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We studied the figures on the real line ith periodicity and symmetry.

Let a group G act on the real line R so that the orbit
space R/G is 1-dimensional and compact. Then there

are the following two cases.

e ( is a group generated by a translation T and is

isomorphic to C,, = Z.

> . } . > . > . > . ‘; . .

The orbit space R/C, is homeomorphic to a circle.
e (G is a group generated by two reflections ry and
r1 and is isomorphic to Cy x Cy = Z X Z5.

O 5 \ou 2 = L
I hY i A I A\

The orbit space R/(C5 x C3) is homeomorphic to a
closed interval.
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1. How are two dimensional figures with periodicity and
symmetry ?

Image removed due to copyright Image removed due to copyright Image removed due to copyright
restrictions. restrictions. restrictions.
Maurits Cornelis Escher (Devil) Maurits Cornelis Escher (Butterflies) Maurits Cornelis Escher (Horseman)
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1. How are two dimensional figures with periodicity and
symmetry ?

Image removed due to copyright Image removed due to copyright Image removed due to copyright
restrictions. restrictions. restrictions.
Maurits Cornelis Escher Maurits Cornelis Escher Maurits Cornelis Escher
(Starfish and Clams) (Fish and Devil) (Crab)
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1. How are two dimensional figures with periodicity and
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Maurits Cornelis Escher Maurits Cornelis Escher Maurits Cornelis Escher
(Fish) (Fish-Watercolor) (Birds)
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Let us understand the designs by Esher (1896-1972)
as repetitions of designs on a smallest polygons (as
simple as possible).

Please find the smallest unit of the designs
distributed by using rulers.

First find a parallelogram which represents the
periodicity and examine it whether it can be divided
into smaller pieces.
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Maurits Cornelis Escher (Devil) Maurits Cornelis Escher (Butterflies)
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Maurits Cornelis Escher
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Maurits Cornelis Escher (Horseman)
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Maurits Cornelis Escher
(Fish and Devil)
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Maurits Cornelis Escher Maurits Cornelis Escher
(Fish) (Fish-Watercolor)
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~ Itis easy to see that we obtain figures with periodicity and
= symmetry from copies of “stoicheia” by attaching along their

It is only a sufficient condition, and this does not explain the
necessity of the appearance of “stoicheia”.
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with periodicity is a figure such that its isometry group
(congruence group) contains two independent translations.

| Problem. Classify the isometry groups (congruence groups)
of the figures on the plane with periodicity and symmetry.

It is know that there are 17 types of the groups of isometry of
such figures.
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2. Lattices

-3
For two linearly independent vectors a and b, the set

_>
L = {fm,c_r,> +nb | m,n € Z} of the sums of their integer

multiples is called a lattice on the plane.
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The paralleloid with vertices 0, a, b, a + b is deter-

mined up to similarity transformations by the ratio =

_>
a
laf _)H of the norms of the two vectors and the angle

/6]l
formed by the vectors. When the ratio is replaced

by the inverse (reciprocal) number or the angle 6 is
replaced by the supplementary angle w — 0, the paral-

leloids are similar.

The lattice is formed by the vertices when the plane
is tiled by paralleloids. Then different paralleloids de-

termine the same lattice.
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_>
If the pair of the vectors a and b and the pair of the
_>

vectors a’ and b’ determine the same lattice,
then there exist integers . . . . . . . .
s, t, uw and v such that
_>

a =sa + tb,

o 5 o

b’ =ua + vb.
There also exist integers -

s, t,u and v' such that -~ -~ -~ -~ ~ , =~
= ] e
a=sa +tb,
— —
I /
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Then

— — —
a=s(sa+tb)+t(ua+vb)=(ss+tua+(st+tv)b, |
— L, = R .n = g
b=u'(sa+tb)+v'(ua+vb)=(u's+v'u)a+ (ut+v'v)b. - =

Therefore

o) (on)-03)

Since the matrices are integer matrices, their determi-
nants are integers. By taking the determinants of the
both sides of the equality, the determinants of these
matrices are +1.
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. . . 8 t ' ‘-
As a conclusion, for an integer matrix of de- "

u v

= s = —
terminant +1, the pairs {a, b} and {sa +tb,ua + vb}

determine the same lattice L.

It is an important fact and we will use it later, how-

ever, it does not give us a good geometric idea.

Thus it is nice to consider a figure determined nat-
urally by the lattice L. In fact, there is determined
the Dirichelet domain or the Voronoi domain of the

lattice.
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The figure K in question is the set of such points in
the plane that the origin is nearest among the lattice

points.

K={zxecR|YcL, || <|z—2|}
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K is either a rectangle or a hexagon symmetric with
respect to the center with parallel opposite sides
which inscribes a circle.

A special case among hexagons is the regular hexagon.
A rectangle can be seen as the limit as the length of

a pair of sides tends to O.

e Let B be the point nearest to 6 among the points
of the lattice L other than 8

e Let a be the point nearest to 8 among the points
of the lattice L other than integer multiples of 1—5

e When p and q are orthogonal, the perpendlcular
bisector of the Segment Jommg 0 and :I:p and that
of the segment joining 0 and :I:q encloses a rectan-

gle, which is the Dirichelet domain.
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e When ]_5 and 3 are not orthogonal, a vector r of
the form (_1> = B is the second nearest vector to the el
origin 6 after :I:E among the lattice points L other
than integer multiples of E

e Then the perpendicular bisector of the segment
_]ommg O and :i:p, that of the segment JOlnlng O
and :l:q, and that of the segment joining 0 and
+7r determine a hexagon symmetric with respect
to the origin.

e This is the Dirichelet domain of the origin 8
By choosing appropriate signs, the vertices of
the hexagon are the circumcenters of the trian-
gles with vertices 0, :|:1_9> and :l:?j, and hence the

hexagon inscribes a circle.
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We can cover the plane periodically using K as a tile.
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® By translation by an
_>
{m& +nb } m,n € Z}, the Dirichelet domain of

the origin is mapped onto the Dirichelet domain

ﬁélem.ent of t.he lattice L =

of another lattice point. .

e The group L generated by translations in two di-
rections acts on the plane and the orbit space is
obtained from K by pasting the opposite sides.

e The orbit space is the same as the space obtained
from paralleloid by pasting the opposite sides and
it is homeomorphic to a torus.
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We see that the Euler number of
the torus is 0 by dividing it into
polygons.

The Euler number of a compact
surface is defined to be

v—e+f,
where v, e and f are numbers of

vertices, of edges and of faces,
respectively, of its cell subdivision.
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3. Lattices with symmetry

The lattice L is symmetric with respect to the origin
as well as to the mid points of two lattice points, how- ©
ever, only several special lattices have symmetry with

respect to a line or rotational symmetry.

If the lattice L is mapped to itself by a move T —
- = — - - — .

Ax + ¢, then 0 — A0+ c = ¢c € L. Here, A is an

orthogonal matrix.

Since the translation by e maps the lattice L to it-

self, T — AT maps the lattice L to itself.
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_>
Then the vectors a and b generating the lattice are
— — — = — —
mapped to Aa = sa +ta and Ab = ua + va, respec-

tively.
Since this can be written as A (Z{ 3) = (Z{ 3) (8 u), |

for P = (af E),

AP(S '“’)P-l.
t v
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77 =R

a7 A

vy - 7
:

S u
In particular, the trace Tr A = Tr . =8+ v 1s an

v
integer.

The trace of the orthogonal matrix A is 0 if A is a
reflection and is 2 cos 0 if A is the rotation by the angle

0. Since it is an integer, it takes one of the values —2,
—1, 0, 1 or 2.

If A is a reflection, we can find points of L on the axis
of the symmetry, and we see that the fundamental
domain of lattice L is either a rectangle or a rhombus
(a diamond).
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Thus, if A is a rotation by the angle 8, then 0 is equal

to one of the following angles:

2 1 1
w; —m; £—m; =—m; O.
3 2 3

This restriction on the angles of the rotational sym-
metries of lattices explains the frequent appearence of
‘“stoicheia”.
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4. Orbit spaces

Let F be a figure on the Euclidean plane R*. Assume

that the isometry group (congruence group) G = I(F’)
contains a lattice L generated by two translations by

linearly independent vectors.

Definition. For a point « € R?, put

G,={gcG|gx)=2a}.

G, is called the isotropy subgroup at x.
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p of the group O(2) consisting of 2 x 2

orthogonal matrices. When G contains a lattice L, |
elements of G, preserve the latticeL by the argument
above. Thus G, is isomorphic to one of the following

groups:

e {id} (the group consisting

of only one element)

e C; (symmetry w.r.t.
a point), Cg, C4, Cﬁ

e D, (symmetry
w.r.t. a line), O O O
D4a DG: DS) D12 i
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Thus a neighborhood of a point [x] in the orbit space

R?/@G is isometric (congruent) to one of the followings:

e The origin of the plane.

2
e The vertex of a cone of angle m, ?ﬂ-, g or g
e The origin of the half space {(x,y) | © < 0}.
T T T iy
Th t f t f le —, —, — —.
e The vertex of a sector of angle 25317 §
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. o s -‘J‘ .

5. Flat orbifolds of dimension 2
e The figure R*/G is called a flat orbifold of dimen-
sion 2.
e A flat orbifold of dimension 2 is a space where a
neighborhood of each point is one of the following

forms: an open set in the plane; an open set in the

27
half plane; a cone of angle y for a positive integer

0 :
n: a sector of angle — an open set in the plane.

n
t 1s locally realized by origam.i.
It is locall lized b i i

RAA o
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® For a flat orbifold of dimension 2 with boundary edges
(and the vertices of sectors), we can construct its
double by attaching two copies along the edges and the
double is a flat orbifold of dimension 2 without
boundary edges (but possibly with vertices of cones).

® First we classify flat orbifolds of dimension 2 without
boundary edges (but possibly with vertices of cones).

® Then by finding an axis of symmetry and by taking the
half, we can classify flat orbifold of dimension 2 with
boundary edges.
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e There are seven compact flat orbifolds of dimen- -
sion 2 without boundary edges (but possibly with |
vertices of cones) . They are T°, Kl, RP?*(2,2), -
S%(2,3,6), S*(2,4,4), §%(3,3,3), §%(2,2,2,2).

e Here T2, Kl, RP? S? are the torus, the Klein

bottle, the projective plane and the sphere, re-

spectively. = The numbers (ni,ns), (ni,ns, ns),
(nq1, 12, n3, ny) mean that the space has the vertices
2T
of cone of angle —, ....
n

e The fact that there are only seven compact flat
orbifolds of dimension 2 without boundary edges
follows from that their orbifold Euler number is

ZETo.
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e

e Flat orbifolds of dimension 2 without boundary
edges (but possibly with vertices of cones) are
topologically a closed surface because a vertex of
a cone also has a neighborhood homeomorphic to >

a disk.

e Closed surfaces are classified by orientability and
the Euler number.

e The Euler number x(S) of a closed surface S is
defined to be
(the number of vertices) — (the number of edges)
+ (the number of faces)
after taking a triangulation of the surface.
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FEuler number of closed orientable surfaces

S AT

takes values 2, 0, —2, —4, .... The corresponding |
surfaces are the sphere S?, the torus T2, the closed

orientble surface of genus 2, that of genus 3, ....

e The Euler number of closed nonorientable surfaces
takes values 1, 0, —1, —2, .... The corresponding
surfaces are the projective plane RP?, the Klein
bottle K1, the closed nonorientble surface of genus

3, that of genus 4, ....
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®
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' 6. Euler numbers and branched coverings -

e For a k fold covering map S, — S; without A
branching points between closed surfaces, the
equality x(Sk) = k x(S1) holds.

e This is just because the numbers of vertices, edges,
faces of S, are k times those of vertices, edges,
faces of S, respectively.

e For flat orbifolds of dimension 2 without boundary
edges, it is natural to consider branched covering
maps between them.

e A branched covering map locally allows the pro-
jections from a disk or a cone to the cone which is
the orbit space of a rotational action by the cyclic
group C,,, of order m.
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e A flat orbifolds of dimension 2 without bound-

ary edges is topologically a closed surface S with

finitely many cone points p, ..., p, of cone angles
27 27

s «.., —, respectively (n, 22, ..., ng = 2).
nq ng

Let S(nq,...,nyx) denote the orbifold.
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e We triangulate the surface so that the cone points

2
are vertices. The cone point of angle 2™ should be

n
counted as 1 vertex after taking n fold branched

1
cover. Hence it should be counted as — vertex.

n
e Thus we define the Euler number x(S(ny,...,ng))
of the flat orbifold S(nq,...,ng) of dimension 2 by

x(S(na, ..., nx) =x(8) — (1_i) L (1_i)

nq ng
1 1

=x(S5) — k + <—+---+—).
nq Ny
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e By this definition, if there is an m fold branced cov-

ering map S.,(ni,...,nx) — Si(ny,...,n,), then

X(Sm(mr,....m)) = m x(S1(m], .. L)),

e For the flat orbifold S(n,...,ng), there is a
branched covering map from the 2 dimensional
torus. Hence x(S(nq,...,n%)) =0.

e Thus to classify flat orbifolds, we enumerate
S(nq,...,ng) such that

1 1
NPTPONE T

ni ng
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Proof of the classification of flat orbifolds

e First,

X(S):(l—nil)+---+(1—nik) >0,

e The equality holds only if £ = 0, and then S = T
or S = KIL

e If equality does not hold, either x(S) =1 or x(5) =
2.

e x(S) = 1 implies that S = RP? and x(S) = 2 implies
that S = S°.
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1 1
e Since (1 — —) = 5" k < 2x(S) holds.

e The case where x(5) = 1:

For kK = 1, there are no positive integers n such

1
that 1={1—-—|.
n
. 1 1
For k = 2, the equality 1 = (1 — —) -+ (1 — —)
nq N9

holds only if n; = ny, = 2.
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The case where x(S5) = 2:

e For £k = 1, there are no positive integers n such

1
that 2=(1—— ).

n
e For k = 2, there are no positive integers ni, ny such

1 1
that 2 = (1——)+ (1——).
" no

s 3|y B o A =3 a
RERZRF GBI R 5K
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We find the integers my, ns, ng (n; < ny = ng)

satisfying the equation as follows:
(n1,n2,n3) = (2,3,6), (2,4,4), (3,3,3).
e For k£ =4,

-(-2)+(13)-(-2)- (-2

is satisfied only when n; = ny = n3 = ny = 2.
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ey

‘@ Thus we showed that there are seven compact flat
orbifolds of dimension 2 without boundary edges.
They are T?, K1, RP?*(2,2), §%(2,3,6), S%(2,4,4),
S%(3,3,3), §%(2,2,2,2).

e To classify compact flat orbifolds of dimension 2
with boundary edges, we study the existence of
axis of symmetry in these seven orbifolds.

e There is 1 pair of axes in T2, and also 1 pair of
axes in Kl. There are no axes in RP*(2,2). The
numbers of axes are 1 in §%(2,3,6), 2 in §%(2,4,4),
2 in $%(3,3,3), 3 in S%(2,2,2,2).

e Thus there are ten compact flat orbifolds of dimen-
sion 2 with boundary edges.
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Regular coverings between

3
compact flat orbifolds "0 / o= A) / T
of dimension 2 A/ ‘ A

O O \
Ny~ o
=
SRR B R R 2 7R
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{ | The fact that there are 17 types of compact flat orbifolds of dimension 2 is
/! equivalent to that there are 17 types of figures on the plane with periodicity
4 and symmetry.

To understand these 17 types of figures better, you can use the software

"KaleidoPaint" by Jeff Weeks:
“ http://www.geometrygames.org/KaleidoPaint/index.html

; You can also visit the following web page:
# | http://faculty.ms.u-tokyo.ac.jp/users/urabe/urabe/index.html

. As a reference which also contains some part of the next lecture, we
recommend to look at I'§% &2 I(Christallographic Groups) (L3I EEE ¥
" }& 7)in Japanese by Professor Toshitake Kohno, who will give the last 3
M lectures of this series.

You can also find a short text at:
http://tambara.ms.u-tokyo.ac.jp/2011/201109v2ni.pdf
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