Magnetic insulators: As the name implies, magnetic insulators have an energy gap and unpaired electrons, which give rise to the magnetic properties. $\chi_p = C/(T - \Theta)$ Magnetic properties Compound Band gap (eV) d - d transitions (eV) S Θ(K) $T_N(\mathsf{K})$ Binaries Cr_2O_3 3.3 2.1,2.6 3<u>25232322</u> -550 308 Physics of Transition Metal Oxides MnO 3.6 2.2.2.9.3.5 -417 118 -1000 92 MnO_2 -FeO 2.4 1.2 -500 198 Lecture 8 5230 αFe_2O_3 1.9 1.4,2.1,2.6,2.9 -3000 950 CoO 2.6 1.1,2.0,2.3 -300 292 Magnetic oxides NiO 3.8 1.1,1.8,3.2 ĩ -2000 523 CuO 1.4 ? 226 Ternaries LaVO₃ -300 137 1 <u>3</u>2 2 LaCrO₃ -600 300 LaMnO₃ 100 -LaFeO₃ -2000 750 $Y_3Fe_5O_{12}$ 3 559 Many Cox92 p.134 2 d - d transitions Notes regarding the table: Even when defect-free samples are available, the d - d transitions are unavoid-The band gap (optical) can only be measured in very pure stoichiometric materials. Any impuable. These can be measured optically rities, defects, or d - d transitions would make the measurement inaccurate. (the previous table) or by electron energy loss spectroscopy (EELS). Although EELS is a surface technique, the spectra appar-Figure removed due to copyright restrictions ently reflect the bulk properties, as shown in this spectrum for NiO. The optical d - dThe gap can also be estimated from the activation energy transitions are at 1.1, 1.8, and 3.2 eV. for conductivity, but unfortunately, the defects provide most of the conductivity (not intrinsic carriers). Such measurements underestimate the gap width. Surf. Sci. 152-153 (1985) 791 Direct measurements by x-ray absorption or emission are Figure removed due t copyright restriction The magnetism above the ordering temperature follows a Curie-Weiss law disturbed by core hole effects. The most reliable data comes from photoelectron emission $\chi_p = C/(T - \Theta),$ and inverse photoelectron spectroscopy. This example is where the Curie constant is for NiO, showing a gap of \approx 4 eV. Optical absorption edge $C = N \mu_0 \mu_{\text{off}}^2 / (3k).$ is at 3.8 eV. Photoelectron measurement of insulators is N is the number of magnetic ions and the effective magnetic moment is for many d^n ions unfortunately difficult due to charging effects. $\mu_{\text{eff}} = 2[S(S+1)]^{1/2}\beta.$ The ordering temperatures are usually around 100 K, indicating that the interaction energies PRL 53 (1984) 2339 3 are around 0.01 eV.

The band gap		The difficulties here are:			
Should we look at localized d^n ions or use	e band theory?	• The estimated gap is too small, 0.5	eV instead of 3 to 4 eV.		
We have already discussed band descri spin density waves).	ptions of magnetic materials (Stoner enhancement,	 The experimental values for excha There appears to be no way of getting 	nge splitting and crystal-field effects is around 1 eV. ng a 4 eV gap.		
	This shows the importance of different terms in the calculation of band gaps for MnO (right) and	 The gap does not change much, or gap depends on spin interactions. 	disappear at the ordering temperature. The calculated		
Figure removed due to copyright restrictions	NiO (left) with a spin-dependent band model. The most important term is the exchange split- ting, which gives the energy difference between spin-up and spin-down electrons on a given ion. Another important parameter is the band width	• The electronic configuration of MnO is $3d^5$, i.e. all levels are half-filled. In NiO, Ni is $3d^8$ i.e. the t_{2g} levels are full and e_g is half-full. This produces the gap. CoO has $3d^7$ and should thus be a metal. In fact, it has a similar gap as MnO and NiO.			
PRB 30 (1984) 4734	(around 1 to 2 eV).	Many of these problems are probably caused by the difficulty of including a correct ground-state description in the model.			
Magnetic ordering:					
Figure removed due to copyright restrictions	Most magnetic insulators are antiferromagnetic. Susceptibility drops below the <i>Néel temperature</i> . For example, in MnO $T_{\rm N} = 120$ K and below this temperature susceptibility is anisotropic. The	spins a sheets directio This ty	t monoxides, like MnO, FeO, CoO, NiO, re in (111)-oriented sheets. Neighboring have antiparallel spins. The actual spin n deviates from the 111 direction slightly. pe of order is caused by next-nearest-		
	reference direction is [111].	structu	or interactions across an oxide ion (NaCl		
Figure removed due to copyright restrictions		Cox92 p.145 In such oxides, the magnetic order also	or interactions across an oxide ion (NaCl		

Antiferromagnetic ordering via a bridging oxygen also goves G-type order in perovskites, for			
example, LaVO ₃ , LaCRO ₃ , LaFeO ₃ . Some similar compounds have A-type ordering, such as LaMnO ₃ where we have ferromagnetic order along the <i>ab</i> plane and antiferromagnetic order along the <i>c</i> direction.	Figure removed due to copyright matrixitions. Figure removed due to copyright matrixitions. Figure removed due to copyright matrixitions. Figure removed due to a structure is reduced below T_N , the magnetization of each sublattice saturates. Ideally the saturation value would be $2S\mu_B$. Typically a slightly lower value is seen, as this plot for Cr ₂ O ₃ shows. Deviations are larger for small <i>S</i> and low-dimensional systems.		
The magnetic unit cell of MnO ₂ is much more compilacted, con- taining 7 structural unit cells. The spin directions form a spiral. This happens when several interactions compete: in MnO ₂ the	Inelastic neutron scattering can be used to mea- sure also spin excitations, such as spin-waves or		
coupling between corner and body-centered ions, and between neighbors along the <i>c</i> -axis.	Figure removed due to copyright rest-closesmagnons. Spin waves would appear as an oscil- lation of the spin direction. These oscillations can propagate in a crystal with a characteristic momen- tum, much like a phonon. the dispersion relation has been measured for MnO,		
Cox92 p.145 9	J. Phys. Chem. Solids 35 (1974) 433as shown here. Characteristic energies are around 10 meV.10		
Ferromagnetism is not common in insulators. a rather unusual example is LiNiO ₂ , which is ferromagnetic below 6 K. Weakly ferromagnetic systems appear when spins are canting. This can be seen in α -Fe ₂ O ₃ between $T_{\rm N} = 256$ K and 905 K.	Exchange interactions:		
a more common case is ferrimagnetism, where the sublattices have different spins that do not cancel, altthough they have antiferromagnetic alignment. This happens in YIG $Y_3Fe_5O_{12}$, where Fe is in different crystallographic sites. Each unit cell contains three tetrahedral sites	Direct magnetic coupling between metal ions in oxides is much too small to account for mag- netic ordering that we have seen. Chemical bonding and the role of oxygen is often critical.		
and two octahedral sites, which do not cancel. In general this happens in <i>ferrites</i> .	If we look at to weakly-interacting atoms, each with a single unpaired electron, the energy difference between singlet $S = 0$ and triplet $S = 1$ states is		
Figure removed due to copyright restrictions Figure removed due to copyright restrictions A large number of different magnetic phases can appear in a single family of compounds, depending on carrier concentration and temperature, as shown here for $La_{1-x}Ca_xMnO_3$. The phases include FI (ferromagnetic insulator) and canted antiferromagnetic spin regions (CAF).	$\Delta E = 2K - 4St,$ where • 2 <i>K</i> is the potential exchange term. It represents the electron repulsion in the two states. Pauli exclusion principle requires that the overall wavefunction has to be antisymmetric with respect to interchange of electrons. The same principle leads to the Hund rule in a single atom. The effect is ferromagnetic, although weak in oxides because neighboring metal ions are far from each other.		

-	. It includes the orbital overlap integral, <i>S</i> , and hopping	Superexchange		
	the integral that gives a width to bands. This term de- ding and has an antiferromagnetic character. Electrons			
	ower energy if their spins are antiparallel.			
			The ground	state is antiferromagnetic (a). This ground
A an intel can thus be either formage	atio as antiferromagnetic depending on the relative im		state can mi	x with two types of charge transfer configu-
	etic or antiferromagnetic, depending on the relative im- ple, when the orbitals of neighboring metal ions are or-	Figure removed due to copyright restrictions		nd (c). This is only possible for an antiferro-
	erm contributes, giving a ferromagnetic system. Large	copyingia resaricisaats	magnetic cor	figuration of metal spins.
orbital overlap would stabilize antiferror				
			Cox92 p.150	
	etal interactions. What we do have are metal-oxygen-			
	p is responsible for <i>superexchange</i> . The most common			
case that we look at is a linear chain of	metal and oxygen atoms.			A very different result occurs if a ligand cou-
				ples two metals at a 90 $^\circ$ angle, as happens in
				halides. Each metal interacts with a different
		Figure removed due to copyright restrictions		p-orbital of the ligand. Since the two p orbitals are orthogonal, the kinetic term is zero and
				the potential term dominates (ferromagnetic).
				Hund's rule shows why the ligand favors par-
	13			allel spins in the two p orbitals. 14
		We have looked at the band m	odel and seen	that even in metallic oxides a simple band de-
	ides, although it can occur in rack-salt lattices with a	scription does not fit experimen	tal results very	well. Different measurement techniques do not
	A should occupy neighboring layers. An example would	give consistent results either.		
rare ferromagnetic insulating oxide with	ery narrow d band due to this configuration. LiNiO ₂ is a this structure			
				ly small band width of d electrons close to the tes and significant electron-electron interactions,
	In special cases, even a 180° M-O-M chain can give	or correlations. Such interaction	-	-
	a ferromagnetic ground state. This happens when			G
	an occupied orbital couples with an empty orbital of			, which show a strong Stoner enhancement or
	a neighboring ion. An example is the ferromagnetic	when $UN(E_F) \ge 1$, spontane	ous ferromagr	netic ordering (band magnetism). The magnetic
			ous ferromagr	netic ordering (band magnetism). The magnetic
Figure removed due to copyright retrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate.	when $UN(E_F) \ge 1$, spontane susceptibility is much larger that	eous ferromagr n expected bas	tetic ordering (band magnetism). The magnetic sed on $N(E_F)$.
Figure removed due to copyright retrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate. the orientation of the single occupied e_g orbital is	when $UN(E_F) \ge 1$, spontane susceptibility is much larger tha Spontaneous order does not ne	eous ferromagr n expected bas eed to be ferro	netic ordering (band magnetism). The magnetic
Figure removed due to copyright restrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate. the orientation of the single occupied e_g orbital is different at neighboring sites. an occupied orbital	when $UN(E_F) \ge 1$, spontane susceptibility is much larger that	eous ferromagr n expected bas eed to be ferro	tetic ordering (band magnetism). The magnetic sed on $N(E_F)$.
Figure removed due to copyright restrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate. the orientation of the single occupied e_g orbital is different at neighboring sites. an occupied orbital thus interacts with an empty orbital. An electron can	when $UN(E_F) \ge 1$, spontane susceptibility is much larger tha Spontaneous order does not ne romagnetic ordering with spin-d	eous ferromagr n expected based to be ferro lensity waves.	tetic ordering (band magnetism). The magnetic sed on $N(E_F)$.
Figure removed due to copyright restrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate. the orientation of the single occupied e_g orbital is different at neighboring sites. an occupied orbital	when $UN(E_F) \ge 1$, spontane susceptibility is much larger tha Spontaneous order does not ne romagnetic ordering with spin-d In general, we would expect to	eous ferromagr n expected based to be ferro lensity waves. see an increas	hetic ordering (<i>band magnetism</i>). The magnetic sed on $N(E_F)$. magnetic, it is equally possible to get an antifer-
Figure removed due to copyright restrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate. the orientation of the single occupied e_g orbital is different at neighboring sites. an occupied orbital thus interacts with an empty orbital. An electron can thus transfer from one ion to next. Hund's coupling	when $UN(E_F) \ge 1$, spontane susceptibility is much larger that Spontaneous order does not ne romagnetic ordering with spin-d In general, we would expect to band width, until metallic condu	eous ferromagr n expected bar eed to be ferro lensity waves. see an increas ctivity breaks o	hetic ordering (<i>band magnetism</i>). The magnetic sed on $N(E_F)$. magnetic, it is equally possible to get an antifer- se of ordering temperature with the decrease of down and we get a magnetic insulator.
Figure removed due to copyright restrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate. the orientation of the single occupied e_g orbital is different at neighboring sites. an occupied orbital thus interacts with an empty orbital. An electron can thus transfer from one ion to next. Hund's coupling between different orbitals at a single site results in an overall ferromagnetic configuration. Between planes, we have the normal antiferromag-	when $UN(E_F) \ge 1$, spontane susceptibility is much larger that Spontaneous order does not ne romagnetic ordering with spin-d In general, we would expect to band width, until metallic condu	eous ferromagr n expected based to be ferro lensity waves. see an increase ctivity breaks of of a material	hetic ordering (<i>band magnetism</i>). The magnetic sed on $N(E_F)$. magnetic, it is equally possible to get an antifer- se of ordering temperature with the decrease of down and we get a magnetic insulator. can have a large effect on magnetic ordering.
Figure removed due to copyright restrictions	a neighboring ion. An example is the ferromagnetic in-plane order of LaMnO ₃ . The d^4 Mn ³⁺ ion has a strong co-operative Jahn-Teller distortion. Within the <i>ab</i> -plane, long and short M-O bonds alternate. the orientation of the single occupied e_g orbital is different at neighboring sites. an occupied orbital thus interacts with an empty orbital. An electron can thus transfer from one ion to next. Hund's coupling between different orbitals at a single site results in an overall ferromagnetic configuration.	when $UN(E_F) \ge 1$, spontane susceptibility is much larger that Spontaneous order does not ne romagnetic ordering with spin-d In general, we would expect to band width, until metallic condu	eous ferromagr n expected based to be ferro lensity waves. see an increase ctivity breaks of of a material v similar structor	hetic ordering (<i>band magnetism</i>). The magnetic sed on $N(E_F)$. magnetic, it is equally possible to get an antifer- se of ordering temperature with the decrease of down and we get a magnetic insulator.

An important feature to note is that except for the $n = \infty$, the positions of the Ru ions alternate between the edge and the center of the unit cell. Therefore no oxygen ions within the intervening Sr-O or Ca-O layer are shared by the Ru ions of the adjacent layers. Accordingly, the number of Ru neighbors per ion decreases from six for $n = \infty$ to 16/3 for $n = 3$, to 5 for $n = 2$, and to four for $n = 1$. Due to this, exchange interactions and conductivity perpendicular to the RUO planes would be greatly affected by n . It is therefore important to look carefully which phase is actually present in a crystal. $\frac{1}{n + \frac{Comp}{Ca} \frac{a(A)}{b(A)} \frac{b(A)}{c(A)} \frac{c(A)}{S.G} \frac{RuO_6}{ruVoltit)}$ $\frac{1}{Ca} \frac{ca}{5.54} \frac{5.37}{1.5.7} \frac{7.85}{1.58} \frac{RuO_6}{ruVol} \frac{ruVitit}{res}$ $\frac{3.80^*}{3.80^*} \frac{3.80^*}{3.80^*}$ $\frac{Sr Compounds show little RuO_6 till or rotation, but the Ca compounds are highly distorted with the edge lengths varying from 2.5 Å to 3.0 Å. The shap and orientation of the RuO_2 plane by 12.7°. The lattice volum does carefully which phase is actually present in a crystal.$ $\frac{result of the strong Ru4d-O2p hybridization.}{result of the strong Ru4d-O2p hybridization.}$ $\frac{result of the strong Ru4d-O2p hybridization.}{result of the strong Ru4d-O2p hybridization.}$	CrO ₂						Exampl	e syste	m: Ruthenates			
The splitting between the spin-up and spin-down electrons is comparable to the t_{20} band width, giving a nearly 100% spin polarization. The measured saturation moment is around $2\mu_B$ performing the formalized terminority spin electrons and Cr_{20} is therefore known as a half-metallic ferromagnet. The Curie temperature is 177°C. 17 An important feature to note is that except for the $n = \infty$, the positions of the Ru ions after insteaded the except for the $n = \infty$, the positions of the Ru ions after the scale except for the $n = \infty$, the positions of the Ru ions of the Ru ions of the adjacent layers. Accordingly, the number of Ru neighbors per ion decreases from six for $n = \infty$ to 163 for $n = 3$, to 5 for $n = 2$, ond to for for $n = 1$. Due to this, exchange interactions and conductivity perpendicular to the RuO planes would be greatly affected by n . It is therefore important to look carefully which phase is actually present in a crystal. Lattice parameters for (Sr, Ca) _{n+1} attr_295 K. $\frac{1}{1}$ $\frac{Comp}{Ca}$ $\frac{5}{53}$ $\frac{5}{55}$ $\frac{7}{7.85}$ Phmm No $\frac{3}{51}$ $\frac{3}{50}$ $\frac{7}{7.85}$ Phmm No $\frac{3}{51}$ $\frac{5}{51}$ $\frac{7}{7.85}$ Phmm No $\frac{5}{51}$ $\frac{5}{51}$ $\frac{7}{55}$ Phmm No $\frac{5}{51}$ $\frac{5}{51}$ $\frac{7}{7.85}$ Phmm No $\frac{5}{51}$ $\frac{5}{51}$ $\frac{5}{7.55}$ Phmm No $\frac{5}{51}$ $\frac{5}{51}$ $\frac{5}{7.55}$ Phmm No $\frac{5}{51}$ $\frac{5}{51}$ $\frac{5}{7.55}$ $\frac{5}{7.55}$ Phmm No $\frac{5}{51}$ $\frac{5}{51}$ $\frac{5}{51}$ $\frac{5}{7.55}$ Phmm No $\frac{5}{51}$ $\frac{5}{51}$ $\frac{5}{51}$ $\frac{5}{5$	has the rutile structur						with n = show m	= 1, 2,	3 and ∞ . Depending on n , and possulator transitions, giant magnetoresis	sibly with stance, su	Ca doping, the compounds	s can
giving a nearly 100% spin polarization. The measured saturation moment is around $2\mu_B$ per chromium. The Fermi level is within the gap of the minority spin electrons and CrO ₂ is therefore no xygen ions within the facture to note is that except for the $n = \infty$, the positions of the Ru ions alternate between the edge and the center of the unit cell. Therefore no oxygen ions within the intervening Sr-O or Ca-O layer are shared by the Ru ions of the adjacent layers. Accordingly, the number of Ru neighbors per ion decreases from six for $n = \infty$ to 16/3 for $n = 3$, to 5 for $n = 2$, and to four for $n = 1$. Due to this, exchange interactions and conductivity perpendicular to the RuO planes would be greatly affected by n . It is therefore important to look carefully which phase is actually present in a crystal. Lattice parameters for (Sr,Ca) _{n+1} Ru _n O _{3n+1} at T=295 K. $\frac{1}{2} \frac{Can 5i 5.45 5.37 18.59 Cmc2_1}{Si 3.90^*} \frac{18.59}{1.557 7.85 Phnm No} \frac{3.91^* 3.89^*}{3.91^* 3.93^*} \frac{18.59}{Can 5i 5.57 7.85 Phnm No} \frac{3.91^* 3.89^*}{3.91^* 3.93^*} \frac{15.57 7.85 Phnm No}{3.91^* 3.395} \frac{15.57 7.85 Phnm No}{3.91^* 3.905} 15.57 P$									Figure seasoned due to copyright restrictions			
nate between the edge and the center of the unit cell. Therefore no oxygen ions within the intervening Sr-O or Ca-O layer are shared by the Ru ions of the adjacent layers. Accordingly, the number of Ru neighbors per ion decreases from six for $n = \infty$ to 16/3 for $n = 3$, to 5 for $n = 2$, and to four for $n = 1$. Due to this, exchange interactions and conductivity perpendicular to the RuO planes would be greatly affected by n . It is therefore important to look carefully which phase is actually present in a crystal. $\frac{Lattice parameters for (Sr, Ca)_{n+1} Ru_nO_{3n+1} at T=295 K.$ $\frac{n}{1} \frac{Comp}{2} \frac{a(A)}{b(A)} \frac{b(A)}{c(A)} \frac{c(A)}{S.G} \frac{RuO_6}{rot/tilt)}$ $\frac{1}{2} \frac{Ca}{5.54} \frac{5.37}{5.57} \frac{7.85}{7.85} \frac{Phnm}{5.88^*}$ $Ca}{3.90^*} \frac{3.90^*}{3.78^*} \frac{3.76}{5.75} \frac{7.65}{7.85} \frac{Phnm}{5.76} \frac{Nes}{5.75} \frac{7.65}{7.55} \frac{Phnm}{5.76} \frac{Nes}{5.75} \frac{Nes}{5.$	giving a nearly 100% chromium. The Fermi	spin polarization.	The measure gap of the mind	d saturatio ority spin e	on momen electrons a	It is around $2\mu_B$ per and CrO_2 is therefore				Mat. Sci	. Eng. B63 (1999) 76	18
Lattice parameters for $(Sr,Ca)_{n+1}Ru_nO_{3n+1}$ at T=295 K. n Comp a(A) b(A) c(A) S.G RUO ₆ (rot/tilt) 1 Sr 3.87 12.74 14/mmm No Ca 5.41 5.49 11.96 Pbca Yes 3.83* 3.88*	nate between the edu intervening Sr-O or C the number of Ru nei n = 2, and to four for lar to the RuO planes	ge and the center ca-O layer are sha ighbors per ion dea r $n = 1$. Due to the swould be greatly	of the unit ce red by the Ru i creases from s is, exchange ir affected by n .	II. Therefore f ions of the six for $n =$	ore no ox adjacent ∞ to 16/ s and cond	ygen ions within the layers. Accordingly, '3 for $n = 3$, to 5 for ductivity perpendicu-	due to t RuO ₆ o decreas octahed and orie	the sma ctahed ses by 1 dra are entation	aller ionic radius $(r_{Ca} = 1.0 \text{ Å}, r_{Sr}$ ra rotated by 11.8° and tilted out of th 1.3% when cooling a single crystal fr highly distorted with the edge length of the oxygen vibration ellipsoids is	= 1.18 Å e RuO ₂ pl om 400 K is varying	Å). Especially Ca_2RuO_4 ha lane by 12.7°. The lattice vo to 90 K. In SrRuO ₃ , the ox from 2.5 Å to 3.0 Å. The s	s the lume sygen hape
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lat	tice parameters fo	r (Sr,Ca) $_{n+1}$ R	$u_n O_{3n+1}$	at T=295	К.]	
Ca 5.54 5.37 19.59 Cmc21 Yes 3.91* 3.80* 3.80* Cmc21 Yes Copyright restrictions ∞ Sr 5.53 5.57 7.85 Pbnm No 3.91* 3.93* Ca 5.52 5.35 7.65 Pnma Yes 3.90* 3.78* SrTiO3 3.905 Section 100 Section 100 Section 100	1	Sr Ca	3.873.875.415.493.83*3.88*	12.74 11.96	l4/mmm Pbca	No Yes						
∞ Sr 5.53 5.57 7.85 Pbnm No 3.91* 3.93* Ca 5.52 5.35 7.65 Pnma Yes 3.90* 3.78* SrTiO ₃ 3.905	2		5.54 5.37	19.59								
Ca 5.52 5.35 7.65 Pnma Yes 3.90* 3.78* SrTiO ₃ 3.905	∞	Sr	5.53 5.57	7.85	Pbnm	No						
* Devoualité nooudopall			5.52 5.35 3.90* 3.78 [°]	7.65	Pnma	Yes						
Mat. Sci. Eng. B63 (1999) 76 19	* Perovskite pse		0.000								JMMM 206 (1999) 27	

Oxygen stoichiometry:	
Ru is normaly in the Ru^{4+} state in SrRuO ₃ , but can also be partly pushed to Ru^{5+} by oxygen loading. Oxygen loading also slightly distorts the structure:	
a(Å) $c(Å)$ δ $\rho_{300K}(\Omega cm)$ $\rho_{150K}(\Omega cm)$ $\rho_{15K}(\Omega cm)$ 3.876 12.732 0.0 (Ar anneal) 0.007 0.007 0.0072	Figure manadations Loading of extra oxygen also causes a loss of conductivity.
3.870 12.739 0.2 (air anneal) 0.02 0.03 0.078 3.868 12.746 0.25 (O ₂ anneal) 0.03 0.038 0.090	Mat. Chem. Phys. 56 (1998) 63
	The Ca_2RuO_4 is a more distorted structure and cannot be further oxidized or reduced. Ar or O_2 annealing breaks single crystals.
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Ca ₃ Ru ₂ O ₇ can be oxygen or argon annealed. Oxygen loading or depletion apparently affects the magnetic ordering more than the conductivity. Higher oxygen content gives higher conductivity, possibly due to hole-like carrier doping. Oxygen-poor material has lower conductivity and can become nonmetallic.
Mat. Chem. Phys. 56 (1998) 63 21	Thermogravimetry has shown that $Sr_3Ru_2O_7$ and $Ca_3Ru_2O_7$ start to lose oxygen at 1100°C and 1000°C, respectively. Oxygen annealing does not affect the Sr compound much.
Resistivity:	
The Ca-compounds show a <i>metal-to-insulator transition</i> (MIT) at $T_{MI} = 357$ K for $n = 1$ and 48 K for $n = 2$. The transition at 357 K is associated with a tetragonal to orthorombic structural transition.	In a Mott-Hubbard model the MIT is controlled by the rela-
Figure removed due to copyright restrictions Figure removed due to copyright restrictions Below the transition ρ can be fitted with $\rho(T) = A \exp(T_0/T)^{\nu}$, with $\nu = 1/2$, characteristic of variable range hopping (VRH). The MIT temperature is much lower in the $n = 2$ compound and dis- appears completely in the $n = \infty$ phase. Although the $n = \infty$ phase is highly dis- torted, its resistivity is almost the same as that of SrRuO ₃ , showing that lattice distor- tions are not that important when the lat- tice has higher dimensionality.	tive magnitude of the on-site Coulomb interaction U and the one-electron bandwidth W . A splitting between the lower and upper hubbard bands increases as U/W in- creases and for a half-filled band MIT occurs at $U/W \simeq 1$, where the Mott-Hubbard gap opens. All Sr-compounds are metallic. The onset of ferromag- netism can be seen in the $n = 4$ and ∞ phases only. Conductivity at RT is still relatively bad, which is why these materials are categorized as "bad metals", i.e. the mean free path of of single-quasiparticle scattering is compara- ble to interatomic distances.
Mat. Sci. Eng. B63 (1999) 76	
	Met Sei For B62 (1990) 76
	Mat. Sci. Eng. B63 (1999) 76

The MIT can procume by be controlled	d by gradual Ca/Sr substitutions Sr. DuO is a good	Magnatia atrustura	
	ed by gradual Ca/Sr substitutions. Sr_2RuO_4 is a good or, probably because due to a large lattice distortion the	Magnetic structure:	
	, as in R NiO ₃ is reduced. Reduced overlap also reduces		The origin of magnetism in ruthenates lies in
	ncreases the U/W ratio, resulting in an insulating struc- mpounds the W parameter can be tuned. For example,		the localized $Ru4d$ shell. The crystal-field in-
	he material first turns from a paramagnetic metal into an		teraction splits the fivefold degenerate <i>d</i> -shell
antiferromagnetic metal and then into a			configuration into a ground-state t_{2g} triplet and an excited e_g doublet. The doublet is
			empty in Ru oxides. The $t_{2q} - e_g$ splitting is
	ularly sensitive. Substituting up to 65% of Ca $(Sr_{0.35}Ca_{0.65})$	tu	very large because of the large radial extent
does not show significant change in re	sistivity, having $ ho_{300\mathrm{K}}=420\mu\Omega\mathrm{cm}.$		of the 4 d shell. The t_{2g} orbitals are therefore
		Figure removed due to copyright restrictions	filled first, giving a low-spin $S = 1$ configura-
			tion (3 <i>d</i> materials would probably choose the $S = 2$ configuration for nd^4).
			In the diagram, γ is the low temperature elec-
Figure removed due to	Resistivity becomes highly unisotropic in low-		tronic specific heat, μ_0 was measured at 5 K.
copyright restrictions	dimensional compounds like Sr ₃ Ru ₂ O ₇ . The		All Sr-compounds except Sr ₂ RuO ₄ have fer-
	kinks in resistivity are caused by rearrangements of the magnetic structure.		romagnetic ground states with T_c increasing
	a and magnetic calculate		with n .
PRB 55 (1997) R672	25		Mat. Sci. Eng. B63 (1999) 76 26
		SrRuO ₃	
			SrRuO ₃ lattice parameters a , c , and V as a
			function of temperature. The fine lines rep-
	Antiferromagnetic behavior of Ca-compounds can		resent the estimations of the phonon contri-
Figure removed due to convrient restrictions	be clearly seen in in susceptibility measurements.		bution to thermal expansion. Δa_m , Δc_m ,
	The Neel temperature drops with n (110 K for $n = 1$		and ΔV_m are the estimates of non-phononic contributions to the linear and volume ther-
	and 56 K for $n = 2$).		mal expansion. α_a , α_c , and α_V are the linear
			and volume thermal expansion coefficients.
		Figure removed due to copyright restrictions	T _c =167 K.
			Ferromagnetic ordering occurs at T_c =167 K.
	Replacing Ca with Sr causes the structure to		Above this temperature, thermal expansion
	become ferromagnetic and metallic (except for		can be fitted with a model which only con- siders the phononic contribution. At lower
Figure removed due to	Sr ₂ RuO ₄). The Curie temperatures are T _C =105 K, 148 K, and 165 K for $n = 2, 3$, and ∞ , respectively.		temperatures there is an anomaly caused by
			magnetic ordering. The nonphononic part
copyright restrictions			magnetic ordening. The holphononic part
cöpyright restrictions	Sr_2RuO_4 is paramagnetic and becomes superconducting at 1.5 K (an unusual <i>p</i> -wave superconduc-		along the a -direction $\Delta a_m/a$ id four times
cópyright restrictions	Sr_2RuO_4 is paramagnetic and becomes superconducting at 1.5 K (an unusual <i>p</i> -wave superconductor). The easy axis of magnetization lies in the <i>ab</i>		along the <i>a</i> -direction $\Delta a_m/a$ id four times larger than along the <i>c</i> -direction $\Delta c_m/c$ at
copyright restrictions	Sr ₂ RuO ₄ is paramagnetic and becomes supercon- ducting at 1.5 K (an unusual <i>p</i> -wave superconduc-	JMMM 206 (1999) 27	along the a -direction $\Delta a_m/a$ id four times

		The same hash 'life and fither and same and a share	and the second of the second
Ca doping:	The magnetic behavior of $SrRuO_3$ can be tuned by par- tial substitution of Ca for Sr. The Curie temperature shifts lower as the doping level increases. Film thickness was 600 Å. Films were preapred by alternately depositing by PLD from CaRuO ₃ and SrRuO ₃ , targets 1/4 of a unit cell per target at a time. Substrate was LaAlO ₃ .	tion $\frac{M(x)}{M(0)} = \prod_{p \in \mathbb{N}} \frac{M(x)}{M(0)}$ where n^* is a cut-off value, above whi and $n^* = 4$ for Ca doping, p and n doping sites $(n \le n^* \le p)$. For the S	neighbor configurations is given by the binomial distribu- $\sum_{n=0}^{n^*} \frac{p!}{(p-n)!n!} x^n (1-x)^{p-n},$ (1) ich Ru sites do not affect each other ($n^* = 1$ for Ti doping are the maximum and actual numbers of near neighbor is site $p = 8$ and for Ru site $p = 6$. The fit (dashed lines) hich means that the dopants are randomly distributed. Sr still maintain ferromagnetism at 5 K.
Figure removed dat to copyright restrictions	It was assumed that the magnetization at the Ru site can only be zero or have a fixed value, depending on the con- figuration of the dopants (Ca in the Sr site). APL 70 (1997) 126		30
$\mathbf{Sr}_{2}\mathbf{RuO}_{4}$ $\mathbf{Sr}_{2}\mathbf{RuO}_{4}$ shows no local-moment low- T_{c} superconductor with p -type $\mathbf{Sr}_{3}\mathbf{Ru}_{2}\mathbf{O}_{7}$	magnetism or long-range magnetic ordering. It is, instead, a pairing.	behavior. This can be understood if the coupled along the c axis, but slightly The spin canting changes below 60 K field. In the c axis direction at 5 K t	01) dependence, however, resembles antiferromagnetic ne spin arrangement is not collinear, i.e. ferromagnetically canted due to antiferromagnetic coupling in the ab plane. Spins can be realigned by applying an external magnetic the required field is 0.2 T. There is a sharp transition in g that a transition to perfectly aligned spins occurs in the peratures).
Figure removed due to copyright restrictions	(Sr,Ca) ₃ Ru ₂ O ₇ is probably the most interesting compound among the ruthenates in terms of mag- netic properties. The two-dimensional nature of the lattice is also visible in the anisotropic magnetiza- tion behavior. The graphs show the main ferromag- netic ordering temperature 104 K and another spin- ordering transition at 66 K. The large difference in ZFC and FC magnetizations is typical of domain movement in ferromagnets.	tivity antii how Forestand for the resist anne	Ca structure shows an interesting coupling of conduc- y and magnetic order. Below ≈ 50 K the material is an ferromagnetic insulator. In an applied magnetic field, vever, the spins can be realigned, also causing a jump in stivity. Changing the oxygen stoichiometry by Ar or O ₂ ealing completely removes the magnetic transition, but s not affect the resistivty, showing that at high fields the
•	U -		gnetic and transport properties are completely decou-
tion is along the (001) direction in	rge below T_C and indicates that the easy axis of magnetiza- Sr ₃ Ru ₂ O ₇ . (In (Sr _{1-x} Ca _x) ₃ Ru ₂ O ₇ the easy axis gradually ncreases. In Sr _{1-x} Ca _x RuO ₃ Ca-doping has the opposite	pled	 Oxygen loading can probably rotate the easy mag- zation direction in the sample.

		Crystal growth effects	
Figure removed due to copyright restrictions	A magnetic phase diagram of Ca ₃ Ru ₂ O ₇ . At high magnetic fields the material becomes ferromagnetic metal below 48 K. At higher temperatures it is a paramagnetic metal. There appears to be a multicritical point at 48 K and 4.1 T, marking a narrow region of an unusual antiferromagnetic metal state. PRL 78 (1997) 1751	Figure removed due to copyright reductions	The precise magnetic behavior is very sensitive to the actual crystal growth conditions. Flux grown Sr ₃ Ru ₂ O ₇ crystals become ferromagnetic below 105 K, but floating zone grystals are nonmagnetic with a broad maximum in $\chi(T)$ at around 15 K. Sr ₃ Ru ₂ O ₇ appears to be very close to a ferromag- netic instability and small amounts of impurities or changes in morphology could cause the change. Magnetization curves also depend on the growth
Figure renoved due to copyright restrictions	A substitutional phase diagram of the $(Sr_{1-x}Ca_x)_3Ru_2O_7$ system has an even more complex structure. PRB 56 (1997) 5387	appears to be somewhat unstable a cooling would result in a partial decor	method. sized at a temperature of 1300° C. The Sr ₃ Ru ₂ O ₇ phase and has to be quenched after oxygen annealing. Slow nposition into Sr ₂ RuO ₄ and SrRuO ₃ . Even small SrRuO ₃ romagnetic signature of a mainly Sr ₃ Ru ₂ O ₇ sample.
References: Cox92 P. A. Cox, "Transition Metal O: Properties", Clarendon press, Oxford,	kides: An Introduction to Their Electronic Structure and 1992.		