 > x[c(2, 5)] <- c(0, 1) # 2番目と5番目の要素を文字0と1に置換 > x [1] 4 0 2 9 1 3 6 > (names(x) <- letters[1:length(x)]) # xの要素にアルファベットを順に名前をつける [1] "a" "b" "c" "d" "e" "f" "g" > x[c("b", "e")] # 2番目と5番目の要素 Ъe 0 1 > ### データフレームの例 > ### Rの組込みデータセット airquality を利用 > ### 詳細は help(airquality) 参照 > dim(airquality) # 大きさを確認 [1] 153 6 > names(airquality) # 列名を表示 [1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day" > head(airquality) # 最初の 6 行を表示 Ozone Solar.R Wind Temp Month Day 190 7.4 67 41 1 51 2 36 118 8.0 72 52 14912.67431311.562 12 3 5 3 4 18 5 4

3.1. データの抽出

```
NA 14.3 56
5
    NΑ
                          5
                             5
          NA 14.9 66 5 6
    28
6
> str(airquality) # オブジェクトの構造を表示
'data.frame':
                  153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
 $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
 $ Wind
        : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
        : int 67 72 74 62 56 66 65 59 61 69 ...
 $ Temp
 $ Month : int 555555555...
        : int 1 2 3 4 5 6 7 8 9 10 ...
 $ Day
> airquality[which(airquality$0zone>100), ] # 0zone が 100 を超える行を抽出
   Ozone Solar.R Wind Temp Month Day
30
    115
            223 5.7
                     79
                             5 30
62
     135
            2694.1842238.085
                            7
                                1
                            7 25
86
     108
            255 4.0 89 8
99
    122
                               7
101
    110
            207 8.0 90 8
                              9
    168
118
            238 3.4 81
225 2.3 94
                         8 29
                            8 25
117
121
> airquality[which(airquality$Ozone>100), c("Month", "Day")]
   Month Day
30
       5 30
62
       7
          1
86
       7 25
99
       8
          7
101
       8
          9
       8 25
117
       8 29
121
> # Ozone が 100 を超える行の Month と Day を表示
```

(select.r)

データフレームから必要な部分集合を取り出す際に複雑な条件を指定する場合,添 え字を指定するのではコードが読みにくくなってしまう.そのような場合にも対応で きるように,関数 subset()が用意されている. 関数 subset()の基本的な書式は

subset(x, subset, select)

である.xにデータフレームを指定し, subset に抽出したい行に関する条件を, select に抽出したい列に関する条件をそれぞれ指定する.

> subset(airquality, Ozone>100) # Ozone が 100 を超える行を抽出 Ozone Solar.R Wind Temp Month Day 30 115 223 5.7 79 5 30 84 62 135 269 4.1 1 7 86 108 223 8.0 85 7 25 2554.0892078.090 99 122 8 7 110 8 101 9 238 3.4 8 25 117 168 81 121 118 225 2.3 94 8 29 > subset(airquality, Ozone>100, select=Wind:Day) Wind Temp Month Day 30 5.7 79 5 30 4.1 84 62 7 1 7 86 8.0 85 25 4.0 89 8 99 7 101 8.0 90 89 1173.4811212.394 8 25 8 29

```
> # Ozone が 100 を超える行で列名が Wind~Day のデータを抽出
> subset(airquality, !is.na(Ozone) & Day %in% c(1, 2))
   Ozone Solar.R Wind Temp Month Day
          190 7.4 67
1
     41
                         5
                             1
     36
           118 8.0 72
2
                          5
                            2
           2694.1842489.285836.981
   135
62
                          7
                             1
63
     49
                          7
                             2
93
                            1
     39
                          8
           24 13.8 81
94
     9
                          8
                            2
    96
                        9
124
           167 6.9 91
                             1
125
     78
           197 5.1
                    92
                         9
                             2
> # Ozone に欠測 (NA) がなく, Day が 1 か 2 のデータを抽出
> subset(airquality, Ozone>=120 | Temp >= 95)
   Ozone Solar.R Wind Temp Month Day
          269 4.1 84
62
    135
                       7
99
    122
           255 4.0 89
                          8 7
117
   168
           238 3.4 81 8 25
120
     76
           203 9.7
                    97
                          8 28
   84
                        8 30
          237 6.3 96
122
> # Ozone が 120 以上か Temp が 95 以上のデータ
> subset(airquality, Day == 1, select = -Temp)
   Ozone Solar.R Wind Month Day
1
    41 190 7.4 5 1
           286 8.6 6 1
32
     NA
                   7
8
   135
62
           269 4.1
                         1
                      8 1
           83 6.9
93
     39
124 96 167 6.9
                        1
                     9
> # Day が 1 の行について Temp 以外の列を抽出
```

(subset.r)

その他, データフレームを特定のグループ分けに基づいて分割・結合するための関数 split(), merge() が用意されている (詳しい使い方はヘルプを参照). また, より 高度なデータフレームの加工を実行するための関数群が dplyr パッケージに用意さ れている.

演習 3.1. R の組込データセット airquality (1973 年 5 月から 9 月までのニュー ヨークの大気の状態に関するデータ) から以下の条件を満たすデータを取り出せ.

- (1) 7月のオゾン濃度 (Ozone)
- (2) 日射量 (Solar.R) に欠測 (NA) がないデータの月 (Month) と日 (Day)
- (3) 風速 (Wind) が時速 10 マイル以上で、気温 (Temp) が華氏 80 度以上の日の データ

3.2. ファイルを用いたデータの読み書き

実際の解析の過程においては、収集されたデータを読み込んだり、整理したデータを 保存したりする必要が生じる.Rでは一般に用いられる CSV 形式 (comma separated values) のテキストファイルと、Rの内部表現を用いたバイナリーファイル (ここで は RData 形式と呼ぶ)をサポートしている.以下では、データフレームを対象とし て、それぞれの形式でファイルの読み書きを行うための関数を纏める.

3.2.1. 作業ディレクトリの確認と変更. Rの実行は特定のフォルダ(ディレクト リ)上で行われており,そのフォルダを作業ディレクトリと呼ぶ. Rのコード内でファ イル名を指定した場合,特に指定しない限り作業ディレクトリに存在するものとして 扱われる. 現在の作業ディレクトリは関数 getwd() で確認できる. 作業ディレクト リの変更には関数 setwd()を利用するか,RStudio上部の「Session」という項目か ら「Set Working Directory」を選び,その中の「Choose Directory...」という項目を 選択すれば,変更後のフォルダを選択できるようになる.

> getwd() # 作業ディレクトリの確認 (環境によって実行結果が異なるため,実行結果は省略)
 > setwd("~/Documents")
 > # ホームディレクトリ下の「書類」フォルダに移動
 > # 環境によってディレクトリの指定の仕方が異なることに注意

(getwd.r)

3.2.2. CSV 形式の操作.1つのデータフレームを CSV 形式のファイルへ書き 出すには、関数 write.csv()を用いる.書き出し後のファイルは特に指定しない限 り作業ディレクトリ下に保存される.

>	(mydata	<- subs	et(ai	rqualit	у,	Ozone	>	90,	select=-Temp)))	#	データ	フレ	ノーム	の作成
	Ozone	Solar.R	Wind	Month	Day										
30	115	223	5.7	5	30										
62	135	269	4.1	7	1										
69	97	267	6.3	7	8										
70	97	272	5.7	7	9										
86	108	223	8.0	7	25										
99	122	255	4.0	8	7										
10	1 110	207	8.0	8	9										
11	7 168	238	3.4	8	25										
12	1 118	225	2.3	8	29										
12	4 96	167	6.9	9	1										
12	7 91	189	4.6	9	4										
> dim(mydata) # 大きさを確認															
[1] 11 5														
>	write.cs	sv(mydata	a,file	e="myda	ta.	csv")	#	csv	ファイルとして	、書	きと	出し			
											(data-	rit	e.csv	.r)

CSV 形式のファイルから読み込むには,関数 read.csv()を用いる.読み込むファ イルは,ディレクトリを明示的に指定しない限り,作業ディレクトリにある必要があ ることに注意.

```
> (newdata <- read.csv(file="mydata.csv",row.names=1)) # csv ファイルの読み込み
   Ozone Solar.R Wind Month Day
30
     115 223 5.7 5 30
     135
               269 4.1
62
                            7
                                 1
                           7
             267 6.3
                               8
69
     97
                          7 9
7 25
8 7
8 9
70
      97
             272 5.7
     1082238.01222554.0
86
99
101 110 207 8.0
117 168 238 3.4 8 25

        118
        225
        2.3
        8
        29

        96
        167
        6.9
        9
        1

        91
        189
        4.6
        9
        4

121
124
127
> dim(newdata) # 大きさを確認
[1] 11 5
> ## 外部 CSV データの読み込み
> ## 東京都の 2016 年の気候データによる例
> ## 気象庁のホームページより取得
> ## http://www.data.jma.go.jp/gmd/risk/obsdl/index.php
> ## 東京都の 2016 年の各日の平均気温 (°C)・降水量 (mm)・全天日射量 (MJ/u)・
> ## 平均風速 (m/s) を記録したデータセット kikou2016.csv
> kikou <- read.csv("kikou2016.csv",
```

fileEncoding = "sjis") # ファイルの文字コードが Shift-JIS のため + > head(kikou) # データの最初の 6 行を表示 月 日 気温 降水量 日射量 風速 1 1 1 7.5 0 11.80 2.6 2 1 2 7.3 0 11.59 1.9 3 1 3 9.3 0 10.77 1.4 4 9.2 5 10.9 1 0 11.19 1.6 4 5 0 10.57 1.8 1 $6 \ 1 \ 6 \ 8.9 \ 0 \ 4.54 \ 1.9$ > dim(kikou) # 大きさを確認 [1] 366 6 > colnames(kikou) # 列名を確認 "気温" "降水量""日射量""風速" [1] "月" "日"

(data-read.csv2.r)

オプションとして与えられている row.names=1 は,第1列を読み込んだデータフレームの各行の名前に割り当てることを意味している.

3.2.3. RData形式の操作. RData形式のファイルへの書き出しは, 関数 save() を用いる. 関数 write.csv() と同様に, 書き出し後のファイルは特に指定しない限 り作業ディレクトリ下に保存される. CSV 形式と異なり, 複数のデータフレームを 1 つのファイルに同時に保存することもできる.

```
> (mydat1 <- subset(airquality, Temp>95, select=-Ozone)) # データフレームの作成
    Solar.R Wind Temp Month Day
120
      203 9.7 97 8 28
122
       237 6.3 96
                         8 30
> (mydat2 <- subset(airquality, Temp<60, select=-Ozone)) # データフレームの作成
  Solar.R Wind Temp Month Day
                     55
5
       NA 14.3 56
8
       99 13.8
                59
                           8
                       5
                        5 15
15
       65 13.2
                 58
                57
       78 18.4
18
                       5 18
21
        8 9.7
                59
                     5 21
                57
25
       66 16.6
                       5 25
      266 14.9
26
                 58
                       5
                           26

        NA
        8.0
        57
        5
        27

27
> dim(mydat1) # 大きさを確認
[1] 2 5
> dim(mydat2) # 大きさを確認
[1] 8 5
> save(mydat1,mydat2,file="mydata.rdata") # RData 形式で書き出し
                                                              (data-save.r)
```

RData形式のファイルからの読み込みは、関数 load()を用いる. 関数 read.csv() と同様に、読み込むファイルは、ディレクトリを明示的に指定しない限り、作業ディレ クトリにある必要があることに注意.

3.3. データの整理

```
> load(file="mydata.rdata") # RData 形式の読み込み
> mydat1 # save したときの名前で読み込まれ上書きされる
   Solar.R Wind Temp Month Day
120
      203 9.7 97
                      8 28
                      8 30
      237 6.3 96
122
> mydat2
  Solar.R Wind Temp Month Day
5
     NA 14.3 56
                   55
              59
8
      99 13.8
                     5
                        8
      65 13.2 58
78 18.4 57
15
                     5 15
18
                     5 18
      8 9.7 59
21
                     5 21
                    5 25
25
      66 16.6 57
26
      266 14.9
               58
                     5 26
      NA 8.0 57
27
                     5 27
```

(data-load.r)

関数 save() では、データフレームの名前と内容が保存されるので、保存された名 前が自動的に用いられる.したがって読み込む際には変数名の重複に注意が必要で ある.

演習 3.2. ファイル操作に慣れよう.

- (1) 適当に作成したデータフレームをファイルに書き出しなさい.
- (2) 表を整理するには Excel などの表計算ソフトを用いるのが簡便であり,多 くの表計算ソフトは CSV 形式でもデータが保存できるようになっている. 自身の利用するソフトにおいて CSV 形式で保存する方法を調べなさい.
- (3) Excel 形式のファイルを直接読み込むパッケージもいくつかある. どのよう なパッケージがあるか調べなさい.

3.3. データの整理

与えられたデータの総和や平均,最大値・最小値を求めたい状況は頻繁にある. R に はこれらの操作を簡便に実行するための関数としてそれぞれ sum(), mean(), max(), min()が用意されている.

```
> sum(1:100) # 1から 100までの整数の総和
[1] 5050
> ## 気候データによる例
> kikou <- read.csv("kikou2016.csv", fileEncoding = "sjis")
> kion <- kikou$気温 # 気温を取り出す
> mean(kion) # 平均
[1] 16.47022
> max(kion) # 最大値
[1] 31.9
> min(kion) # 最小値
[1] 2.8
```

(sum.r)

行列もしくはデータフレームが与えられた際には,列(あるいは行)ごとに平均な どの統計量を計算したい状況が頻繁にある.そのような計算に便利な関数として関数 apply()がある.関数 appry()は基本的に以下のような書式で利用する:

appry(X, MARGIN, FUN)

ここで, 引数 X にデータフレームを指定し, MARGIN には行ごとの計算には 1 を, 列ご との計算には 2 を指定する. 引数 FUN には求めたい統計量を計算するための関数を指 定する.

なお,総和や平均の場合には,列/行ごとに計算するための専用の関数が用意されて いるため,そちらを利用した方が良い.

```
> x <- matrix(1:100, 4, 25)
> sum(x) # x の成分全ての和を計算する (mean 等も同様)
[1] 5050
> rowSums(x) # 行ごとの総和
[1] 1225 1250 1275 1300
> apply(x, 1, "sum") # 上と同じ
[1] 1225 1250 1275 1300
> ## 気候データによる例
> kikou <- read.csv("kikou2016.csv", fileEncoding = "sjis")</pre>
> x <- subset(kikou, select = -c(月, 日)) # 月日は除いておく
> colMeans(x) # 列ごとの平均
                 日射量
    気温
        降水量
                            風速
16.470219 4.860656 12.681967 2.785246
> apply(x, 2, "max") # 列ごとの最大値
 気温 降水量 日射量 風速
31.90 106.50 29.87 7.20
> sapply(x, "max") # 上と同じ
 気温 降水量 日射量 風速
31.90 106.50 29.87 7.20
> apply(x, 2, "min") # 列ごとの最小値
 気温 降水量 日射量 風速
 2.80 0.00 1.11
                 1.20
> # 自作関数の適用
> apply(x, 2, function(x) sum(x > mean(x))) # 列ごとに平均より大きいデータの数を計算
 気温 降水量 日射量 風速
  188 72 157 172
```

(rowSums.r)

データフレームの各行をいくつかのグループにまとめて、グループごとの統計量を 計算したい状況も頻繁に生じる.この場合に便利なのが関数 aggregate()である. 関数 aggregate()は基本的に以下のような書式で利用する:

aggregate(x, by, FUN)

ここで,引数xにデータフレームを指定し,byに各行が属するグループを指定するベクトルをリストで与える(複数可).引数 FUN には求めたい統計量を計算するための 関数を指定する.なお,xがベクトルの場合には関数 tapply()も利用可能である.

```
> ## 気候データによる例
> kikou <- read.csv("kikou2016.csv", fileEncoding = "sjis")</pre>
> ## 月ごとの各変数の平均値
> aggregate(kikou[,-(1:2)], by = list(月 = kikou$月), FUN = "mean")
          気温 降水量 日射量
   月
                                    風速
   1 6.080645 2.741935 9.891290 2.393548
1
      7.227586 1.965517 11.431034 2.889655
2
   2
   3 10.141935 3.322581 13.443226 2.812903
3
   4 15.446667 4.000000 14.909667 3.263333
4
   5 20.161290 4.435484 19.268065 3.383871
5
   6 22.353333 5.816667 14.974000 2.926667
6
   7 25.374194 2.629032 15.326129 2.674194
7
8
 8 27.116129 13.354839 15.801935 3.096774
  9 24.400000 9.566667 10.021000 2.436667
9
10 10 18.722581 3.112903 9.597742 2.441935
```

3.4. その他

```
11 11 11.406667 4.633333 8.243000 2.466667
12 12 8.864516 2.709677 9.112581 2.641935
> ## 以下のコードも同じ結果を返す
> aggregate( . ~ 月, data = subset(kikou, select = -日), FUN = "mean")
                 降水量
                          日射量
   月
          気温
                                    風速
   1 6.080645 2.741935 9.891290 2.393548
1
2
   2
      7.227586 1.965517 11.431034 2.889655
3
   3 10.141935 3.322581 13.443226 2.812903
4
   4 15.446667 4.000000 14.909667 3.263333
5
   5 20.161290 4.435484 19.268065 3.383871
   6 22.353333 5.816667 14.974000 2.926667
6
7
   7 25.374194 2.629032 15.326129 2.674194
   8 27.116129 13.354839 15.801935 3.096774
8
9
   9 24.400000 9.566667 10.021000 2.436667
12 12 8.864516 2.709677 9.112581 2.641935
> ## 月および降水の有無でグループ分け
> aggregate(kikou[,-(1:2)], FUN = "mean",
           by = list(月 = kikou$月,降水の有無 = (kikou$降水量 > 0)))
   月 降水の有無
                   気温
                          降水量
                                    日射量
                                             風速
          FALSE 6.340741 0.000000 10.809259 2.351852
1
   1
          FALSE 6.747619 0.000000 12.790000 2.804762
2
   2
3
   3
          FALSE 9.781818 0.000000 15.214091 2.654545
          FALSE 16.041176 0.000000 20.606471 3.400000
4
   4
          FALSE 20.495652 0.000000 22.570870 3.260870
5
   5
6
   6
          FALSE 22.550000 0.000000 21.742143 3.328571
7
          FALSE 25.838095 0.000000 17.782857 2.700000
   7
8
   8
          FALSE 28.000000 0.000000 20.305000 3.068750
9
   9
          FALSE 25.662500 0.000000 13.544375 2.462500
10 10
          FALSE 18.761905 0.000000 11.958095 2.461905
11 11
          FALSE 11.829412 0.000000 10.241176 2.411765
12 12
          FALSE 7.969565 0.000000 10.114348 2.626087
13 1
          TRUE 4.325000 21.250000 3.695000 2.675000
14 2
           TRUE 8.487500 7.125000 7.863750 3.112500
15 3
           TRUE 11.022222 11.444444 9.114444 3.200000
16 4
           TRUE 14.669231 9.230769
                                   7.460000 3.084615
17 5
           TRUE 19.200000 17.187500 9.772500 3.737500
18 6
           TRUE 22.181250 10.906250 9.051875 2.575000
19
   7
           TRUE 24.400000 8.150000 10.167000 2.620000
20 8
           TRUE 26.173333 27.600000 10.998667 3.126667
21 9
           TRUE 22.957143 20.500000 5.994286 2.407143
22 10
           TRUE 18.640000 9.650000 4.641000 2.400000
23 11
           TRUE 10.853846 10.692308 5.630000 2.538462
24 12
           TRUE 11.437500 10.500000 6.232500 2.687500
                                                             (aggregate.r)
```

演習 3.3. R の組込データセット airquality について, 月日以外の変数ごとに平均, 最大値および最小値を求めよ. また, 月ごとの平均, 最大値および最小値も求めよ.

3.4. その他

CSV形式でない通常のテキストファイルを読み込むための関数としてread.table() がある.ファイルの大きさが大きい場合,読み込みや書き出しに非常に時間がかかる ことがある.その場合,ファイル操作を高速化したパッケージ群がいくつか開発され ているため,それらを利用するのが便利である.例えば,大規模データの読み込みに はパッケージ data.tableの関数 fread()が便利である.CSV ファイルの書き出し にはパッケージ readrの関数 write_csv()が便利である. 3. データの加工・整理と入出力

3.5. 参考文献

- 金明哲著「Rによるデータサイエンス (第2版)」, 森北出版 (2017年).
 U. リゲス著,石田基広訳「Rの基礎とプログラミング技法」, 丸善出版 (2012年).