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Lecture 8. Exotic Superconductivity : discussion

1) What do all exotic superconductors have in common?

2) Some theoretical approaches

3) General considerations on energy saving in “all-electronic”

superconductors.

1)What do all exotic superconductors have in common?

First, (obviously !) superconductivity itself.

What does this mean, and what does it imply?

No a priori guarantee these two phenomena always go together!

(but in fact seem to, in all “superconductors” known to date).
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Phenomenology of Superconductivity

(London, Landau, Ginzburg, 1938-50)

Superconducting state characterized by “macroscopic wave function” Ψ(r) ← Schrödinger-like

Ψ(r) = |Ψ(r)| exp(iφ(r))← must be single valued mod. 2π

electric current→

(BCS :                )

vector potential

Meissner Effect : exact analog of atomic diamagnetism∫
∇φ(r) · dl = 0⇒ J = −ne

2

m
A = −λ−2L A

⇒ ∇2B = λ−2L B ⇒ B = B0 exp
(
− z

λL

)
in atom, supr

But qualitative difference : Rat � λL � Rsup !

Persistent current

n ≡ 1
2π

∫
∇φ(r) · dl

conserved unless |Ψ(r)| → 0 across some X-section

(highly unfavorable energetically)

⇒ J ∼ n = conserved
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For these arguments to work, there must exist a complex order parameter Ψ(r) such that

(a) nonzero values of |Ψ(r)|2 are (locally) stable
(b) spatial gradients of the phase of Ψ(r) correspond to charge currents.

Overwhelmingly natural guess: Ψ(r) represents macroscopically occupied eigenfunction of n-particle

density matrix(i.e. system possesses ODLRO). More rigorous arguments (Yang, Kohn + Sherrington)

claim to show

ODLRO is a necessary and sufficient condition for superconductivity.

(⇑ : “anyon superconductivity” not a counterexample)

Even if true, “theorem” says nothing about value of n. Since electrons are fermions, n must be even.

But in principle, could be 4,6,.....

How can we tell?

(a) In (thick) ring geometry, Φ (trapped flux) quantized in units of h/ne

(b) In Josephson effect, (principal) frequency ω = neV/~
No evidence for any value of n other than 2 in any (exotic) superconductor

⇒ Superconductivity = Formation of Cooper Pairs
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WHAT ELSE (i.e. apart from superconductivity itself)

DO THE VARIOUS EXOTIC SUPERCONDUCTORS HAVE IN COMMON?

Apparently, not much! Even if we exclude alkali fullerides,

- not all non-phonon (?) (organics)

- not all quasi-2D (heavy Fermions)

- not all close to AF phase (some heavy Fermions, Sr2RuO4)

However, if we restrict ourselves to “high-temperature” superconductors (cuprates, ferropnictides, organ-

ics) then,

(a) all strongly 2D

(b) all have AF phase close by

(c) all have charge reservoirs well separated from (super) conducting layers.
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SOME THEORETICAL APPROACHES (schematic, mostly cuprates)

1. Generic “BCS-like” approach

try to identify quantitatively dominant physical effect, write down effective low-energy Hamilto-

nian encapsulating it. (example: bipolarons, excitons, d-density wave, chiral plaquettes,...)

Problem: not obvious that only (single-electron) states with |ε| � kBTc are relevant! (cf. optical

properties of cuprates)

2. Approaches based on Hubbard model:

Ĥeff = −t
∑

σ,i,j∈n.n.
(a†iσajσ + H.c.) + U

∑
i

ni↑ni↓

Problem: not (known to be) analytically soluble (even in 2D)

Some possible strategies:

(a) (Digital) numerical simulations (typically up to ∼ 10× 10)

(b) Analog simulation (ultracold atoms in optical lattices)

(c) “Guesses” at analytic solution.

e.g. ΨN ∼ P̂GΨBCS

P̂G: Gutzwiller projection, removes all terms corresponding to double occupation of any site.

Problem: Hubbard model may omit important physical effects (e.g. long-range part of Coulomb

interaction)
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3. AF spin fluctuations exchange

In all high-Tc superconductors, S phase occurs close to an AF one, Moreover, both NMR and

neutron scattering (in cuprates) imply that the spin susceptibility χ(q, ω) is (in N phase) featureless

as f (ω) but strongly peaked as f (q) as Q ≡ (π/a, π/a) (superlattice Bragg vector in AF phase).

Possible ansatz for χ(q, ω) (≡ χNAFL(q, ω)) (Pines et al):

far from pseudo-Bragg vector Q ≡ (±π/a,±π/a), χNAFL(q, ω) has Fermi liquid-like form:

χNAFL(q, ω) ∼=
χq

1− iω/Γq

∼=
χ0

1− iω/Γ0

However, near a pseudo-Bragg vector,

χNAFL(q, ω) ∼=
χQi

(� χq)

1 + (Qi − q)2ξ2(T )− iω/ωSF

where ωSF � Γ0 is AF fluctuation frequency, and ξ(T ) is AF correlation length.
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Ansatz (not directly testable in experiment):

Electrons couples strongly to AF spin fluctuations, whose exchange then generates an effective

electron-electron attraction (cf 3He)

Striking prediction of spin-fluctuation theories (rather generic):

(a) points on Fermi surface most nearly connected by Qi are at (π, 0), (0, π) (etc.) ⇒ expect gap max.

there.

(b) sign of pair wave function F (k): scattering processes should as far as possible leave F invariant.

But emission of virtual spin fluctuation flips spin, changes momentum by Q. If state is singlet, spin

flips ⇒ ×(−1). Hence to preserve F , momentum change A → B must also ×(−1).

Hence, from (a) F must be large at (π, 0) (b) F must change sign under R̂π/2. Of 4 even-parity

irreps of C4v, only dx2−y2 works. Thus,

Spin Fluctuation theories unambiguously predict dx2−y2 symmetry.

Problem: many fitted parameters
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WHICH ENERGY IS SAVED IN THE SUPERCONDUCTING

(or any other) PHASE TRANSITION?)

A. Dirac Hamiltonian(non-relativistic limit):

Ĥ = K̂ + V̂

K̂ =
∑
i

p̂2i
2m

+
∑
α

P̂ 2
α

2M

V̂ =
1

8πε0

∑
i,j

e2

|ri − rj|
+
∑
α,β

(Ze)2

|Rα −Rβ|
− 2

∑
i,α

Ze2

|ri −Rα|


Consider competition between “best” normal and superconducting ground state:

Chester, Phys. Rev. 103, 1693 (1956): at zero pressure,

〈Ĥ〉 = 〈K̂〉 + 〈V̂ 〉

〈K̂〉 = −1
2
〈V̂ 〉 ← virial theorem

→ 〈Ĥ〉 = 1

2
〈V̂ 〉

Since Econd = 〈Ĥ〉N − 〈Ĥ〉S > 0,

〈V̂ 〉S < 〈V̂ 〉N
i.e. total Coulomb energy (e-e, e-n, n-n) must be saved in superconducting transition.
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B. Intermediate-level description:

partition electrons into “core”+“conduction”, ignore phonons. Then, effective Hamiltonian for conduc-

tion electrons is

Ĥ = K̂eff + V̂eff

K̂eff =
∑
i

p̂2i
2m

+ Û(ri)

V̂eff =
1

8πε0

∑
i,j

e2

ε|ri − rj|

with U(ri) independent of ε (?), where ε is high-frequency dielectric constant(from ionic cores).

If this is right, can compare 2 systems with same form of U(r) and carrier density but different ε.

Hellman-Feynman:

∂〈Ĥ〉
∂ε

=

〈
∂V̂

∂ε

〉
= −〈V̂ 〉

ε

Hence provided 〈V̂ 〉 decreases in N → S transition, (assumption!)
∂Econd

∂ε
< 0, i.e. “other things”

(U(r), n) being equal, advantageous to have as strong a Coulomb repulsion as possible (“more to save”!)

e.g.: Hg-1201 vs (central plane of) Hg-1223
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ENERGY CONSIDERATION IN “ALL-ELECTRONIC” SUPERCONDUCTORS

(neglect phonons, inter-cell tunneling)

Ĥ = T̂(‖) + Û + V̂c

T̂(‖): in-plane e
− KE

Û : potential energy of condensation electrons in field of static lattice

V̂c: inter-conduction e− Coulomb energy (intraplane and inter plane)

AND THAT’S ALL

(DO NOT add spin fluctuations, excitons, anyons...)

At least one of 〈T̂ 〉, 〈Û〉, 〈V̂c〉 must be decreased by formation of Cooper pairs. Default option: 〈V̂c〉
Rigorous sum rule:

〈V̂c〉 ∼ −
∫

d3q

∫
dω Im

{
1

1 + Vqχ0(q, ω)

}
[3D ≡

∫
d3q

∫
dω (−Im ε(q, ω)−1)]

where Vq is Coulomb interaction (repulsive) and χ0(q, ω) is bare density response function.

Where in the space of (q, ω) is the Coulomb energy saved (or not)?

This question can be answered by experiment! (EELS, Optics, X-rays)
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HOW CAN PAIRING SAVE COULOMB ENERGY?

〈V̂c〉 ∼ −
∫

d3q

∫
dω Im

{
1

1 + Vqχ0(q, ω)

}
[exact]

A. Vqχ0(q, ω)� 1 (typical for q � q
(eff)
TF ∼ min(kF, kTF) ∼ 1Å

−1
)

〈V̂c〉q ∼= +Vq

∫
dω Imχ0(q, ω) = Vq〈ρqρ−q〉0

⇒ to decrease 〈V̂c〉q , must decrease 〈ρqρ−q〉0
but δ〈ρqρ−q〉pairing ∼

∑
p∆p+q/2∆

∗
p−q/2

⇒ gap should change sign (d-wave?)

B. Vqχ0(q, ω)� 1 (typical for q � q
(eff)
TF )

〈V̂c〉q ∼=
1

Vq

(
−Imχ0(q, ω)

−1) ← note inversely proportional to Vq

⇒ to decrease 〈V̂c〉q, (may) increase Imχ0(q, ω) and thus (possibly) 〈ρqρ−q〉0
increased correlations ⇒ increased screening ⇒ decrease of Coulomb energy!
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ELIASHBERG vs. OVERSCREENING

REQUIRES ATTRACTION IN NORMAL PHASE

NO ATTRACTION REQUIRED IN NORMAL PHASE
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The Role of 2-Dimensionality

As above,

〈V 〉 = −1
2

∑
q

∫
dω

2π
Im

{ 1

1 + Vqχ0(q, ω)

}
= −1

2

1

(2π)d+1

∫ ∞

0

ddqIm
{ 1

1 + Vqχ0(q, ω)

}
In 3D, Vq ∼ q−2,1 + Vqχ0(q, ω) ≡ ε||(q, ω), so

〈V 〉 ∼
∫

q2dq

∫
dω

{
− Im

1

ε||(q, ω)

}
← loss function

so “small” q strongly suppressed in integrals.

In 2D, Vq ∼ q−1

interplane spacing

⇒ 〈V 〉 ∼
∫

qdq
{
− Im

1

1 + qd2(ε3D(q, ω)− 1)

}
∼ 1

d

∫
dq
{
− Im

1

ε3D(q, ω)

}
small q as important as large q.

Hence, $64,000 question :

In 2D-like high-Tc superocnductors (cuprates, ferropnictides, organics...)

is saving of Coulomb energy ,mainly at small q?
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Constraints on saving of Coulomb energy at small q

〈V 〉 = Vq〈ρqρ−q〉 = Vq
1

2π

∫ ∞

0

Imχ(q, ω)dω

Sum rules for “full” density response χ(q, ω)∗ (any d)

J−1 ≡
2

π

∫ ∞

0

dω

ω
Imχ(q, ω) = χ(q, 0) KK-relation

J1 ≡
2

π

∫ ∞

0

ωdωImχ(q, ω) =
nq2

m
f-sum

J3 ≡
2

π

∫ ∞

0

ω3dωImχ(q, ω) =
q2

m2
〈A〉 + q4

n2

m2
Vq + o(q4) (generalized Mihara-Puff)

where:

〈A〉 ≡ −1

π

∑
k

(k · q̂)2U−kρk > 0 (?)

Note in 2D, term in 〈A〉 is dominant at small q. General Cauchy-Schwartz inequalities (any d):

1

2

√
V 2
q J−1J1 ≥ 〈V 〉q ≥

1

2

√
V 2
q J

3
1/J3

or
~ωp

2
+ o(q2) ≥ 〈V 〉 ≥ ~ωp

2

1√
1 + 〈A〉

nmω2p

+ o(q2)

⇒ for 〈A〉 = 0 (“jellium” model) no saving of Coulomb energy for q → 0. Lattice is crucial!

∗ M. Turlakov and AJL. Phys. Rev. B 67, 044517 (2003)
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〈Vc〉S − 〈Vc〉N ∼
∫

d2q

∫
dωVqIm

{ δχ(q, ω)

1 + Vqχ0(q, ω)

}
∗ WHERE in the space of q and ω is the Coulomb energy saved (or not)?

∗ WHY does Tc depend on n? In Ca-spaced homologous series, Tc rises with n at least up to n = 3

(noncontroversial). This rise may be fitted by the formula (for “not too large” n)

T (n)
c − T (1)

c ∼ cont
(
1− 1

n

)
(controversial)

Possible explanation:

A. (“boring”) : Superconductivity is a single-plane phenomenon, but multi-layering affects properties

of individual planes (doping, band structure, screening by off-plane ions...)

B. (“interesting”): Inter-plane effects essential

1. Anderson inter-layer tunneling model

2. Kosterlitz-Thouless

3. Inter-plane Coulomb interactions ← We know they’re there !

in-plane wave vector

intra-multilayer spacing

If (3) is right, then even in single plane materials, dominant region of q is q < d−1!!

Where in ω is energy saved? (Remember WILLIE SUTTON....)
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N state

MIR (Mid-Infrared) Optical + EELS Spectra of the Cuprates

A. Optics. Plot in terms of loss function L(ω) ≡ −Imε−1(ω):

B. EELS

Confirms q → 0 shape of the loss function, and verifies that (roughly) same shape persists for finite q.

(at least up to ∼ 0.3Å)

So that’s where the money is !

Digression:

This strong peaking of the loss function in the MIR (mid-infrared) appears to be a necessary condition

for high-Tc superconductors. Is it also sufficient condition? NO! Counter examples :

(a) BKBO (not layered)

(b) =

{
La4−xBa1+xCu5O13

La2−xSr1+xCu2O6
layered (2D) materials !

ferropnictides?
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If saving of Coulomb energy is mainly in Low-q MIR regime...

N→S must decrease-Imε−1 in this regime.
i.e. Imδε

ε2n
> 0

but, in MIR regime, in N phase∗

εn(ω) ∼=
ω2
p

ω2
−1 + i⇒ ε−2n ∼

ω4

2ω4
p

i

⇒ need Reδε > 0 in MIR. By KK-relation, this ⇒∫ ∞

0

ω′4
{1
2
log

∣∣∣ωe + ω′

ωe − ω′

∣∣∣−ωe

ω′

}
Imδχ(q, ω′)dω′ < 0 (ωe ∼ ωp)

↑ positive for ω′ > ωe ∼ ωe ∼ ωp

negative for ω′ < ωe

⇒ expect spectral weight transfer from ω > ωp to ω < ωp (MIR).

↑ : optics measres q � ξ−1, whereas saving of Coulomb energy should be mainly
from ξ−1 < q . qTF .
⇒NEED EELS EXPERIMENT !
(P. Abbamonte, J. Zuo (UIUC))
∗ El-Azrak et. al., Phys. Rev. B 49, 9846 (1994)
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If this is right, what are good “ingredients” for enhancing Tc?

1. 2-dimensionality (weak tunneling contact between layers, but strong Coulomb con-
tact)

2. Strongest possible Coulomb interaction (intra-plane and inter-plane)

3. Strong Umklapp
(?)⇒ effects wide and strong MIR peak (may come from strong

AF-type fluctuations?)

My bet on robust room temperature superconductivity :
in my lifetime : ∼ 10%
in (some of) yours : > 50%


